extrait du système : distributeur de boisson

0.3. 0.5. 0.7. 1.0 r(t), NORMALIZED EFFECTIVE TRANSIENT. THERMAL RESISTANCE. D = 0.5. 0.2. 0.1. 0.05. 0.02. 0.01. SINGLE PULSE. θJC(t) = (t) θJC.
404KB taille 1 téléchargements 50 vues
Étude d’une fonction : affichage (extrait du système : distributeur de boisson) Présentation : Le distributeur de boissons automatique permet d’obtenir 4 types de boissons : eau pure eau + menthe eau + anis eau + menthe + anis Le choix des boissons se fait par l’utilisateur qui sélectionne sa boisson en appuyant sur un des 4 boutons poussoirs (BPE, BPM, BPA, BPMA). On matérialise l’écoulement des produits (eau, menthe et anis) par l’éclairage de 3 DEL de couleurs (respectivement : rouge, verte et jaune). Lorsque la DEL jaune s’allume, il y a du sirop d’anis qui coule dans le gobelet. On donne le schéma de commande des 3 DEL (c’est le même pour chaque DEL) :

G BERTHOME

Page 1/4

Étude d’une fonction : affichage (extrait du système : distributeur de boisson) TRAVAIL DEMANDÉ Définition de la différence de potentiel VE1 La différence de potentiel VE1 est fournie par une porte logique 74LS00. On se réfère aux chronogrammes de la feuille réponse 1 (page 4/4). A l’instant t=0s, l’utilisateur fait une demande d’eau pure en appuyant sur BPE pendant 1s. Ensuite, l’eau s’écoule dans le gobelet pendant 5s. C’est à dire que VE1 passe à l’état haut pendant 5s tout au long de l’écoulement d’eau.

Analyse qualitative : Question1 D’après la documentation technique du circuit intégré 74LS00 donner les valeurs de VOHmin et VOLmax. Question2 Compléter alors le chronogramme de VE1 sur la feuille réponse 1 (page 4/4). Question3 Quel est l’état du transistor Q1 lorsque VE1=VOLmax ? Justifier votre réponse. Question4 En déduire la valeur de la différence de potentiel VCE ainsi que l’état de D2 (éclairée ou éteinte). Question5 Quel est l’état du transistor Q1 lorsque VE1=VOHmin ? Justifier votre réponse. Question6 En déduire la valeur de la différence de potentiel VCE ainsi que l’état de D2 (éclairée ou éteinte). Question7 Compléter les chronogrammes de D2 et VCE sur la feuille réponse 1 (page 4/4). Question8 Conclure si le tracé des chronogrammes respecte la description du fonctionnement.

G BERTHOME

Page 2/4

Étude d’une fonction : affichage (extrait du système : distributeur de boisson) Analyse quantitative : Question9 D’après la documentation constructeur des diodes électroluminescentes, déterminer les valeurs de IF et VF (cas d’une diode électroluminescente rouge). Question10 Calculer la valeur réelle de IF. Question11 Justifier alors que la résistance R12 est correctement dimensionnée. Question12 D’après la documentation constructeur du transistor BC337-40, trouver la valeur de min. Question13 Calculer alors la valeur de IBsat. Question14 Justifier alors que la résistance R9 est correctement dimensionnée. Question15 Compte tenu des caractéristiques de la porte 74L00, expliquer pourquoi la structure suivante n’a pas été retenue pour réaliser la commande des LED.

R12

& 74L00

75 VE1

D2

Question16 En vous aidant de la question 13 et la documentation constructeur de Q1, justifier l’emploi de la structure réelle avec un transistor en montrant que Q1 peut remédier au problème de la structure ci-dessus.

G BERTHOME

Page 3/4

Étude d’une fonction : affichage (extrait du système : distributeur de boisson) Feuille réponse n°1 BPE appuyé

relâché 0

0,5

1

1,5

2

2,5

3

3.5

4

4,5

5

5,5

6

6,5

7

7,5

8

t(s)

0

0,5

1

1,5

2

2,5

3

3.5

4

4,5

5

5,5

6

6,5

7

7,5

8

t(s)

0

0,5

1

1,5

2

2,5

3

3.5

4

4,5

5

5,5

6

6,5

7

7,5

8

t(s)

0,5

1

1,5

2

2,5

3

3.5

4

4,5

5

5,5

6

6,5

7

7,5

8

t(s)

VE1 5V 4V 3V 2V 1V 0V

VCE 5V 4V 3V 2V 1V 0V

Etat de D2 allumée

éteinte 0

G BERTHOME

Page 4/4



Order this document by BC337/D

SEMICONDUCTOR TECHNICAL DATA

  

NPN Silicon

        COLLECTOR 1 2 BASE 3 EMITTER 1

MAXIMUM RATINGS

2

Rating

Symbol

BC337

BC338

Unit

Collector – Emitter Voltage

VCEO

45

25

Vdc

Collector – Base Voltage

VCBO

50

30

Vdc

Emitter – Base Voltage

VEBO

5.0

Vdc

Collector Current — Continuous

IC

800

mAdc

Total Device Dissipation @ TA = 25°C Derate above 25°C

PD

625 5.0

mW mW/°C

Total Device Dissipation @ TC = 25°C Derate above 25°C

PD

1.5 12

Watt mW/°C

TJ, Tstg

– 55 to +150

°C

Symbol

Max

Unit

Operating and Storage Junction Temperature Range

3

CASE 29–04, STYLE 17 TO–92 (TO–226AA)

THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Ambient

RqJA

200

°C/W

Thermal Resistance, Junction to Case

RqJC

83.3

°C/W

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) Characteristic

Symbol

Min

Typ

Max

45 25

— —

— —

50 30

— —

— —

5.0





— —

— —

100 100

— —

— —

100 100





100

Unit

OFF CHARACTERISTICS Collector – Emitter Breakdown Voltage (IC = 10 mA, IB = 0) Collector – Emitter Breakdown Voltage (IC = 100 µA, IE = 0)

V(BR)CEO BC337 BC338

Vdc

V(BR)CES BC337 BC338

Emitter – Base Breakdown Voltage (IE = 10 mA, IC = 0)

V(BR)EBO

Collector Cutoff Current (VCB = 30 V, IE = 0) (VCB = 20 V, IE = 0)

BC337 BC338

Collector Cutoff Current (VCE = 45 V, VBE = 0) (VCE = 25 V, VBE = 0)

BC337 BC338

Vdc

ICBO

nAdc

ICES

Emitter Cutoff Current (VEB = 4.0 V, IC = 0)

Motorola Small–Signal Transistors, FETs and Diodes Device Data  Motorola, Inc. 1996

IEBO

Vdc

nAdc

nAdc

1

       

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) (Continued) Symbol

Characteristic

Min

Typ

Max

100 100 160 250 60

— — — — —

630 250 400 630 —

Unit

ON CHARACTERISTICS DC Current Gain (IC = 100 mA, VCE = 1.0 V)

hFE



BC337/BC338 BC337–16/BC338–16 BC337–25/BC338–25 BC337–40/BC338–40

(IC = 300 mA, VCE = 1.0 V) Base–Emitter On Voltage (IC = 300 mA, VCE = 1.0 V)

VBE(on)





1.2

Vdc

Collector – Emitter Saturation Voltage (IC = 500 mA, IB = 50 mA)

VCE(sat)





0.7

Vdc

Cob



15



pF

fT



210



MHz

SMALL–SIGNAL CHARACTERISTICS Output Capacitance (VCB = 10 V, IE = 0, f = 1.0 MHz)

r(t), NORMALIZED EFFECTIVE TRANSIENT THERMAL RESISTANCE

Current – Gain — Bandwidth Product (IC = 10 mA, VCE = 5.0 V, f = 100 MHz)

1.0 0.7 0.5

D = 0.5

0.3

0.2

0.2

0.1

0.1 0.05 0.07 0.02 0.05

SINGLE PULSE 0.01

0.03

t1 t2 DUTY CYCLE, D = t1/t2

SINGLE PULSE

0.02 0.01 0.001

θJC(t) = (t) θJC θJC = 100°C/W MAX θJA(t) = r(t) θJA θJA = 375°C/W MAX D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT t1 TJ(pk) – TC = P(pk) θJC(t)

P(pk)

0.002

0.005

0.01

0.02

0.05

0.1

0.2 0.5 t, TIME (SECONDS)

1.0

2.0

5.0

10

20

50

100

Figure 1. Thermal Response

1.0 s

1.0 ms

1000 TJ = 135°C 100 µs

hFE, DC CURRENT GAIN

IC, COLLECTOR CURRENT (mA)

1000

dc TC = 25°C dc TA = 25°C

100

10 1.0

CURRENT LIMIT THERMAL LIMIT SECOND BREAKDOWN LIMIT (APPLIES BELOW RATED VCEO) 3.0 10 30 VCE, COLLECTOR–EMITTER VOLTAGE

100

Figure 2. Active Region — Safe Operating Area

2

VCE = 1 V TJ = 25°C

100

10 0.1

1.0 10 100 IC, COLLECTOR CURRENT (AMP)

1000

Figure 3. DC Current Gain

Motorola Small–Signal Transistors, FETs and Diodes Device Data

1.0

1.0 TJ = 25°C

TA = 25°C

0.6 IC = 10 mA

0.4

100 mA

300 mA

500 mA

VBE(on) @ VCE = 1 V 0.6

0.4

0.2

0.2

VCE(sat) @ IC/IB = 10 0 0.01

0 0.1

1 IB, BASE CURRENT (mA)

10

100

1

Figure 4. Saturation Region

10 100 IC, COLLECTOR CURRENT (mA)

1000

Figure 5. “On” Voltages

100

+1 θVC for VCE(sat) C, CAPACITANCE (pF)

θV, TEMPERATURE COEFFICIENTS (mV/°C)

VBE(sat) @ IC/IB = 10

0.8

0.8 V, VOLTAGE (VOLTS)

VCE , COLLECTOR–EMITTER VOLTAGE (VOLTS)

       

0

–1

θVB for VBE

–2

1

10 100 IC, COLLECTOR CURRENT (mA)

1000

Figure 6. Temperature Coefficients

Motorola Small–Signal Transistors, FETs and Diodes Device Data

Cib 10

Cob

1 0.1

1 10 VR, REVERSE VOLTAGE (VOLTS)

100

Figure 7. Capacitances

3

       

PACKAGE DIMENSIONS

A

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. DIMENSION F APPLIES BETWEEN P AND L. DIMENSION D AND J APPLY BETWEEN L AND K MINIMUM. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

B

R P L

F

SEATING PLANE

K D J

X X G H V

C

1

SECTION X–X

N N

CASE 029–04 (TO–226AA) ISSUE AD

DIM A B C D F G H J K L N P R V

INCHES MIN MAX 0.175 0.205 0.170 0.210 0.125 0.165 0.016 0.022 0.016 0.019 0.045 0.055 0.095 0.105 0.015 0.020 0.500 ––– 0.250 ––– 0.080 0.105 ––– 0.100 0.115 ––– 0.135 –––

MILLIMETERS MIN MAX 4.45 5.20 4.32 5.33 3.18 4.19 0.41 0.55 0.41 0.48 1.15 1.39 2.42 2.66 0.39 0.50 12.70 ––– 6.35 ––– 2.04 2.66 ––– 2.54 2.93 ––– 3.43 –––

STYLE 17: PIN 1. COLLECTOR 2. BASE 3. EMITTER

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us: USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315

MFAX: [email protected] – TOUCHTONE (602) 244–6609 INTERNET: http://Design–NET.com

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

4





Motorola Small–Signal Transistors, FETs and Diodes Device Data BC337/D

54LS00/DM54LS00/DM74LS00 Quad 2-Input NAND Gates General Description

Features

This device contains four independent gates each of which performs the logic NAND function.

Y

Alternate Military/Aerospace device (54LS00) is available. Contact a National Semiconductor Sales Office/ Distributor for specifications.

Connection Diagram Dual-In-Line Package

TL/F/6439 – 1

Order Number 54LS00DMQB, 54LS00FMQB, 54LS00LMQB, DM54LS00J, DM54LS00W, DM74LS00M or DM74LS00N See NS Package Number E20A, J14A, M14A, N14A or W14B

Function Table Y e AB Inputs

Output

A

B

Y

L L H H

L H L H

H H H L

H e High Logic Level L e Low Logic Level

C1995 National Semiconductor Corporation

TL/F/6439

RRD-B30M105/Printed in U. S. A.

54LS00/DM54LS00/DM74LS00 Quad 2-Input NAND Gates

June 1989

Absolute Maximum Ratings (Note) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Note: The ‘‘Absolute Maximum Ratings’’ are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the ‘‘Electrical Characteristics’’ table are not guaranteed at the absolute maximum ratings. The ‘‘Recommended Operating Conditions’’ table will define the conditions for actual device operation.

Supply Voltage 7V Input Voltage 7V Operating Free Air Temperature Range b 55§ C to a 125§ C DM54LS and 54LS DM74LS 0§ C to a 70§ C Storage Temperature Range

b 65§ C to a 150§ C

Recommended Operating Conditions Symbol

DM54LS00

Parameter

VCC

Supply Voltage

VIH

High Level Input Voltage

VIL

Low Level Input Voltage

IOH

High Level Output Current

IOL

Low Level Output Current

TA

Free Air Operating Temperature

DM74LS00

Units

Min

Nom

Max

Min

Nom

Max

4.5

5

5.5

4.75

5

5.25

2

2

V V

0.7

0.8

V

b 0.4

b 0.4

mA

8

mA

70

§C

4 b 55

125

0

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted) Symbol

Parameter

Min

Typ (Note 1)

DM54

2.5

3.4

DM74

2.7

3.4

Conditions

Max

Units

b 1.5

V

VI

Input Clamp Voltage

VCC e Min, II e b18 mA

VOH

High Level Output Voltage

VCC e Min, IOH e Max, VIL e Max

Low Level Output Voltage

VCC e Min, IOL e Max, VIH e Min

DM54

0.25

DM74

0.35

0.5

IOL e 4 mA, VCC e Min

DM74

0.25

0.4

VOL

V 0.4 V

II

Input Current @ Max Input Voltage

VCC e Max, VI e 7V

IIH

High Level Input Current

VCC e Max, VI e 2.7V

20

mA

IIL

Low Level Input Current

VCC e Max, VI e 0.4V

b 0.36

mA

IOS

Short Circuit Output Current

VCC e Max (Note 2)

ICCH

Supply Current with Outputs High

VCC e Max

0.8

1.6

mA

ICCL

Supply Current with Outputs Low

VCC e Max

2.4

4.4

mA

0.1

DM54

b 20

b 100

DM74

b 20

b 100

mA

mA

Switching Characteristics at VCC e 5V and TA e 25§ C (See Section 1 for Test Waveforms and Output Load) RL e 2 kX Symbol

Parameter

CL e 15 pF

CL e 50 pF

Units

Min

Max

Min

Max

tPLH

Propagation Delay Time Low to High Level Output

3

10

4

15

ns

tPHL

Propagation Delay Time High to Low Level Output

3

10

4

15

ns

Note 1: All typicals are at VCC e 5V, TA e 25§ C. Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

2