juOoVGhnHS9S1VbkOTt8 01 0a0ebf5f73e4ca8615bb8b6425dee6e9 file


793KB taille 1 téléchargements 44 vues
Les antibiotiques mode d’action : Spectre d’activité des différentes molécules Pr Claire POYART Faculté de Médecine Cochin

Avril 2004

A - Historique •





Découverte de l'antibiose = antagonisme bactérien avec la bactéridie charbonneuse Voici un exemple d'antibiose entre E. coli et Brucella à partir de lysier liquide Le terme d'antibiote a été proposé par Vuillemin (1889): "principe actif d'un organisme vivant qui détruit la vie des autres pour protéger sa propre vie".

Un bactériologiste observateur écossais : Alexander Fleming NOBEL 1948

Transformation vitreuse de colonies de staphylocoques.

1928 : la pénicilline

1. Définition des antibiotiques •Substances naturelles ou synthétiques •Propriétés bactériostatiques ou bactéricides •Toxicité modérée permettant l’usage par voie générale •Perturbant le fonctionnement d’une cible bactérienne spécifique

2. Différences avec les antiseptiques

•Produits chimiques •Agissent de façon physico-chimique non spécifique •Trop toxique pour une utilisation par voie générale

3. Classification •D.C.I. ≠ nom commercial •Famille :

-

rassemble des molécules structure biochimique proche mécanismes d’action voisins propriétés pharmacologiques voisines toxicité analogue

•Classification selon la cible bactérienne de l’antibiotique

Les antibiotiques naturels 1 9 29

P ˇ ni c i l li n e G

P e ni c i l li u m n ot a tu m

1 9 44

S tr e pt o m y c i n e

S tr e pt o m y ces

1 9 45

C ˇ p h a lo s p o r i n e C

C e p h a lo s p o r i u m a c re m o ni u m

1 9 46

C hl o r tˇtr

a cy c l in e

S tr e pt o m y ces

1 9 47

C hl o r am ph ˇ n i c o l

S tr e pt o m y ces

v e n ez u e l a e

1 9 48

R i fa m yc in e S V

S tr e pt o m y ces

m e d i te r ra n e i

1 9 52

E r y th r o m yc in e

S tr e pt o m y ces

e r yt h re u s

1 9 54

Sp i r am y c i ne

S tr e pt o m y ces

a m b o fa c i e n s

1 9 55

P r i st in am y ci n e L in c o m y c in e

S tr e pt o m y ces S tr e pt o m y ces

p r i st i n a s p i r a l is l i n c ol n e n s i s

1 9 56

K a n a my c i n e

S tr e pt o m y ces

k a n a myc

1 9 63

G e n tam i c in e

M i cr o m on o s p o r a p u r p u r e a

1 9 67

T o b r a my c i n e

S tr e pt o m y ces

g r i se u s

a u r e of a c i e n s

e ti c u s

te n e b r a r i u s

Les antibiotiques d’hémi-synthèse l’exemple des céphalosporines Protection du noyau β-lactame

Substitution COOH H2 N

H CH

CH2

CH2

CH2

S

CONH Cycle β-lactame

Substitution Augmentation de l’affinité pour la cible bactérienne

N CH2

O COOH

Céphalosporine C

O

CO

CH3

Substitution Modification des propriétés pharmacocinétiques

Antibiotiques: mode d’action ka

Ab + Cible

Ab-Cible kd

Cible: enzyme nécessaire à la croissance bactérienne. Le complexe Ab-cible est inactif.

Ka >>>> Ko

Principales cibles bactériennes des antibiotiques Gram-négatif

2 3

Gram-positif

1

1

2 3

1: Biosynthèse du peptidoglycane 2: Métabolisme des acides nucléiques (ADN ou ARN) 3: Biosynthèse des protéines

ANTIBIOTIQUES INHIBANT LA SYNTHÈSE DE LA PAROI BACTÉRIENNE

La paroi bactérienne

Gram négatif

Gram positif (adapté de : Medical Microbiology,Mosby)

1. Les bêta-lactamines Structure et activité • possèdent toutes le cycle bêta-lactame • associé à un cycle - thiazolidine pour former le noyau commun aux pénicillines - dihydrothiazine pour former le noyau commun aux céphalosporines

Pénicillines

Céphalosporines

1.1. Les pénicillines •Pénicillines G et V •Pénicillines M (méthicilline, oxacilline) •Pénicillines A ou Aminopénicillines (ampicilline, amoxicilline)

•Carboxy-pénicillines (carbénicilline, ticarcilline) •Ureido-pénicillines (mezlocilline, pipéracilline) •Carbapénèmes (imipénème) •Clavam (acide clavulanique)

1.2. Les céphalosporines •1ère génération → céphalotine (Keflin) •2ème génération → céfuroxime(Zinnat) •3ème génération → céfotaxime (Claforan) ceftazidime (Fortum) •4 ème génération → céfépime (Axépime) cefpirome (Cefrome)

1.3. Les monobactams •L ’aztréonam (Azactam) ⇒ Limité aux bacilles à Gram négatif

1 - LES PÉNAMS (pénicillines) • Spectre : – cocci Gram + et -, bacilles Gram +.

• Chef de file : – Benzylpénicilline : Pénicilline G 1944

• formes dites "retard" : • Benzylpénicilline procaïne : Bipénicilline (semi-retard : 12 heures) • Benzathine benzylpénicilline : Extencilline (longretard : 15 jours)

• formes orales : • Phénoxypénicilline (Pénicilline V) : Oracilline , Ospen 1958

Groupe M : Pénicillines antistaphylococciques

• Spectre : – celui de la pénicilline G ; moins actifs, – ces produits ne sont pas inactivés par la pénicillinase staphylococcique

• d'où leur indication: • les infections à staphylocoques producteurs de pénicillinase. – Oxacilline : Bristopen 1963 – Cloxaciline : Orbénine 1976

groupe A : de l'aminobenzylpénicilline (Ampicilline) • Spectre : – élargi à certains bacilles à Gram négatif ; inactivées par les pénicillinases, y compris celle du staphylocoque. – inactives sur le groupe KES et Pseudomonas aeruginosa.

• Les molécules • Ampicilline : Totapen 1965 • Amoxicilline : Agram, Bristamox, Clamoxyl, Flémoxine, Gramidil, Hiconcil • Bacampicilline : Bacampicine, Penglobe • Métampicilline : Suvipen • Pivampicilline : ProAmpi

groupe des acyl-uréido-pénicillines •

Spectre – élargi à certains bacilles à Gram négatif – inactivées par les pénicillinases, y compris celle du staphylocoqu – actives sur Pseudomonas aeruginosa et sur certaines souches productrices de céphalosporinases (en particulier Proteus).



Les molécules – uréido-pénicillines : • Azlocilline : Sécuropen • Mezlocilline : Baypen 1980 • Pipéracilline : Pipérilline 1980

– carboxy-pénicilline : • Ticarcilline : Ticarpen (H) 1981

Groupe des amidino-pénicillines • Spectre – limité aux bacilles à Gram négatif (Entérobactéries)

• La molécule – Pivmécillinam : Sélexid 1982

Groupe des Pénams • Inhibiteurs des bétalactamases • Activité antibactérienne faible • Inhibe la majorité des pénicillinases (et les bétalactamases à spectre élargi) • N'inhibe par contre qu'un faible nombre de céphalosporinases. • Les molécules – Oxapénam Acide clavulanique • associé à l'amoxicilline : Augmentin, Ciblor 1984 • associé à la ticarcilline : Claventin 1988

– Pénicilline-sulfones • Sulbactam : Bétamase (H) 1991 – associé à l'amoxicilline : Unacim 1992

• Tazobactam – associé à la pipéracilline : Tazocilline (H) 1992

LES PÉNEMS : CARBAPÉNEMS • Spectre : – spectre large – Grande stabilité vis à vis de diverses bétalactamases

• Les molécules – Imipénème: Tiénam (H) 1993 – Ertapénème : Invanz 2001

1. Les bêta-lactamines

Mécanisme d ’action •inhibent la transpeptidation •bactéries en phase de multiplication •se fixent sur les Protéines Liant la Pénicilline (PLP •entraîne la lyse des bactéries •bactéricides

Biogenèse du peptidoglycane cytoplasme

L-Ala

membrane

paroi

-L-Ala-D-Glu-L-Lys-D-Ala

D-Ala-L-Lys-D-Glu-L-Ala -

D-Ala

-L-Ala-D-Glu-L-Lys-D-Ala

transpeptidase D-Ala-D-Ala UDP L-Lys

- L-Ala-D-Glu-L-Lys-D-AlaD-Ala

- L-Ala-D-Glu-

UDP - L-Ala-D-Glu-L-Lys-DAla-D-Ala Pentapeptide -

ac. N-acétyl-muramique

D-Ala-L-Lys-D-Glu-L-Ala -

:

transglycosidase

- L-Ala-D-Glu-L-Lys-D-Ala-D-Ala

N-acétyl-glucosamine

bactoprénol

LES CÉPHEMS • Ce sont tous des produits à large spectre, mais dont l'intérêt réside surtout dans leur activité sur les bacilles à Gram négatif. • Les céphalosporines sont classées en trois catégories, selon l'histoire (Trois "générations"), leur spectre et surtout leur comportement vis à vis des céphalosporinases.

Céphalosporines de 1ère génération (C1G) • Spectre : – relativement résistantes aux pénicillinases ; détruites par les céphalosporinases – inactives sur Pseudomonas aeruginosa.



Les molécules – actives par voie orale: • • • •

Céfalexine : Céporexine, Kéforal, Céfacet 1970 Céfadroxil : Oracéfal 1976 Céfaclor : Alfatil 1981 Céfatrizine : Céfaperos 1983

– inactives par voie orale • Céfalotine : Kéflin (H) 1968 • Céfapyrine : Céfaloject 1974 • • Céfazoline : Céfacidal 1976

Céphalosporines de 2ème génération (C2G) • Spectre – relative résistance à certaines céphalosporinases – léger gain d'activité sur les souches sensibles. – inactives sur Pseudomonas aeruginosa.

• Les molécules – – – –

Céfoxitine : Méfoxin (H) 1978 Céfamandole : Kéfandol (H) 1979 Céfotétan: Apacef (H) 1985 Céfuroxime : Cépazine (VO), Zinatt (VO) 1988

Céphalosporines de 3ème génération (C3G) • Spectre – accentuent les avantages des précédentes : • résistance accrue à l'inactivation par les céphalosporinases • gain d'activité sur les souches sensibles. • certaines (*) sont actives sur Pseudomonas aeruginosa.

• Les molécules • Céphems : – – – – – – – – –

Céfotaxime : Claforan (H) 1980 Cefsulodine (*): Pyocéfal (uniquement antipyocyanique) (H) 1981 Céfopérazone (*): Céfobis (H) 1982 Céfotiam : Pansporine (H) ; Taketiam, Texodil (VO) 1983 Ceftazidime (*): Fortum (H) 1986 Ceftriaxone : Rocéphine 1985 Céfixime : Oroken (VO) 1988 Cefpodoxime : Cefodox (VO), Orelox (VO) 1991 Céfépime (*): Axépim (H) 1993

• Oxacéphems : – Latamoxef : Moxalactam (H) 1981

1. Les bêta-lactamines Tolérance •peu toxiques •responsables de manifestations allergiques (de l ’éruption cutanée au choc anaphylactique)

2. Autres molécules Les glycopeptides (vancomycine, teicoplanine)

•bactéricides vis à vis des cocci à Gram positif •inhibent la polymérisation du peptidoglycane

Vancomycine

Les glycopeptides (vancomycine, teicoplanine) •se lient spécifiquement avec le dipeptide D-ala-D-ala Cytoplasme

Membrane

Peptidoglycane

Vancomycine

Ligase

Transglycosylase

Transpeptidase

Pentapeptide

Synthèse du peptidoglycane et mécanisme d ’action de la vancomycine chez une souche d’entérocoque sensible à la vancomycine

P : Peptide M : acide N-acétylmuramique G : N-acétylglucosamine

La fosfomycine

Fosfomycine

•Antibiotique à large spectre •cocci Gram + et •bacilles Gram + et •Doit être utilisé par voie parentérale et en association •fosfomycine-trometanol ⇒ forme orale •Indication dans le traitement monodose de la cystite aigüe chez la femme jeune •Monuril, Uridoz •inhibe la pyruvyl-transférase (enzyme responsable de la 1ère étape de la synthèse du peptidoglycane)

2. Autres molécules Les dérivés de l’acide isonicotinique isoniazide, pyrazinamide,

(éthionamide et prothionamide)

• bloquent, par analogie structurale avec le NAD, les enzymes de biogenèse des acides mycoliques dont le co-enzyme est le NAD • possèdent un spectre d’activité antibactérienne étroit (mycobactéries) • inhibent la formation de l’arabinogalactane, polysaccharide qui assurre la liaison des acides mycoliques au peptidoglycane de la paroi des mycobactéries

2. Autres molécules L’éthambutol

un antibiotique bactéricide, à spectre étroit (limité aux mycobactéries) et qui inhibe des arabinosyl-transférases

ANTIBIOTIQUES AGISSANT SUR LA MEMBRANE CYTOPLASMIQUE

•La famille des POLYMYXINES

•Molécules polypeptidiques cycliques de haut poids moléculaire •Se fixent sur la membrane cytoplasmique •Altèrent la perméabilité •Diffusion médiocre •Actifs sur les bacilles à Gram négatif Colistine : Colimycine 1959 GRAMICIDINES ET TYROCIDINE spectre étroit : bactéries à Gram positif • Bacitracine : usage local Tyrothricine : usage local

ANTIBIOTIQUES AGISSANT SUR LA SYNTHESE DES PROTEINES

1. Sur la sous-unité 30 S du ribosome

1 - Les aminosides ou aminoglycosides Gentamicine

⇒chef de file

⇒• Tobramycine : Nebcine, Tobrex 1974 • Amikacine : Amiklin (H) 1976 • Sisomicine : Sisolline 1980 • Dibékacine : Débékacyl, Icacine 1981 • Nétilmicine : Nétromycine 1982

Gentamicine ou aminosides

•Antibiotiques à large spectre

•cocci et bacilles à Gram positif (sauf les streptocoques et entérocoques R) •cocci et bacilles à Gram négatif •mycobactéries •Toutes les bactéries anaérobies sont résistantes.

• Rapidement bactéricides •Voie parentérale •Spectinomycine

•Structure apparentée aux aminosides. Son usage est limité au traitement de la blenorragie gonococcique.

Mécanisme d’action des aminosides • erreur de lecture de certains triplets de l’ARN-messager • synthèse de protéines anormales

Toxicité • nephrotoxiques • ototoxiques ⇒ surdité

2 - Les tétracyclines Structure et activité •4 cycles hexagonaux •Tétracycline : •Hexacycline 1966

• Doxycycline : •Vibramycine, Vibraveineuse, Monocline 1970

•Minocycline •Minocine, Mestacine 1974

• bactériostatique •large spectre •mais résistances fréquentes. • pénètre dans les cellules (Chlamydia, rickettsies, mycoplasmes…)

1. Sur la sous-unité 30 S du ribosome Mécanisme d’action des tétracyclines • inhibent la liaison de l ’ARN de transfert sur le site accepteur de la fraction 30S du ribosom

Toxicité • lésions hépatiques graves • coloration jaune des dents • photosensibilisation

2. Sur la sous-unité 50 S du ribosome

1 - Les phénicolés Structure et activité •Chloramphénicol Tifomycine 1950, •Thiamphénicol Thiophénicol, Fluimucyl antibiotic 1962 •Bactériostatique à large spectre y compris Rickettsies et chlamydiales • pénètrent bien dans le système lymphatique et franchissent la barrière méningée

1 - Les phénicolés Mécanisme d’action des phénicolés • se fixent sur la fraction 50 S du ribosome • Inhibent la polymérase responsable de la réacti de transpeptidation

Toxicité • risque hématologique

Les macrolides, lincosamides et synergistines (MLS) Structure et activité • comportent un grand cycle lactone : olide • bactériostatiques •actifs sur bactéries Gram + cocci et bacilles •Chlamydia, Legionella • inactifs sur les Entérobactéries et Pseudomonas • chef de file = érythromycine • azithromycine, clarithromycine • lincosamides = lincomycine + clindamycine • streptogramines ou synergistines (pristinamycine)

MACROLIDES • Spiramycine : Rovamycine 1972 • Erythromycine : Ery, Erythrocine, Erycocci 1979 • Josamycine : Josacine 1980 • Roxithromycine : Rulid 1987 • Clarithromycine : Zéclar 1994 • Azithromycine : Zithromax 1994

•LINCOSAMIDES • •

Lincomycine :Lincocine 1966 Clindamycine : Dalacine 1972

• SYNERGISTINES • utilisés comme antistaphylococciques • Virginiamycine : Staphylomycine 1963 • Pristinamycine : Pyostacine 1973

• ou en cas d'infections à bactéries Gram + résistantes aux autres antibiotiques dans les indications suivantes • pneumonies nosocomiale • infections de la peau et des tissus mous • infections cliniquement significatives à Enterococcus faecium résistant à la vancomycine

• Dalfopristine-Quinupristine : Synercid 2000

Macrolides erythromycine, oleandomycine, roxithromycine, clarithromycine CH3 R1

R2 O H3 C HO H3 C

R5

O

R3

R4

O O

OH

CH3

CH3

josamycine, midecamycine, spiramycine R2

CH3

CHO O O

CH3 N CH3

CH3 O

O O

CH3

OH

OCH3

CO

R3

O



Macrolides are bacteriostatic for most antibiotics, cidal for some Gram positive bacteria



Inhibit protein synthesis



Interact with the 50S ribosomal subunit • inhibit elongation of the protein by peptidyltransferase • prevent translocation of the ribosome

CH3

O R1 CH3 N CH3

Les macrolides lincosamides et synergistines (MLS)

Mécanisme d’action • se fixent sur la sous-unité 50 S du ribosome • empêchent la translocation de l ’ARN-t du site accepteur au site donateur du ribosome

Toxicité • troubles digestifs • allergies cutanées • colites pseudo-membraneuses

L’acide fusidique:Fucidine 1965

Est le seul antibiotique stérolique Actif sur les staphylocoques Inhibition de la translocation

OXAZOLIDINONE • Spectre – antibiotique bactériostatique – réservés aux traitements des infections à Gram + résistants aux traitements habituels. – Linézolide : Zyvoxid 2001

ANTIBIOTIQUES AGISSANT SUR LA SYNTHESE DES ACIDES NUCLEIQUES

Les quinolones

Structure et activité •quinolones urinaires = molécules de synthèse •Acide nalidixique : Négram 1968 •Acide oxolinique : Urotrate 1974 •Acide pipémidique : Pipram 1975

• fluoroquinolones ⇒ spectre plus large ⇒ bonne diffusion tissulaire •Fluméquine : Apurone 1978 Péfloxacine : Péflacine 1985 •Norfloxacine : Noroxine 1986 Ofloxacine : Oflocet 1987 •Ciprofloxacine : Ciflox 1988 Enoxacine : Enoxor 1993 •Sparfloxacine 1994 Levofloxacine : Tavanic 1998 •Moxifloxacine : Izilox 2000

Pefloxacine

Les quinolones

Mécanisme d’action • bactéricides ⇒ bloquent la synthèse de l’acide nucléique par inhibition des ADN topo-isomérases • les quinolones se fixent sur la sous-unité A de l’ADN gyrase

Toxicité • photosensibilisations • cartilages de conjugaison

Les rifamycines Rifamycine SV : Rifocine 1966 Rifampicine : Rifadine 1969

Structure et activité • active

⇒ sur le staphylocoque ⇒ sur les bactéries à pénétration intracellulaire (Legionella, Brucella)

• antituberculeux • bactéricide • rifampicine

Rifampicine

2. Les rifamycines Mécanisme d’action • bloquent la synthèse des ARN messagers, inhibition de la sous unité ß de l’ARN polymérase

Toxicité • effet inducteur d ’enzymes • accélère le métabolisme hépatique de certains médicaments (anticoagulants, antidiabétiques oraux et corticostéroïdes)

3. Les nitro-imidazoles Structure et activité • Métronidazole (Flagyl®) • activité sur anaérobies • bactéricide

Mécanisme d’action • modifient l’ADN bactérien • provoquent sa fragmentation

4. Antibiotiques divers

• Triméthoprime - métasulfoxazole : cotrimoxazole (Bactrim®) • Sulfamides • Antituberculeux

PRODUITS NITRÉS • Prodrogues dont certaines bactéries peuvent réduire le radical (-NO2) ce qui fait apparaître un dérivé toxique pour l'ADN par substitutions de bases ou cassures. • OXYQUINOLÉINES – Spectre large, utilisés dans le traitement des infections urinaires ou intestinales : • Nitroxoline : Nibiol 1969 • Tilboquinol : Intétrix 1969

• NITROFURANES – Spectre large, utilisés dans le traitement des infections urinaires ou intestinales • Nitrofurantoïne : Microdoïne, Furadantine 1971 • Nifuroxazide : Ercéfuryl 1972