NPN Silicon RF Transistor Bfp420 - OM 3 BC

at TA = 25 °C, unless otherwise specified. Parameter. Symbol. Value. Unit min. typ. max. DC Characteristics. Collector-emitter breakdown voltage. IC = 1 mA.
144KB taille 1 téléchargements 347 vues
SIEGET 25 BFP420 NPN Silicon RF Transistor

For High Gain Low Noise Amplifiers For Oscillators up to 10 GHz Noise Figure F = 1.05 dB at 1.8 GHz Outstanding Gms = 20 dB at 1.8 GHz Transition Frequency fT = 25 GHz Gold metalization for high reliability  SIEGET 25-Line Siemens Grounded Emitter Transistor25 GHz fT-Line

ESD: Electrostatic discharge sensitive device, observe handling precautions!

Type

Marking

Ordering Code (8-mm taped)

BFP420

AMs

Q62702-F1591

Pin Configuration Package 1 2 3 4 B E C E SOT343

Maximum Ratings Parameter

Symbol

Collector-emitter voltage

VCEO

4.5

V

Collector-base voltage

VCBO

15

V

Emitter-base voltage

VEBO

1.5

V

Collector current

IC

35

mA

IB

3

mA

Ptot

160

mW

Junction temperature

Tj

150

°C

Ambient temperature range

TA

-65...+150°C

°C

Storage temperature range

Tstg

-65...+150°C

°C

Base current Total power dissipation, Ts ≤ 107°C

2)3)

Unit

Thermal Resistance Junction-soldering point

2)

Rth JS

270

K/W

1) For detailed information see chapter Package 2) TS is measured on the emitter lead at the soldering point to the pcb. 3) Ptot due to Maximum Ratings.

At typical Ts ≤ 80°C: Ptot = 250 mW due to thermical characteristics.

Semiconductor Group

1

Edition A06, 09/96

1)

SIEGET 25 BFP420

Electrical Characteristics at TA = 25 °C, unless otherwise specified.

Parameter

Symbol

Value

Unit

min.

typ.

max.

DC Characteristics

Collector-emitter breakdown voltage IC = 1 mA Collector-cutoff current VCB = 5 V, IE = 0 Emitter base cuttoff current VEB = 1.5 V, IC = 0

V(BR)CEO

4.5

5

6.5

V

ICBO

-

-

200

nA

IEBO

-

-

35

µA

DC current gain IC = 20 mA, VCE = 4 V

hFE

50

80

150

20

25

-

GHz

-

0.15

0.24

pF

-

0.41

-

pF

-

0.55

-

pF

-

1.05

1.4

dB

-

20

-

dB

14

17

-

dB

-

22

-

dBm

-

12

-

dBm

AC Characteristics Transition frequency fT IC = 30 mA, VCE = 3 V, f = 2 GHz Collector-base capacitance Ccb VCB = 2 V, VBE = vbe = 0, f = 1 MHz Collector-emitter capacitance Cce VCE = 2 V, VBE = vbe = 0, f = 1 MHz Emitter-base capacitance Ceb VEB = 0.5 V, VCB = vcb = 0, f = 1 MHz Noise figure F IC = 5 mA, VCE = 2 V, f = 1.8 GHz, ZS = ZSopt Power gain Gms1) IC = 20 mA, VCE = 2 V, f = 1.8 GHz, ZS =ZSopt , ZL = ZLopt Insertion power gain |S21|2 IC = 20 mA, VCE = 2 V, f = 1.8 GHz, ZS = ZL = 50Ω Third order intercept point at output IP3 IC = 20 mA, VCE = 2 V, f = 1.8 GHz, ZS = ZSopt, ZL= ZLopt 1dB Compression point P-1dB IC = 20 mA, VCE = 2 V, f = 1.8 GHz, ZS = ZSopt, ZL= ZLopt 1) Gms =

S 21 S12

Semiconductor Group

2

Edition A06, 09/96

SIEGET 25 BFP420

Total Power Dissipation versus Soldering Point Temperature

Permissible Pulse Power Dissipation versus On-Time (VCE0max = 4.5 V)

600 mW

Ptot

500

Ptot_max Ptot_DC

400

300

200 according maximum ratings

100

50

100

°C 150

tp

Ts

Transition Frequency versus Collector Current f = 2 GHz

Collector-base Capacitance versus Collector-base Voltage VBE = 0 V, f = 1MHz

30

0.3

GHz

pF Vce= 3 V, 4 V

fT

2V

25

Ccb 0.25

1V

20

0.2

15

0.15

0.5 V

10

0.1

5

0.05

10

20

mA

1

40

2

V

Ic

Semiconductor Group

4

Vcb

3

Edition A06, 09/96

SIEGET 25 BFP420

Power Gain versus Frequency VCE = 2 V , IC = 20 mA

Gma Gms |S21|²

Power Gain versus Collector Current VCE = 2 V

60

30

dB

dB

50

Gma 25 Gms

40

20

f= 1 GHz

2 GHz

3 GHz

Gms

30

15

4 GHz 5 GHz

Gma

20

10 6 GHz

|S21|²

10

5

0.1

1

GHz 10

10

20

mA

f

Ic

Power Gain versus Collector Voltage IC = 20 mA 30 dB

Gma Gms

f= 1 GHz

25 2 GHz

20 3 GHz

15

4 GHz 5 GHz

10 6 GHz

5

1

2

3

V

4

Vce

Semiconductor Group

40

4

Edition A06, 09/96

SIEGET 25 BFP420

Noise Figure versus Collector Current VCE = 2 V, ZS = ZSopt

Noise Figure versus Collector Current VCE = 2 V, f = 1.8 GHz

3

3 6.0 GHz

dB 2.5

F

dB

5.0 GHz

F

4.0 GHz

2.5

3.0 GHz 2.4 GHz

2

2

1.8 GHz Zs=50 Ohms

1.5

1.5 0.9 GHz Zsopt

1

1

0.5

0.5

10

20

mA

40

10

20

mA

40

Ic

Ic

Noise Figureversus Frequency VCE = 2 V, IC = 5 mA / 20 mA, ZS = ZSopt

Source Impedancefor min. Noise Figure versus Frequency VCE = 2 V, IC = 5 mA / 20 mA

3

+j50

dB

F

+j25

+j100

2.5 25

50

+j10

2

1.8 GHz

2.4 GHz

20 mA

5 mA

3 GHz

0

1.5

0.9 GHz

10

5 mA

5 GHz

1

-j10

0.5

100

4 GHz

20 mA

6 GHz

-j25

-j100 -j50

0.1

1

GHz 10

f

Semiconductor Group

5

Edition A06, 09/96

SIEGET 25 BFP420 Common Emitter S-Parameters ƒ S11 S21 GHz

MAG

S12

S22

ANG

MAG

ANG

MAG

ANG

MAG

ANG

-2.3 -25.1 -101.1 -146.2 173.5 149.4 130.0 104.8 78.5 67.6 62.0

37.62 36.30 23.41 13.99 7.18 4.77 3.52 2.27 1.51 1.25 1.04

178.3 164.7 121.0 96.0 70.8 52.6 36.8 8.2 -20.8 -34.4 -43.5

0.0011 0.0068 0.0262 0.0395 0.0664 0.0949 0.1206 0.1646 0.1800 0.1820 0.1800

94.4 82.5 61.7 57.8 54.0 47.1 38.5 18.9 -2.4 -13.0 -19.3

0.956 0.941 0.632 0.395 0.222 0.133 0.133 0.196 0.289 0.379 0.465

-0.6 -12.4 -47.2 -63.9 -87.3 -111.3 -158.5 142.0 99.3 84.1 76.6

-1.0 -11.6 -55.7 -99.1 -156.0 168.5 142.0 123.9 110.0

15.14 14.98 12.86 9.63 5.60 3.84 2.87 2.26 1.86

179.2 171.8 140.1 112.6 79.4 57.1 38.5 22.1 6.7

0.0012 0.0092 0.0398 0.0603 0.0798 0.0957 0.1121 0.1285 0.1442

83.4 84.1 62.8 46.5 34.6 29.8 25.1 19.4 13.1

0.988 0.982 0.857 0.647 0.401 0.267 0.207 0.150 0.173

-0.7 -6.5 -29.8 -48.6 -70.3 -84.2 -110.5 -137.3 -169.8

VCE = 2 V, IC = 20 mA 0.01 0.1 0.5 1.0 2.0 3.0 4.0 6.0 8.0 9.0 10.0

0.452 0.447 0.386 0.378 0.405 0.446 0.501 0.599 0.700 0.758 0.800

VCE = 2 V, IC = 5 mA

0.01 0.1 0.5 1.0 2.0 3.0 4.0 5.0 6.0

0.790 0.786 0.702 0.589 0.507 0.511 0.549 0.604 0.633

Common Emitter Noise Parameters ƒ Ga 1) Γopt Fmin 1) GHz

dB

RN

rn

F50Ω

2)

|S21| 2

dB

MAG

ANG



-

dB

dB

20.5 15.2 13.0 12.1 10.3 8.6 6.4

0.28 0.20 0.20 0.22 0.33 0.45 0.53

41.0 82.0 124.0 -175.0 -157.0 -142.0 -123.0

8.7 6.7 5.5 5.0 5.5 5.0 15.0

0.17 0.13 0.11 0.10 0.11 0.10 0.30

1.02 1.11 1.32 1.48 1.83 2.20 3.30

20.3 15.8 13.5 11.6 9.1 7.0 5.3

2)

VCE = 2 V, IC = 5 mA

0.9 1.8 2.4 3.0 4.0 5.0 6.0

0.90 1.05 1.25 1.38 1.55 1.75 2.20

1) Input matched for minimum noise figure, output for maximum gain

2) Z S=ZL=50Ω

For more and detailed S- and Noise-parameters please contact your local Siemens distributor or sales office to obtain a SIEMENS Application Notes CD-ROM or see Internet: http://www.siemens.de/Semiconductor/products/35/357.htm

Semiconductor Group

6

Edition A06, 09/96

SIEGET 25 BFP420 SPICE Parameters: Transistor Chip Data T502 (Berkeley-SPICE 2G.6 Syntax): IS =

0.20045

fA

BF =

72.534

-

NF =

1.2432

-

VAF =

28.383

V

IKF =

0.48731

A

ISE =

19.049

fA

NE =

2.0518

-

BR =

7.8287

-

NR =

1.3325

-

VAR =

19.705

V

IKR =

0.69141

A

ISC =

0.019237

fA

NC =

1.1724

-

RB =

3.4849

OHM

IRB =

0.72983

mA

RBM =

8.5757

OHM

RE =

0.31111

OHM

RC =

0.10105

OHM

CJE =

1.8063

fF

VJE =

0.8051

V

MJE =

0.46576

-

TF =

6.7661

ps

XTF =

0.42199

-

VTF =

0.23794

V

ITF =

1.0

mA

PTF =

0

deg

CJC =

234.53

fF

VJC =

0.81969

V

MJC =

0.30232

-

XCJC =

0.3

-

TR =

2.3249

ns

CJS =

0

fF

VJS =

0.75

V

MJS =

0

-

XTB =

0

-

EG =

1.11

eV

XTI =

3.0

-

FC =

0.73234

-

Tnom =

300

K

-

RS =

10



C'-E'- Diode Data (Berkeley-SPICE 2G.6 Syntax): IS =

3.5

fA

N=

1.02

All parameters are ready to use, no scaling is necessary.

Package Equivalent Circuit: CCB

LBO

LBI

transistor

B'

B

SOT343-3: C'

LCI

LCO

chip

C

E' CBE

C'-E'-diode

CCE

LEI

LBI = 0.47 nH LBO = 0.53 nH LEI = 0.23 nH LEO = 0.05 nH LCI = 0.56 nH LCO = 0.58 nH CBE = 136 fF CCE = 134 fF CCB = 6.9 fF

LEO

E valid up to 6 GHz The SOT343 package has two emitter leads. To avoid high complexity of the package equivalent circuit, both leads are combined in one electrical connection. Extracted on behalf of SIEMENS Small Signal Semiconductors by: Institut für Mobil- und Satellitenfunktechnik (IMST) © 1996 SIEMENS AG For more examples and ready to use parameters please contact your local Siemens distributor or sales office to obtain a SIEMENS Application Notes CD-ROM or see Internet: http://www.siemens.de/Semiconductor/products/35/357.htm

Semiconductor Group

7

Edition A06, 09/96

SIEGET 25 BFP420

For non-linear simulation: •

Use transistor chip parameters in Berkeley SPICE 2G.6 syntax for all simulators.



If you need simulation of the reverse characteristics, add the diode with the C'-E'-diode data between collector and emitter.



Simulation of the package is not necessary for frequencies < 100 MHz. For higher frequencies add the wiring of the package equivalent circuit around the non-linear transistor and diode model.

Note: - This transistor is constructed in a common emitter configuration. This feature causes an additional, reverse biased diode between emitter and collector, which does not effect normal operation.

Transistor Schematic Diagram

The common emitter configuration shows the following advantages:

• •

Higher gain because of lower emitter inductance. Power is dissipated via the grounded emitter leads, because the chip is mounted on the copper emitter leadframe.

Please note, that the broadest lead is the emitter lead.

- The AC-Characteristics are verified by random sampling.

Semiconductor Group

8

Edition A06, 09/96

SIEGET 25 BFP420

Package

Published by Siemens AG, Bereich Bauelemente, Vertrieb, Produkt-Information, Balanstraße 73, D-81541 München  Siemens AG 1994. All Rights Reserved As far as patents or other rights of third parties are concerned, liability is only assumed for components per se,not for applications,processes and circuits implemented within components or assemblies. The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. For questions on technology, delivery and prices please contact the Offices of Semiconductor Group in Germany or the Siemens Companies and Representatives woldwide (see address list). Due to technical requirements components may contain dangerous substances. For information on the type in question please contact your nearest Siemens Office, Semiconductor Group. Siemens AG is an approved CECC manufacturer.

Semiconductor Group

9

Edition A06, 09/96