TIVA - eufanet

0. M 1. M 2. Q → Thermoelectric power or. Seebeck coefficient. Q. 12. → Relative Thermoelectric power. ( )( ) ( )0. 12. 0. 2. 1. 12. TTQTTQQV−. =−. −= Materials Q.
712KB taille 75 téléchargements 425 vues
THALES Microelectronics S.A. FAILURE ANALYSIS LABORATORY

THERMAL LASER STIMULATION (TLS / OBIRCH / TIVA)

MICROELECTRONICS

2

TLS in the FA flow I.C. FA flow Electrical diagnostic

Current related defects Emission microscopy

Thermal Laser Stimulation

– Ileakage junctions – Ileakage oxides

– Ileakage metallic shorts

Defect localization Physical analysis MICROELECTRONICS

3

TLS Principles LASER λ = 1,3 µm

Conduction band

• Heating • No e-h pair generation

Ephoton < Eb.g. Valence band

High absorption in: – Metals – Polysilicon – Highly doped silicon MICROELECTRONICS

α Aluminium = 1,1x10 cm 6

−1

4

Laser Heating of Metals Electric current density :

j ≅ σ[E + Q (− ∇T )] ↑ T° → Current variation ∇ T° → Additional current MICROELECTRONICS

5

A. Resistance Variation

∆R =

ρ0L S

(α TCR − 2δ T )∆T

Aluminium αTCR = 4,29x10-3 δT = 2,36x10-5 MICROELECTRONICS

αTCR → Temperature Coefficient of Resistivity δT → Coefficient of Thermal linear dilatation

Current Source (TIVA)

∆V = ∆R ⋅ I Voltage Source (OBIRCH)

(

)

∆I = − ∆R R V 2

6

B. Electromotive Force Generation Laser

T0

M1

M2

T0

T > T0

V12 = (Q1 −Q2 )(T −T0 ) =Q12(T −T0 ) Q→

Thermoelectric power or Seebeck coefficient Q12 → Relative Thermoelectric power

MICROELECTRONICS

Materials

Q12 (µV/oC)

Al / W

7,0

Al / n+ Poly

-121

Al / n+ Si (1020 cm-3)

-105

7

TLS Model 1µm

Parameters: Tini: 25oC Plaser: 100mW Rlaser: 0,65µm Vfast: 1,23m/s Vslow : 0,00768m/s

1µm Al SiO2

Silicon

10µm

0.5µm 1µm

- Transversal - Longitudinal

4µm

Length = 120µm

Model: 1µm Al line, Gaussien Laser MICROELECTRONICS

2 cases:

8

A. Transversal Case • Rapid thermal equilibrium and heat dissipation • Hottest temperature occurs at laser spot 75

T (°C)

65

transversal slow transversal fast

55 45 35 25 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Slowest scanning speed

MICROELECTRONICS

Position (µm) Elapsed time (µs)

9

B. Longitudinal Case • Thermal equilibrium reached after 10µs 75

T (°C)

65 55 45

longitudinal slow longitudinal fast

35 25 0,0E+00 5,0E-06 1,0E-05 1,5E-05 2,0E-05

Time (s)

Slowest scanning speed

MICROELECTRONICS

10

Temperature Calculation trans. slow trans. fast long. slow long. fast

75

T (°C)

65 55

At thermal equilibrium: Thermal spreading limited to ~ 30µm

45 35 25 -20

-10 0 10 20 Position from the laser center (µm)

MICROELECTRONICS

Temperature varies linearly with laser power

∆Tmax =

o 0.55 C/mW

11

Resistance Calculation Resistance Variation (Ω)

0,20

∆R = 0,17Ω

0,15 0,10

∆Rmax = 1,7 mΩ/mW

0,05 0,00 0

20

40

60

80

100

ρ0 α TCR L (TMoy − T0 ) ∆R = S

Laser Power(mW)

MICROELECTRONICS

12

Model Conclusion Localization of defects and lines submitted to Ileakage ∆R 1/∝ Section ∆V ∝ Ileakage Localization of junctions and interface defects Q12 or ∆T Precise localization Thermal diffusion < 30µm Tmax at center of line and laser beam MICROELECTRONICS

13

TLS System Requirements • Laser scanning microscope (LSM) – Gaussian laser of λ > 1,1µm • Acquisition and imaging system • Biasing and amplification scheme :

MICROELECTRONICS

Techniques

Inventor

Bias

Amplifier

OBIRCH

Nikawa

V

I

CC-OBIRCH TIVA

Nikawa Cole

I

V

TBIP XIVA

Palaniappan Falk

V

V

SEI

Cole

I / None

V

TLS

14

Configurations OBIRCH I.C. I.C.

AMPLI I/V

AMPLI V/V

TIVA I.C.

AMPLI V/V

MICROELECTRONICS

• Other configurations: – Inductance (TBIP / XIVA) – No bias (SEI)

15

TLS on Test Structures Al line N+ resistance

Poly line No bias (SEI)

MICROELECTRONICS

16

TLS Case Study #1 • Failed CMOS IC

TLS 200X

– I ~ 2mA @ 5V

• No emission • Front-side

TLS 5X MICROELECTRONICS

Metal short (M1-M2)

17

TLS Case Study #2 • Failed BICMOS IC – I > 100 µA (I/O)

TLS (20x)

• Backside – 4 metal levels

EMMI (20x) MICROELECTRONICS

W short (Drain-Source)

18

TLS Case Study #3 • Failed CMOS IC

TLS (20x)

– I ~ 2 mA @ 3V

• Front-side

Metal short TLS (20x) MICROELECTRONICS

(M2-M3)

19

TLS Case Study #4 • ESD failed commercial ICs Molten Si spike

– HBM and MM stressed

• Front-side – No bias applied (SEI) SEI (200x)

SEI (50x)

Molten Si/Al filament MICROELECTRONICS

20

TLS Case Study #5 • GaAs failed ASICS – I ~ 50 µA @ 3V

Defects induced by CDM type ESD stress

• Front-side

TLS (100x)

MICROELECTRONICS

Gold filament

21

Conclusion : TLS Application Field Thermal Laser Stimulation Bias

No Bias

MICROELECTRONICS

Signature

Defect type

Material

Ileakage >1µA

Current lines Shorts ESD defects Voids

AI, W, Au, PolySi, Doped Si, Amorph. Si

ESD defects Interface defects

Metal / Metal Metal / Si Metal / Poly Si Melted Si / Si

All circuits Comparison