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ABSTRACT. We consider systems of combinatorial Dyson-Schwinger equations (briey, + SDSE) X1 = B1+ (F1 (X1 , . . . , XN )), . . ., XN = BN (FN (X1 , . . . , XN )) in the Connes-Kreimer Hopf algebra HI of rooted trees decorated by I = {1, . . . , N }, where Bi+ is the operator of grafting on a root decorated by i, and F1 , . . . , FN are non-constant formal series. The unique solution X = (X1 , . . . , XN ) of this equation generates a graded subalgebra H(S) of HI . We characterise here all the families of formal series (F1 , . . . , FN ) such that H(S) is a Hopf subalgebra. More precisely, we dene three operations on SDSE (change of variables, dilatation and extension) and give two families of SDSE (cyclic and fundamental systems), and prove that any SDSE (S) such that H(S) is Hopf is the concatenation of several fundamental or cyclic systems after the application of a change of variables, a dilatation and iterated extensions. We also describe the Hopf algebra H(S) as the dual of the enveloping algebra of a Lie algebra g(S) of one of the following types: 1. g(S) is a Lie algebra of paths associated to a certain oriented graph. 2. Or g(S) is an iterated extension of the Faà di Bruno Lie algebra. 3. Or g(S) is an iterated extension of an abelian Lie algebra. KEYWORDS: Systems of combinatorial Dyson-Schwinger equations; Hopf algebras of decorated rooted trees; pre-Lie algebras. MATHEMATICS SUBJECT CLASSIFICATION. Primary 16W30. Secondary 81T15, 81T18.
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Introduction The Connes-Kreimer Hopf algebra of rooted trees is introduced in [15] and studied in [2, 3, 6, 7, 8, 9, 14, 19]. This graded, commutative, non-cocommutative Hopf algebra is generated by the set of rooted trees. We shall work here with a decorated version HD of this algebra, where D is a nite, non-empty set, replacing rooted trees by rooted trees with vertices decorated by the 2



elements of D. This algebra has a family of operators (Bd+ )d∈D indexed by D, where Bd+ sends a forest F to the rooted tree obtained by grafting the trees of F on a common root decorated by d. These operators satisfy the following equation: for all x ∈ HD ,



∆ ◦ Bd+ (x) = Bd+ (x) ⊗ 1 + (Id ⊗ Bd+ ) ◦ ∆(x). As explained in [7], this means that Bd+ is a 1-cocycle for a certain cohomology of coalgebras, dual to the Hochschild cohomology. We are interested here in systems of combinatorial Dyson-Schwinger equations (briey, SDSE), that is to say, if the set of decorations is {1, . . . , N }, a system (S) of the form:  +   X1 = B1 (F1 (X1 , . . . , XN )), .. .   + XN = BN (FN (X1 , . . . , XN )), where F1 , . . . , FN ∈ K[[h1 , . . . , hN ]] are formal series in N indeterminates. These systems (in a Feynman graph version) are used in Quantum Field Theory, as it is explained in [1, 16, 17]. They possess a unique solution, which is a family of N formal series in rooted trees, or equivalently elements of a completion of HD . The homogeneous components of these elements generate a subalgebra H(S) of HD . Our problem here is to determine Hopf SDSE, that is to say SDSE (S) such that H(S) is a Hopf subalgebra of HD . In the case of a single combinatorial Dyson-Schwinger equation, this question has been answered in [10]. In order to answer this, we rst associate an oriented graph to any SDSE, reecting the dependence of the dierent Xi 's; more precisely, the vertices of G(S) are the elements of I , and there is an edge from i to j if Fi depends on hj . We shall say that (S) is connected if G(S) is connected. Noting that any SDSE is the disjoint union of several connected SDSE, we can restrict our study to connected SDSE. We introduce three operations on Hopf SDSE:



• Change of variables, which replaces hi by λi hi for all i ∈ I , where λi 6= 0 for all i. This operation replaces H(S) by an isomorphic Hopf algebra and does not change G(S) . • Dilatation, which replaces each vertex of G(S) by several vertices. This operation increases the number of vertices. For example, consider:  X1 = B1+ (f (X1 , X2 )), (S) : X2 = B2+ (g(X1 , X2 )), where f, g ∈ K[[h1 , h2 ]]; then the following SDSE is a dilatation of (S):  X1 = B1+ (f (X1 + X2 + X3 , X4 + X5 )),    +   X2 = B2 (f (X1 + X2 + X3 , X4 + X5 )), X3 = B3+ (f (X1 + X2 + X3 , X4 + X5 )), (S 0 ) :   X = B4+ (g(X1 + X2 + X3 , X4 + X5 )),    4 X5 = B5+ (g(X1 + X2 + X3 , X4 + X5 )),



• Extension, which adds a vertex 0 to G(S) with an ane formal series. This operation increases the number of vertices by 1. For example, consider:  X1 = B1+ (f (X1 , X2 )), (S) : X2 = B2+ (f (X1 , X2 )), where f ∈ K[[h1 , h2 ]] and a, b ∈ K ; then the following SDSE is an extension of (S):  +  X0 = B0 (1 + aX1 + bX2 ), X1 = B1+ (f (X1 , X2 )), (S 0 ) :  X2 = B2+ (f (X1 , X2 )), 3



We then introduce two families of Hopf SDSE:



• Cycles, which are SDSE such that the associated graph is an oriented graph and all the formal series of the system are ane; see theorem 30. For example, the following system is a 4-cycle:  +  X1 = B1 (1 + X2 ),   X2 = B2+ (1 + X3 ), X = B3+ (1 + X4 ),    3 X4 = B4+ (1 + X1 ). The associated oriented graph is:



• Fundamental    X1           X2       X3         X4           X5



1O



/2



4o



3







SDSE, described in theorem 32. Here is an example of a fundamental SDSE:   + −1 −1 , = B1 fβ1 (X1 )f β2 ((1 + β2 )h2 )(1 − h3 ) (1 − h4 ) 1+β2   = B2+ f β1 (X1 )fβ2 (h2 )(1 − h3 )−1 (1 − h4 )−1 , 1+β1   + −1 = B3 f β1 ((1 + β1 )X1 )f β2 ((1 + β2 )h2 )(1 − h4 ) , 1+β1 1+β2   + −1 = B4 f β1 ((1 + β1 )X1 )f β2 ((1 + β2 )h2 )(1 − h3 ) , 1+β1 1+β2   + −1 −1 = B5 f β1 ((1 + β1 )X1 )f β2 ((1 + β2 )h2 )(1 − h3 ) (1 − h4 ) , 1+β1



1+β2



where β1 , β2 ∈ K − {−1} and, for all β ∈ K , fβ is the following formal series:



fβ (h) =



∞ X (1 + β) · · · (1 + (k − 1)β)



k!



k=0



The associated oriented graph is: 
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5 The main result of this paper is theorem 14, which says that any connected Hopf SDSE is obtained by a dilatation and a nite number of iterated extensions of a cycle or a fundamental SDSE. Let us now give a few explanations on the way this  result  is obtained. An important tool is (i,j) 2 given by a family indexed by I of scalar sequences λn associated to any Hopf SDSE. n≥1



They allow to reconstruct the coecients of theformal series of (S), as explained in proposition (i,j) 19. Particular cases of possible sequence λn are ane sequences, up to a nite number n≥1



of terms: this leads to the notion of level of a vertex. It is shown that level decreases along the oriented paths of G(S) (proposition 23), and this implies the following alternative if (S) is connected: any vertex is of nite level or no vertex is of nite level. In particular, any vertex of a fundamental SDSE is of nite level, whereas no vertex of a cycle is of nite level. We then consider two special families of SDSE: 4



• We rst assume that the graph associated to (S) does not contain any vertex related to itself. This case includes cycles and their dilatations (called multicycles), and a special case of fundamental SDSE called quasi-complete SDSE. We show, using graph-theoretical (i,j) considerations and the coecients λn , that under an hypothesis of symmetry, they are the only possibilities. • We then assume that any vertex of (S) has an ascendant related to itself. We then prove that (S) is fundamental. This results are then unied in corollary 50. It says that any Hopf SDSE with a connected graph contains a multicycle or a a fundamental SDSE (S0 ) and is obtained from (S0 ) by adding repeatedly a nite number of vertices. This result is precised for the multicycle case in theorem 51 and for the fundamental case in theorem 52. The compilation of these results then proves theorem 14. The end of the paper is devoted to the description of the Hopf algebras H(S) . By the CartierQuillen-Milnor-Moore theorem, they are dual of enveloping algebra U(g(S) ), and it turns out that g(S) is a pre-Lie algebra [5], that is to say it has a bilinear product ? such that for all f, g, h ∈ g(S) : (f ? g) ? h − f ? (g ? h) = (g ? f ) ? h − g ? (f ? h). This relation implies that the antisymmetrisation of ? is a Lie bracket. In our case, g(S) has a basis (fi (k))i∈I,k≥1 and by proposition 21 its pre-Lie product is given by: (i,j)



fj (l) ? fi (k) = λk



fi (k + l).



The product ? can be associative, for example in the multicyclic case. Then, up to a change of variables, fj (l) ? fi (k) = fi (k + l) if there is an oriented path of length k from i to j in the oriented graph associated to (S), or 0 otherwise; see proposition 57. The fundamental case is separated into two subcases. In the non-abelian case, the Lie algebra g(S) is described as an iterated semi-direct product of the Faà di Bruno Lie algebra by innite dimensional modules. Similarly, the character group of H(S) is an iterated semi-direct product of the Faà di Bruno group of formal dieomorphisms by modules of formal series:



Ch(H(S) ) = Gm o (Gm−1 o (· · · G2 o (G1 o G0 ) · · · ), where G0 is the Faà di Bruno group and G1 , . . . , Gm−1 are isomorphic to direct sums of (tK[[t]], +) as groups; see theorem 65. The second subcase is similar, replacing the Faà di Bruno Lie algebra by an abelian Lie algebra; see theorem 72. This text is organised as follows: the rst section gives some  recalls  on the structure of Hopf ∗ algebra of HD and on the pre-Lie product on g(S) = P rim H(S) . In the second section are given the denitions of SDSE and their dierent operations: change of variables, dilatation and extension. The main theorem of the text is also stated in this section. The following section (i,j) introduces the coecients λn and their properties, especially their link with the pre-Lie product of g(S) . The level of a vertex is dened in the fourth section, which also contains lemmas on vertices of level 0, 1 or ≥ 2, before that fundamental and multicyclic SDSE are introduced in the fth section. The next section contains preliminary results about graphs with no selfdependent vertices or such that any vertex is the descendant of a self-dependent vertex, and the main theorem is nally proved in the seventh section. The  next three sections deals with the description of the Lie algebra g(S) and the group Ch H(S) when g(S) is associative, in the non-abelian, fundamental case and nally in the abelian, fundamental case. The last section gives a functorial way to characterise pre-Lie algebra from the operation of dilatations of Hopf SDSE.



Notations. We denote by K a commutative eld of characteristic zero. All vector spaces, algebras, coalgebras, Hopf algebras, etc. will be taken over K . 5



1 Preliminaries 1.1 Decorated rooted trees Denition 1 [20, 21] 1. A rooted tree t is a nite graph, without loops, with a special vertex called the root of t. The weight of t is the number of its vertices. The set of rooted trees will be denoted by T . 2. Let D be a non-empty set. A rooted tree decorated by D is a rooted tree with an application from the set of its vertices into D. The set of rooted trees decorated by D will be denoted by TD . 3. Let i ∈ D. The set of rooted trees decorated by D with root decorated by i will be denoted (i) by TD .



Examples. 1. Rooted trees with weight smaller than 5: q qq q q q qq q q q q q ∨q q ; q ; ∨q , q ; ∨q , ∨q , q ,



q qq q q q q q q qqq q q q q q q q q ∨ q q q ∨q q q q q , ∨q , ∨q , ∨q , ∨q , q , q ;H∨



q q q q q ∨q ∨qq qq , ,



q qq q q.



2. Rooted trees decorated by D with weight smaller than 4: q a ; a ∈ D,



b



qb q a (a, b) ∈ D 2 ;



b



qc qq qq ∨qac = c ∨qab , qq ba , (a, b, c) ∈ D3 ;



qq d qc c q qd dq qc cq c qcq q qq qdq q qbq q qdq q qbq q qcq q qq ∨qad = b ∨qac = c ∨qad = c ∨qab = d ∨qac = d ∨qab , b ∨qad = d ∨qab , ∨qq ba = ∨qq ba , qq ba , (a, b, c, d) ∈ D4 .



Denition 2 1. We denote by HD the polynomial algebra generated by TD . 2. Let t1 , . . . , tn be elements of TD and let d ∈ D. We denote by Bd+ (t1 . . . tn ) the rooted tree obtained by grafting t1 , . . . , tn on a common root decorated by d. This map Bd+ is extended in an operator from HD to HD . For example,



Bd+ (



bq qq b q aq qc qd . a c) = ∨



1.2 Hopf algebras of decorated rooted trees In order to make HD a bialgebra, we now introduce the notion of cut of a tree t ∈ TD . A non-total cut c of a tree t is a choice of edges of t. Deleting the chosen edges, the cut makes t into a forest denoted by W c (t). The cut c is admissible if any oriented path in the tree meets at most one cut edge. For such a cut, the tree of W c (t) which contains the root of t is denoted by Rc (t) and the product of the other trees of W c (t) is denoted by P c (t). We also add the total cut, which is by convention an admissible cut such that Rc (t) = 1 and P c (t) = W c (t) = t. The set of admissible cuts of t is denoted by Adm∗ (t). Note that the empty cut of t is admissible; we put Adm(t) = Adm∗ (t) − {empty cut, total cut}. 6



q q qc example. Let a, b, c, d ∈ D and let us consider the rooted tree t = ∨qd . As it as 3 edges, it a b



has 23 non-total cuts. cut c Admissible?



W c (t) Rc (t) P c (t)



a b



q q qc ∨qd



yes a b a b



q qq



a b



q qq



∨qdc yes



∨qdc



qq a qq c b d



∨qdc



qc qd



q qq



1



qq a b



a b



q qq



a b



∨qdc yes



qq q a b ∨qdc b



qq



∨qdc



q qq



a b



∨qdc yes



qa qq b q d c qq a q bd



qa



q qq



∨qdc no



a b



q qq



∨qdc yes



q qq



a b



∨qdc yes



a b



q qq



∨qdc no



q a q b qq cd



qq a q q b c d



q a qq bd q c



qa qb qc qd



×



qd



qb qd



×



qc



×



qq a q b c



qa qc



×



total yes a b



q qq



∨qdc 1



a b



q qq ∨qdc



The coproduct of HD is dened as the unique algebra morphism from HD to HD ⊗ HD such that for all rooted tree t ∈ TD : X X P c (t) ⊗ Rc (t). P c (t) ⊗ Rc (t) = t ⊗ 1 + 1 ⊗ t + ∆(t) = c∈Adm(t)



c∈Adm∗ (t)



As HD is the free associative commutative unitary algebra generated by TD , this makes sense. This coproduct makes HD a Hopf algebra. Although it won't play any role in this text, we recall that the antipode S is the unique algebra automorphism of HD such that for all t ∈ TD :



S(t) = −



X



(−1)nc Wc (t),



c cut of t



where nc is the number of cut edges of c.



Example. q aq aq qa q qc q q b q qc q q q b q qc b q qc ∆( ∨qd ) = ∨qd ⊗ 1 + 1 ⊗ ∨qd + q ab ⊗ q cd + q a ⊗ ∨qd + q c ⊗ q bd + q ab q c ⊗ q d + q a q c ⊗ q bd . a b



A study of admissible cuts shows the following result:



Proposition 3 For all d ∈ D, for all x ∈ HD : ∆ ◦ Bd+ (x) = Bd+ (x) ⊗ 1 + (Id ⊗ Bd+ ) ◦ ∆(x).



Remarks. 1. In other words, Bd+ is a 1-cocycle for a certain cohomology of coalgebras, see [7]. (i)



(i)



2. If t ∈ TD , then ∆(t) − t ⊗ 1 ∈ HD ⊗ TD .



1.3 Gradation of HD and completion We grade HD by declaring the forests with n vertices homogeneous of degree n. We denote by HD (n) the homogeneous component of HD of degree n. Then HD is a graded bialgebra, that is to say:



• For all i, j ∈ N, HD (i)H(j) ⊆ HD (i + j). X • For all k ∈ N, ∆(HD (k)) ⊆ HD (i) ⊗ HD (j). i+j=k



7



We dene, for all x ∈ HD :



    M val(x) = max n ∈ N | x ∈ HD (k) .   k≥n



We then put, for all x, y ∈ HD , d(x, y) = 2−val(x−y) , with the convention 2−∞ = 0. Then d is a distance on HD . The metric space (HD , d) is not complete; its completion will be denoted by d H D . As a vector space: Y d H HD (n). D = n∈N



d The elements of H xn , where xn ∈ HD (n) for all n ∈ N. The product D will be denoted by m : HD ⊗ HD −→ HD is homogeneous of degree 0, so is continuous: it can be extended from d d d H D ⊗ HD to HD , which is then an associative, commutative algebra. Similarly, the coproduct of HD can be extended as a map: Y d b D= ∆:H HD (i) ⊗ HD (j). D −→ HD ⊗H P



i,j∈N



P P d Let f (h) = pn hn ∈ K[[h]] be any formal series, and let X = xn ∈ H D , such that x0 = 0. n d The series of H of terms p X is Cauchy, so converges. Its limit will be denoted by f (X). In n D P other words, f (X) = yn , with:    y0 = pn0 , X X y = pk xa1 · · · xak if n ≥ 1.  n  k=1 a1 +···+ak =n



1.4 Pre-Lie structure on the dual of HD ∗ of H is an enveloping By the Cartier-Quillen-Milnor-Moore theorem [18], the graded dual HD D ∗ algebra. Its Lie algebra P rim(HD ) has a basis (ft )t∈TD indexed by TD :  HD −→ K   0 if n 6= 1, ft :  t1 . . . tn −→ δt,t1 if n = 1.



Recall that a pre-Lie algebra (or equivalently a Vinberg algebra or a left-symmetric algebra) is a couple (A, ?), where ? is a bilinear product on A such that for all x, y, z ∈ A:



(x ? y) ? z − x ? (y ? z) = (y ? x) ? z − y ? (x ? z). Pre-Lie algebras are Lie algebras, with bracket given by [x, y] = x ? y − y ? x. ∗ ) is induced by a pre-Lie product ? given in the following way: The Lie bracket of P rim(HD ∗ ∗ ) such that for all t ∈ T , if f, g ∈ P rim(HD ), f ? g is the unique element of P rim(HD D



(f ? g)(t) = (f ⊗ g) ◦ (π ⊗ π) ◦ ∆(t), where π is the projection on V ect(T D ) which vanishes on the forests which are not trees. In other words, if t, t0 ∈ TD : X ft ? ft0 = n(t, t0 ; t00 )ft00 , t00 ∈TD



where n(t, t0 ; t0 ) is the number of admissible cuts c of t00 such that P c (t00 ) = t and Rc (t00 ) = t0 . It ∗ ), ?) is the free pre-Lie algebra generated by the q 's, d ∈ D : see [3, 5]. is proved that (prim(HD d ∗ Note that HD is isomorphic to the Grossman-Larson Hopf algebra of rooted trees [11, 12, 13]. 8



2 Denitions and properties of SDSE 2.1 Unique solution of an SDSE Denition 4 Let I be a nite, non-empty set, and let Fi ∈ K[[hj , j ∈ I]] be a non-constant formal series for all i ∈ I . The system of Dyson-Schwinger combinatorial equations (briey, the SDSE) associated to (Fi )i∈I is: ∀i ∈ I, Xi = Bi+ (fi (Xj , j ∈ I)), cI for all i ∈ I . where Xi ∈ H In order to ease the notation, we shall often assume that I = {1, . . . , N } in the proofs, without loss of generality.



Notations. We assume here that I = {1, . . . , N }. 1. Let (S) be an SDSE. We shall denote, for all i ∈ I :



X



Fi =



(i)



a(p1 ,··· ,pN ) hp11 · · · hpNN .



p1 ,··· ,pN



2. Let 1 ≤ j ≤ N . We put εj = (0, · · · , 0, 1, 0, · · · , 0) where the 1 is in position j . We shall (i) (i) (i) (i) denote, for all i ∈ I , aj = aεj ; for all j, k ∈ I , aj,k = aεj +εk , and so on.



Remark. We assume that there is no constant Fi . Indeed, if Fi ∈ K , then Xi is a multiple



of q i . We shall always avoid this degenerated case in all this text.



I



cI . Proposition 5 Let (S) be an SDSE. Then it admits a unique solution (Xi )i∈I ∈ H 



Proof. We assume here that I = {1, . . . , N }. If (X1 , · · · , XN ) is a solution of S , then Xi is a linear (innite) span of rooted trees with a root decorated by i. We denote: Xi =



X



at t.



(i) t∈TI



These coecients are uniquely determined by the following formulas: if   pN,q p1,q pN,1 p1,1 t = Bi+ t1,1 · · · t1,q11 · · · tN,1 · · · tN,qNN , where the ti,j 's are dierent trees, such that the root of ti,j is decorated by i for all i ∈ I , 1 ≤ j ≤ qi , then:



at =



N Y (pi,1 + · · · + pi,qi )! pi,1 ! · · · pi,qi !



! (i)



a(p1,1 +···+p1,q



i=1



p1,1 at1,1 1 ,··· ,pN,1 +···+pN,qN )



pN,q



· · · atN,q N . N



(1)



2



So (S) has a unique solution.



Denition 6 Let (S) be an SDSE and let X = (Xi )i∈I be its unique solution. The subal-



gebra of HI generated by the homogeneous components Xi (k)'s of the Xi 's will be denoted by H(S) . If H(S) is Hopf, the system (S) will be said to be Hopf. 9



2.2 Graph associated to an SDSE We associate a oriented graph to each SDSE in the following way:



Denition 7 Let (S) be an SDSE. 1. We construct an oriented graph G(S) associated to (S) in the following way:



• The vertices of G(S) are the elements of I . • There is an edge from i to j if, and only if,



∂Fi 6= 0. ∂hj



∂Fi 6= 0, the vertex i will be said to be self-dependent. In other words, if i is self∂hi dependent, there is a loop from i to itself in G(S) .



2. If



3. If G(S) is connected, we shall say that (S) is



connected.



Remark. If (S) is not connected, then (S) is the union of SDSE (S1 ), · · · , (Sk ) with disjoint sets of indeterminates , so H(S) ≈ H(S1 ) ⊗ · · · ⊗ H(Sk ) . As a corollary, (S) is Hopf if, and only if, for all j , (Sj ) is Hopf. Let (S) be an SDSE and let G(S) be the associated graph. Let i and j be two vertices of G(S) . We shall say that j is a direct descendant of i (or i is a direct ascendant of j ) if there is an oriented edge from i to j ; we shall say that j is a descendant of i (or i is an ascendant of j ) if there is an oriented path from i to j . We shall write "i −→ j " for "j is a direct descendant of i".



2.3 Operations on Hopf SDSE Proposition 8 (change of variables) Let (S) be the SDSE associated to (Fi (hj , j ∈ I))i∈I .



Let λi and µi be non-zero scalars for all i ∈ I . The system (S) is Hopf if, and only if, the SDSE system (S 0 ) associated to (µi Fi (λj hj , j ∈ J))i∈I is Hopf. Proof. We assume that I = {1, . . . , N }. We consider the following morphism:  φ:



HI F ∈F



−→ HI −→ (µ1 λ1 )n1 (F ) · · · (µN λN )nN (F ) F,



where ni (F ) is the number of vertices of F decorated by i. Then φ is a Hopf algebra automorphism and for all i, φ ◦ Bi+ = µi λi Bi+ ◦ φ. Moreover, if we put Yi = λ1i φ(Xi ) for all i:



1 φ ◦ Bi+ (Fi (X1 , · · · , XN )) λi 1 = µi λi Bi+ (Fi (φ(X1 ), · · · , φ(XN ))) λi = µi Bi+ (Fi (λ1 Y1 , · · · , λN YN )).



Yi =



So (Y1 , · · · , YN ) is the solution of the system (S 0 ). Moreover, φ sends H(S) onto H(S 0 ) . As φ is a Hopf algebra automorphism, H(S) is a Hopf subalgebra of HI if, and only if, H(S 0 ) is. 2



Remark. A change of variables does not change the graph associated to (S). Proposition 9 (restriction) Let (S) be the SDSE associated to (Fi (hj , j ∈ I))i∈I and let 



non-empty. Let (S 0 ) be the SDSE associated to Fi (hj , j ∈ I)|hj =0, ∀j ∈I / 0 0 Hopf, then (S ) also is. I0



⊆ I,



10



i∈I 0



. If (S) is



Proof. We consider the epimorphism φ of Hopf algebras from HI to HI 0 , obtained by sending the forests with at least a vertex decorated by an element which is not in I 0 to zero. Then φ sends H(S) to H(S 0 ) . As φ is a morphism of Hopf algebras, if H(S) is a Hopf subalgebra of HI , H(S 0 ) is a Hopf subalgebra of HI 0 . 2 Remark. The restriction to a subset of vertices I 0 changes G(S) into the graph obtained by



deleting all the vertices j ∈ / I 0 and all the edges related to these vertices.



Proposition 10 (dilatation) Let (S) be the system associated to (Fi )i∈I [ and (S 0 ) be a



system associated to a family (Fj0 )j∈J , such that there exists a partition J = following property: for all i ∈ I , for all x ∈ Ii ,  Fx0 = Fi 



Ji ,



with the



i∈I



 X



hy , j ∈ I  .



y∈Ij



Then (S) is Hopf, if, and only if, (S 0 ) is Hopf. We shall say that (S 0 ) is a dilatation of (S). Proof. We assume here that I = {1, . . . , N }.



=⇒. Let us assume that (S) is Hopf. For all i ∈ I , we can then write: ∆(Xi ) =



X



Pn(i) (X1 , · · · , XN ) ⊗ Xi (n),



n≥0



with the convention Xi (0) = 1. Let φ : HI −→ HI 0 be the morphism of Hopf algebras such that, for all 1 ≤ i ≤ N : X Bj+ ◦ φ. φ ◦ Bi+ = j∈Ii



Then, immediately, for all 1 ≤ i ≤ N :



φ(Xi ) =



X



Xj0 .



j∈Ii



As a consequence:



 X j∈Ii



∆(Xj0 ) =



XX



Pn(i) 



j∈Ii n≥0



 X



k∈I1



X



Xk0 , · · · ,



Xk0  ⊗ Xj0 (n).



k∈IN



Conserving the terms of the form F ⊗ t, where t is a tree with root decorated by j , for all j ∈ Ii :   X X X ∆(Xj0 ) = Pn(i)  Xk0 , · · · , Xk0  ⊗ Xj0 (n). n≥0



k∈I1



k∈IN



So (S 0 ) is Hopf.



⇐=. By restriction, choosing an element in each Ii , if (S 0 ) is Hopf, then (S) is Hopf.



2



Remark. If (S 0 ) is a dilatation of (S), then the set of vertices J of the graph G(S 0 ) associated



to (S 0 ) admits a partition indexed by the vertices of G(S) , and there is an edge from x ∈ Ji to y ∈ Jj in G(S 0 ) if, and only if, there is an edge from i to j in G(S) .



11



Example. Let f, g ∈ K[[h1 , h2 ]]. Let us consider the following SDSE: X1 = B1+ (f (X1 , X2 )), X2 = B2+ (g(X1 , X2 )),



 (S) :



 X1      X2 X3 (S 0 ) :   X    4 X5



= = = = =



B1+ (f (X1 + X2 + X3 , X4 + X5 )), B2+ (f (X1 + X2 + X3 , X4 + X5 )), B3+ (f (X1 + X2 + X3 , X4 + X5 )), B4+ (g(X1 + X2 + X3 , X4 + X5 )), B5+ (g(X1 + X2 + X3 , X4 + X5 )).



Then (S 0 ) is a dilatation of (S).



Proposition 11 (extension) Let (S) be the SDSE associated to (Fi )i∈I . Let 0 ∈/ I and let



(S 0 )



be associated to (Fi )i∈I∪{0} , with:



F0 = 1 +



X



(0)



ai hi .



i∈I



Then (S 0 ) is Hopf if, and only if, the two following conditions hold: 1. (S) is Hopf. 2. For all i, j ∈ I (0) = j ∈ I / a(0) j 6= 0 , Fi = Fj . n



o



If these two conditions hold, we shall say that (S 0 ) is an extension of (S). Proof. We assume here that I = {1, . . . , N }.



=⇒. Let us assume that (S 0 ) is Hopf. By restriction, (S) is Hopf. Moreover: X0 =



B0+



1+



N X



! (0) ai Xi



= q0 +



N X



i=1



(0)



ai B0+ ◦ Bi+ (fi (X1 , · · · , XN )).



i=1



As H(S 0 ) is a graded Hopf subalgebra, the projection on H{0,··· ,N } ⊗ H{0,··· ,N } (2) gives: N X



q (0) b (S 0 ) . ai Fi (X1 , · · · , XN ) ⊗ q i0 ∈ H(S 0 ) ⊗H



i=1



So this is of the form:



P ⊗ X0 (2) = P ⊗



N X



(0)



ai



qi q0



! ,



i=1



qi [ for a certain P ∈ H (S 0 ) . As the q 0 's, i ∈ I , are linearly independent, we obtain that for all i, j , (0)



(0)



ai Fi (X1 , · · · , XN ) = ai P for all i, and this implies the second item. ⇐=. As (S) is Hopf, we can put for all 1 ≤ i ≤ N : ∆(Xi ) = Xi ⊗ 1 +



+∞ X k=1
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(i)



Pk ⊗ Xi (k),



(i)



where Pn is an element of the completion of H(S) . By the second hypothesis, if i, j ∈ I , as (i)



(j)



(i)



Fi = Fj , Pn = Pn . We then denote by Pn the common value of Pn for all i ∈ I . So: ∆(X0 ) =



q0 ⊗ 1 + 1 ⊗ q0 +



N X



(0)



ai ∆ ◦ B0+ (Xi )



i=1 N X



= X0 ⊗ 1 + 1 ⊗ X0 +



(0) ai (1



+ Xi ) ⊗ q 0 +



i=1



= X0 ⊗ 1 + 1 ⊗ X0 +



= X0 ⊗ 1 + 1 ⊗ X0 +



N X



(0)



(i)



ai Pj ⊗ B0+ (Xi (j))



i=1 j=1 (0) ai (1



+ Xi ) ⊗ q 0 +



N X ∞ X



(0)



ai Pj ⊗ B0+ (Xi (j))



i=1



i=1 j=1



N X



N X



  ∞ X (0) Pj ⊗ B0+  ai Xi (j)



i=1



j=1



(0) ai (1 + Xi ) ⊗ q 0 +



i=1



= X0 ⊗ 1 + 1 ⊗ X0 +



N X ∞ X



N X



(0) ai (1 + Xi ) ⊗ q 0 +



i=1



N X



Pj ⊗ X0 (j + 1).



i=1



2



This belongs to the completion of H(S 0 ) ⊗ H(S 0 ) , so (S 0 ) is Hopf.



Remarks. 1. If (S) is an extension of (S 0 ), then G(S) is obtained from G(S 0 ) by adding a non-selfdependent vertex with no ascendant. 2. If I (0) is reduced to a single element, then condition 2 is empty.



Denition 12 Let (S) a Hopf SDSE and let i ∈ I . We shall say that i is an extension vertex if, denoting by J the set of descendants of i, the restriction of (S) to J ∪ {i} is an extension of the restriction of (S) to J .



2.4 Constant terms of the formal series Lemma 13 Let (S) be an Hopf SDSE. If Fi (0, · · · , 0) = 0, then Xi = 0. Proof. If Fi (0, · · · , 0) = 0, then the homogeneous component of degree 1 of Xi is zero, so



qi ∈ / H(S) . Considering the terms of the form F ⊗ q i in ∆(Xi ), we obtain:



Fi (Xj , j ∈ I) ⊗ q i ∈ H(S) ⊗ H(S) . As q i ∈ / H(S) , necessarily Fi (Xj , j ∈ I) = 0, so Xi = 0.



2



As a consequence, if Fi (0, · · · , 0) = 0, then H(S) = H(S 0 ) , where (S 0 ) is the restriction of (S) to I − {i}. Using a change of variables, we shall always suppose in the sequel that for all i, Fi (0, · · · , 0) = 1.



2.5 Main theorem Notations. For all β ∈ K , we put: fβ (h) =



+∞ X (1 + β) · · · (1 + β(k − 1)) k=0



k!



( k



h =



The main aim of this text is to prove the following result: 13



−1



(1 − βh) β if β 6= 0, eh if β = 0.



Theorem 14 Let (S) be a connected SDSE. It is Hopf if and only if one of the following



assertion holds:



1. (Extended multicyclic SDSE). The set I admits a partition I = I1 ∪ · · · ∪ IN indexed by the elements of Z/N Z, N ≥ 2, with the following conditions: •



For all i ∈ Ik :



(i)



X



Fi = 1 +



aj hj .



j∈Ik+1



•



If i and i0 have a common direct ascendant in G(S) , then Fi = Fi0 (so i and i0 have the same direct descendants).



2. (Extended fundamental SDSE). There exists a partition: 



 [



I=







 [



Ji  ∪ 



i∈I0



Ji  ∪ K0 ∪ I1 ∪ J1 ∪ I2 ,



i∈J0



with the following conditions: • K0 , I1 , J1 , I2



can be empty. • The set of indices I0 ∪ J0 is not empty. • For all i ∈ I0 ∪ J0 , Ji is not empty. Up to a change of variables: (a) For all i ∈ I0 , there exists βi ∈ K , such that for all x ∈ Ji : Fx = fβi 











 X



Y



hy 



y∈Ji



f



j∈I0 −{i}



βj 1+βj







(1 + βj )



X



hy 



y∈Jj



 Y



f1 



 X



j∈J0



y∈Jj











hy  .



(b) For all i ∈ J0 , for all x ∈ Ji :  Fx =



Y



f



j∈I0



βj 1+βj







(1 + βj )



X



Y



hy 



y∈Jj



f1 



X



hy  .



y∈Jj



j∈J0 −{i}



(c) For all i ∈ K0 :  Fi =



Y j∈I0



f



βj 1+βj







(1 + βj )



X



hy 



y∈Jj



 Y



f1 



j∈J0



 X



hy  .



y∈Jj



(d) For all i ∈ I1 , there exist νi ∈ K and a family of scalars a(i) j 







(i) or (∃j ∈ I0 , a(i) j 6= 1 + βj ) or (∃j ∈ J0 , aj 6= 1) or (∃j Then, if νi 6= 0:



(νi 6= 1)



j∈I0 ∪J0 ∪K0 (i) ∈ K0 , aj



, with 6= 0).



      Y X Y X Y 1 1 (i) (i) (i) f βj νi aj hy  f 1 νi aj hy  f0 νi aj hj +1− . Fi = (i) νi νi (i) νi a ν a j∈I0



y∈Jj



i j



j∈J0



y∈Jj



j



j∈K0



If νi = 0: Fi = −



X a(i) j j∈I0



βj







 ln 1 −



X



hy  −



y∈Jj



 X j∈J0
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(i)



aj ln 1 −



 X y∈Jj



hy  +



X j∈K0



(i)



aj hj + 1.



(e) For all i ∈ J1 , there exists νi ∈ K − {0} and a family of scalars aj(i) with the three following conditions: (i) (i) • I1 = {j ∈ I1 / aj 6= 0} is not empty. 



 j∈I0 ∪J0 ∪K0 ∪I1



,



For all j ∈ I1(i) , νj = 1. (i) (i) (j) (i) • For all j, k ∈ I1 , Fj = Fk . In particular, we put bt = at for any j ∈ I1 , for all t ∈ I0 ∪ J0 ∪ K0 . Then: •



Fi =



     X  X Y 1 Y (i)  b(i) − 1 − βj hy  f βj  bj − 1 f βj hy  j νi (i) (i) y∈Jj j∈J0 bj −1 j∈I0 bj −1−βj y∈Jj   Y X 1 (i) (i) f0 bj hj + a j h1 + 1 − . νi (i)



j∈K0



j∈I1



(f) I2 = {x1 , . . . , xm } and for all 1 ≤ k ≤ m, there exist a set:  I (xk ) ⊆ 



 [



i∈I0







Ji  ∪ 



 [



Ji  ∪ K0 ∪ I1 ∪ J1 ∪ {x1 , . . . , xk−1 }



i∈J0



k) and a family of non-zero scalars a(x j Then:











Fxk = 1 +



j∈I (xk )



X



such that for all i, j ∈ I (xk ) , Fi = Fj . (xk )



aj



hj .



j∈I (xk )



Here is the graph of a system of an extended multicyclic SDSE, with N = 5. The dierent subset of the partition are indicated by the dierent colours. the multicycle corresponds to the ve boxes. An arrow between two boxes means that all vertices of the boxes are related by an arrow.



Here is the graph of an extended fundamental SDSE. The vertices in Ji , with i ∈ I0 , are green. There are two elements in I0 , one with βi = −1 (light green vertices) and one with βi 6= −1 (dark green vertex). There are two elements in J0 , corresponding to light blue and dark blue vertices. The unique element of K0 is red; the unique element of I1 is yellow; the unique element of J1 is orange; the dark vertices are the elements of I2 . An arrow between two boxes 15



means that all vertices of the boxes are related by an arrow.



For example, the SDSE associated to the following formal series has such a graph:



F1 = fβ (h1 )f1 (h4 + h5 )f1 (h6 + h7 + h8 ) F2 = F3 = (1 + h2 + h3 )f F4 = F5 = f F6 = F7 = F8 = f



F11



β 1+β



((1 + β)h1 )f1 (h4 + h5 )f1 (h6 + h7 + h8 )



((1 + β)h1 )f1 (h6 + h7 + h8 ) ((1 + β)h1 )f1 (h4 + h5 )



((1 + β)h1 )f1 (h4 + h5 )f1 (h6 + h7 + h8 )       1 (10) (10) (10) f β = νa1 h1 f −1 νa2 (h2 + h3 ) f 1 νa4 (h4 + h5 ) (10) (10) ν νa(10) νa4 νa2 1     1 (10) (10) νa6 (h6 + h7 + h8 ) f0 νa9 h9 + 1 − , f 1 (10) ν νa6      1 (10) (10) = f a − 1 − β h f a (h + h ) −1 β 1 2 3 1 2 (10) ν 0 a(10) −1−β a2 1       (10) (10) f 1 a4 − 1 (h4 + h5 ) f 1 a6 − 1 (h6 + h7 + h8 )



F9 = f F10



β 1+β



β 1+β



β 1+β



(10) a4 −1



F12 = F13



(10) a6 −1



  1 (10) (11) f0 a9 h9 + a10 h10 + 1 − 0 , ν (12) = 1 + a10 h10 , (14)



F14 = 1 + a13 h13 , (15)



(15)



F15 = 1 + a12 h12 + a13 h13 , (16)



F16 = 1 + a15 h15 , (17)



F17 = 1 + a2 F18 = 1 + F19 = 1 +



h2 , (18) a17 h17 , (19) a17 h17 , (i)



where β 6= −1, ν, ν 0 6= 0, and the coecients aj are non-zero. 16



3 Characterisation and properties of Hopf SDSE 3.1 Subalgebras of HD generated by spans of trees Let us x a non-empty set D.



Lemma 15 Let V be a subspace of V ect(TD ) and let us consider the subalgebra A of HD



generated by V . Recall that for all d ∈ D, f q d is the following linear map:  f qd :



HD −→ K t1 · · · tn −→ δt1 ···tn , q d .



Then A is a Hopf subalgebra if, and only if, the two following assertions are both satised: 1. For all d ∈ D, (f q d ⊗ Id) ◦ ∆(V ) ⊆ V + K . 2. For all d ∈ D, (Id ⊗ f q d ) ◦ ∆(V ) ⊆ A. Proof. =⇒. If A is Hopf, then ∆(V ) ⊆ A ⊗ A. As V ⊆ V ect(TD ), ∆(V ) ⊆ H ⊗ (V ect(TD ) +



K). So:



∆(V ) ⊆ (A ⊗ A) ∩ (H ⊗ (V ect(TD ) + K)) = A ⊗ (V ⊕ K). This implies both assertions.



⇐=. We use here Sweedler's notations: ∆(a) = a0 ⊗ a00 and (∆ ⊗ Id) ◦ ∆(a) = a0 ⊗ a00 ⊗ a000 for all a ∈ A. First step. Let us consider the following subspace of P rim(HD∗ ): ∗ B = {f ∈ P rim(HD ) / (f ⊗ Id) ◦ ∆(V ) ⊆ V + K}. ∗ ). By hypothesis 1, f q d ∈ B for all d ∈ D. We recall here that ? is the pre-Lie product of P rim(HD Let f and g ∈ B . For all v ∈ V :



(f ? g ⊗ Id) ◦ ∆(v) = f ◦ π(v 0 )g ◦ π(v 00 )v 000 . As f ∈ B , f ◦ π(v 0 )v 00 ∈ V + K . As g ∈ B , f ◦ π(v 0 )g ◦ π(v 00 )v 000 ∈ V + K . So f ? g ∈ B , and B ∗ ). As P rim(H∗ ) is generated as a pre-Lie algebra by the is a sub-pre-Lie algebra of P rim(HD D ∗ f q d 's, B = P rim(HD ).



Second step. Let us consider the following subspace of HD∗ : ∗ B 0 = {f ∈ HD / (f ⊗ Id) ◦ ∆(A) ⊆ A}. ∗ ). By the rst step, for all v , · · · , v ∈ V : Let f ∈ P rim(HD 1 n



(f ⊗ Id) ◦ ∆(v1 · · · vn ) = f (v10 · · · vn0 )v100 · · · vn00 =



n X



v1 · · · f (vi0 )vi00 · · · vn ∈ A,



i=1 ∗ ) ⊆ B 0 . Let f, g ∈ B 0 . For all a ∈ A: so P rim(HD



(f g ⊗ Id) ◦ ∆(a) = f (a0 )g(a00 )a000 . ∗ . As it As f ∈ B 0 , f (a0 )a00 ∈ A. As g ∈ B 0 , f (a0 )g(a00 )a000 ∈ A. So B 0 is a subalgebra of HD ∗ ), it is equal to H∗ . So: contains P rim(HD D \ ∆(A) ⊆ HD ⊗ A + Ker(f ) ⊗ HD = HD ⊗ A. ∗ f ∈HD
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Third step. Let us consider the following subspace of P rim(HD∗ ): ∗ C = {f ∈ P rim(HD ) / (Id ⊗ f ) ◦ ∆(V ) ⊆ A}.



By the second hypothesis, f q d ∈ B for all d ∈ D. Let us take f and g ∈ C . For all v ∈ V :



(Id ⊗ (f ? g)) ◦ ∆(v) = v 0 f ◦ π(v 00 )g ◦ π(v 000 ). As g ∈ C , v 0 g ◦ π(v 00 ) ∈ A. Let us denote:



v 0 ◦ π(v 00 ) =



X



v1 · · · vn ,



where v1 , . . . , vn are elements of V . Then: X v 0 f ◦ π(v 00 )g ◦ π(v 000 ) = v10 · · · vn0 f ◦ π(v100 · · · vn00 )g ◦ π(v 000 ). By the second step, as V ⊆ V ect(TD ):



∆(V ) ⊆ (HD ⊗ A) ∩ (HD ⊗ (V ect(TD ) + K)) = HD ⊗ (V + K). So:



X



v10 · · · vn0



⊗



π(v100 · · · vn00 )



=



n XX



v1 · · · vi0 · · · vn ⊗ π(vi00 ).



i=1



Finally:



(Id ⊗ (f ? g)) ◦ ∆(v) =



n XX



v1 · · · vi0 · · · vn ⊗ f ◦ π(vi00 ).



i=1



B0,



As f ∈ this belongs to A. So f ? g ∈ ∗ ). B 0 = P rim(HD



B0.



As at the end of the rst step, we conclude that



Last step. As in the second step, we conclude that for all f ∈ HD∗ , (Id ⊗ f ) ◦ ∆(A) ⊆ A. So



∆(A) ⊆ A ⊗ HD , and ∆(A) ⊆ (HD ⊗ A) ∩ (A ⊗ HD ) = A ⊗ A. So A is a Hopf subalgebra.



2



3.2 Denition of the structure coecients Proposition 16 Let (S) be an SDSE. It is Hopf if, and only if, for all i, j ∈ I , for all n ≥ 1,



there exists a scalar λ(i,j) such that for all t0 ∈ Ti (n): n X



nj (t, t0 )at = λ(i,j) n at0 ,



t∈Ti (n+1)



where nj (t, t0 ) is the number of leaves l of t decorated by j such that the cut of l gives t0 . Proof. =⇒. Let us assume that (S) is Hopf. Then H(S) is a Hopf subalgebra of HI . Let



us use lemma 15, with V = V ect(Xi (n), i ∈ I, n ≥ 1). So (f q j ⊗ Id) ◦ ∆(Xi (n + 1)) belongs to H(S) , and is a linear span of trees of degree n with a root decorated by i, so is a multiple of Xi (n). We then denote: X (f q j ⊗ Id) ◦ ∆(Xi (n + 1)) = λ(i,j) X (n) = λn(i,j) at0 t0 . i n t0 ∈T (n)



By denition of the coproduct ∆:



X



(f q j ⊗ Id) ◦ ∆(Xi (n + 1)) =



t∈T (n+1), t0 ∈T (n)



18



nj (t, t0 )at t0 .



The result is proved by identifying the coecients in the basis T (n) of these two expressions of (f q j ⊗ Id) ◦ ∆(Xi (n + 1)).



⇐=. Let us prove that both conditions of lemma 15 are satised, with the same V as before. (i,j) By hypothesis, for all i, j ∈ I , for all n ≥ 2, (f q j ⊗ Id) ◦ ∆(Xi (n)) = λn−1 Xi (n − 1) ∈ V . Moreover, (f q j ⊗ Id) ◦ ∆(Xi (1)) = δi,j ∈ K , so the rst condition is satised. For the second one: (Id ⊗ f q j ) ◦ ∆(Xi ) = (Id ⊗ f q j ) ◦ ∆(Bi+ (Fi (Xj , j ∈ I))) = Fi (Xj , j ∈ I) ∈ H(S) . 2



So H(S) is a Hopf subalgebra of HI .



3.3 Properties of the coecients λ(i,j) n (i,j)



(i)



(i)



The coecients λn 's are entirely determined by the aj 's and aj,k 's, and determine the other coecients of the Fi 's, as shown by the following result:



Lemma 17 Let us assume that (S) is Hopf, with I = {1, . . . , N }. Let us x i ∈ I .



1. For all sequence i = i1 −→ · · · −→ in of vertices of G(S) : λ(i,j) n



=



(i ) aj n



(i )



n−1 X



aj,ipp+1



p=1



p aip+1



(1 + δj,ip+1 )



+



(i )



.



(i) In particular, λ(i,j) = aj . 1



2. For all p1 , · · · , pN ∈ N: (i) a(p1 ,··· ,pj+1 ,··· ,pN )



!



1 = pj + 1



(i,j) λp1 +···+pN +1



−



(l) pl aj



X



(i)



a(p1 ,··· ,pN ) .



l∈I



Proof. 1. Let us consider a sequence i1 , · · · , in of elements of I , such that i1 = i and for all (i )



(i,j)



p 1 ≤ p ≤ n − 1, aip+1 6= 0. By denition of λn



q in λ(i,j) n a .q in−1



.q i2



=



q i1



(i )



(i



1 n−1 λ(i,j) n ai2 · · · ain



)



:



n−2 X .q in j in qq q j qj q ip+1 , a∨ a qq in + (1 + δj,in )a ∨.q in−1 + q ip qq i2 .q in−1 p=1 .q i i1 i2 1 q i1 (i )



(i



) (i )



(i )



(i



= ai21 · · · ainn−1 aj n + (1 + δj,in )ai21 · · · ainn−1 ,j +



n−2 X



(i )



(i )



(i



)



(i



)



)



p+1 (1 + δj,ip+1 )ai21 · · · aj,ipp+1 aip+2 · · · ainn−1 ,



p=1



λ(i,j) n



=



(i ) aj n



+



(i )



n−1 X



aj,ipp+1



p=1



p aip+1



(1 + δj,ip+1 )



(i )



.



This proves the rst point of the lemma. 2. Let us now x p1 , · · · , pN ∈ N. By denition, for t0 = Bi+ ( q 1 p1 · · · q NpN ): (i,j)



λp1 +···+pN +1 aB + ( q 1 p1 ··· q NpN ) = (pj + 1)aB + ( q 1 p1 ··· q j pj +1 ··· q NpN ) i



i



+



N X



aB + ( q 1 p1 ··· q l pl −1 ··· q NpN qq jl ) , i



l=1 (i,j)



(i)



(i)



λp1 +···+pN +1 a(p1 ,··· ,pN ) = (pj + 1)a(p1 ,··· ,pj +1,··· ,pN ) +



N X l=1



19



(i)



(l)



pl a(p1 ,··· ,pN ) aj .



2



This proves the second point of the lemma.



Remarks. (i)



(i)



1. As a consequence of the second point, if (S) is Hopf and if a(p1 ,··· ,pN ) = 0, then a(l1 ,··· ,lN ) = 0 if l1 ≥ p1 , · · · , lN ≥ pN . In particular, as there is no constant Fi , for all i, there exists a j (i) such that aj 6= 0. 2. So the sequences considered in the rst point of lemma 17 always exist. (i)



3. Moreover, for all vertices i, j of G(S) , i → j if and only if aj 6= 0. 4. Finally, for all i ∈ I , for all p ≥ 1, Xi (p) 6= 0.



Proposition 18 Let (S) be a Hopf SDSE.



1. Let i, j be vertices of G(S) , such that j is not a descendant of i. Then for all n ≥ 1: λ(i,j) = 0. n



2. Let (S) be a Hopf SDSE with set of vertices I and let (S 0 ) be a Hopf SDSE with set of vertices J . Then (S 0 ) is a dilatation of (S) if, and only if, J admits a partition indexed by the elements of I and for all i, j ∈ I , for all x ∈ Ji , y ∈ Jj , for all n ≥ 1: λ(i,j) = λ(x,y) . n n



3. Let i ∈ I such that: Fi = 1 +



X



(i)



aj hj .



j∈I



Then for all direct descendant



i0



of i, for all j , for all n ≥ 1: (i,j)



0



,j) λn+1 = λ(i . n



As a consequence, if i0 , i000 are two direct descendants of i, Fi0 = Fi00 . k) Proof. 1. Let us consider a sequence i = i1 , · · · , in of elements of I such that ai(ik+1 6= 0 for



(i )



(i )



all 1 ≤ k ≤ n − 1. Then j is not a direct descendant of i1 , · · · , in , so aj n = 0 and aj,ikk+1 = 0 for (i,j)



all k . By lemma 17, λn



= 0.



2. =⇒. From lemma 17-1, choosing an element xi in Ji for all i ∈ I . ⇐=. Let us consider the dilatation (S 00 ) of (S) corresponding to the partition of J . Then the (i,j) coecients λn of (S 0 ) and (S 00 ) are equal, so by lemma 17-2, (S 0 ) = (S 00 ). (i )



k 3. Let us consider a sequence i, i0 = i1 , · · · , in of elements of I such that aik+1 6= 0 for all



(i)



1 ≤ k ≤ n − 1. By hypothesis on i, aj,i0 = 0. By lemma 17-1: (i,j) λn+1



=



(i ) aj n



+0+



(i )



n−1 X



aj,ikk+1



k=1



(ik ) aik+1



(1 + δj,ik+1 )



0



,j) = λ(i . n



(i0 ,k)



So, if i0 and i00 are two direct descendants of i, for all k ∈ I , for all n ≥ 1, λn lemma 17-2, Fi0 = Fi00 . 20



(i00 ,k)



= λn



. By 2



Proposition 19 Let (S) be an SDSE, with I = {1, . . . , N }. It is Hopf if, and only if, the two following conditions are satised:



1. There exist scalars λ(i,j) satisfying, for all 1 ≤ i, j ≤ N , for all (p1 , · · · , pN ) ∈ NN : n (i) a(p1 ,··· ,pj+1 ,··· ,pN )



!



1 = pj + 1



(i,j) λp1 +···+pN +1



−



X



(l) pl aj



(i)



a(p1 ,··· ,pN ) .



l∈I



2. For all p ≥ 1, for all i, j, d1 , · · · , dp ∈ I , such that a(i) (p1 ,··· ,pN ) 6= 0 where pi is the number of dp 's equal to i, for all n1 , · · · , np ≥ 1: (i,j)



(i)



(i,j)



(i)



λn1 +···+np +1 − aj = λp+1 − aj +



X



(dl )



l ,j) λ(d − aj nl







.



l∈I



Proof. Preliminary step. Let us assume the rst point and let t0 ∈ TD(i) . We use the following



notations:







 Y



t0 = Bi+ 



srs  .



s∈TD



We also denote, for all j ∈ I :



X



pj =



rs .



(j) s∈TD



Then, by (1): N Y



pj !



j=1



at0 = Y



(i)



rs !



Y



a(p1 ,··· ,pN )



arss .



s∈TD



s∈TD



Hence:



 X











nj (t, t0 )at = nj Bi+  q j



Y







srs  , t0  aB + ( q j i



Q



srs )



s∈TD



(i) t∈TD



+



X



(rs1 + 1)nj (s1 , s2 )aB +  s1 Q srs  i



s1 ,s2 ∈TD rs2 ≥1



(pj + 1) = (r q j +1 )



N Y



pj !



j=1



(r q j +1 )



s2



Y



(i)



rs !



a(p1 ,··· ,pj+1 ,··· ,pN ) a q j



Y



arss



s∈TD



s∈TD



+



X



(rs1 + 1)nj (s1 , s2 )



s1 ,s2 ∈TD



rs2 as at0 1 rs1 + 1 as2



(i)



= (pj + 1)



a(p1 ,··· ,pj+1 ,··· ,pN ) (i) a(p1 ,··· ,pN )



at0 +



X



nj (s1 , s2 )rs2 at0



s1 ,s2 ∈TD



 N X  (i,j) (l) λ − =  pj aj +  p1 +···+pN +1 l=1
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X s1 ,s2 ∈TD rs2 >0



nj (s1 , s2 )rs2



as1 as2 



as1   at0 . as2 



(i,j)



=⇒. Let us assume that (S) is Hopf. We already prove the existence of the scalars λn obtain from the preceding computation:   N X X (d(s2 ),j)  (i,j) (i,j) (l) at0 , λweight(t0 ) at0 = λp1 +···+pN +1 − pj aj + rs2 λweight(s 2)



. We



s2 ∈TD



l=1



where d(s2 ) is the decoration of the root of s2 . Let us choose p, i, j, d1 , · · · , dp , n1 , · · · , np as in the hypotheses of the proposition. Let us choose for all 1 ≤ j ≤ p a tree sj with root decorated by dj , of weight nj , such that asj 6= 0: this always exists (for example take a convenient ladder). (i)



Let us take t0 = Bi+ (s1 · · · sp ). Then at0 6= 0 because a(p1 ,··· ,pN ) 6= 0, so: (i,j)



(i,j)



λn1 +···+np +1 = λp+1 +



p  X



(dl )



l ,j) λ(d − aj nl







.



l=1



⇐=. Let us show the condition of proposition 16 by induction on the weight n of t0 . For (i) (i) (i,j) n = 1, then t0 = q i . Then, by hypothesis on the a(p1 ,··· ,pN ) , aj = λ1 . So: q (i) (i,j) nj (t, t0 )at = q ji = aj = λ1 a q i .



X t∈Ti (n+1)



Let us assume the result for all tree of weight < n. The preceding computation then gives:  



X (i)



N X  (i,j) (l) nj (t, t0 )at =  λ − pj aj +  p1 +···+pN +1 l=1



t∈TD



X



nj (s1 , s2 )rs2



s1 ,s2 ∈TD rs2 >0 (i,j)



The induction hypothesis and the condition on the coecients λn (i,j) to λweight(t0 )+1 at0 . So H(S) is a Hopf subalgebra of HI .



as1   at0 . as2 



then give that this is equal 2



∗ 3.4 Prelie structure on H(S) ∗ Let us consider a Hopf SDSE (S). Then H(S) is the enveloping algebra of the Lie algebra   ∗ ∗ ) a pre-Lie product given in the following g(S) = P rim H(S) , which inherits from P rim(HD way: for all f, g ∈ G(S) , for all x ∈ H(S) , f ? g is the unique element of g(S) such that for all x ∈ vect(Xi (n) / i ∈ I, n ≥ 1),



(f ? g)(x) = (f ⊗ g) ◦ (π ⊗ π) ◦ ∆(x). Let (fi (p))i∈I,p≥1 be the basis of g(S) , dual of the basis (Xi (p))i∈I,p≥1 . By homogeneity of ∆, and as ∆(Xi (n)) is a linear span of elements − ⊗ Xi (p), 0 ≤ p ≤ n, we obtain the existence of (i,j) coecients ak,l such that, for all i, j ∈ I , k, l ≥ 1: (i,j)



fj (l) ? fi (k) = ak,l fi (k + l). (i,j)



By duality, ak,l is the coecient of Xj (l) ⊗ Xi (k) in ∆(Xi (k + l)), so is uniquely determined in (j)



(i)



the following way: for all t0 ∈ TD (l), t00 ∈ TD (k),



X



(i,j)



n(t0 , t00 ; t)at = ak,l at0 at00 .



(i)



t∈TD (k+l)



22



Lemma 20 For all t0 ∈ TD(j) (l), t00 ∈ TD(i) (k): (i,j)



X



n(t0 , t00 ; t)at = λk



at0 at00 .



(i) t∈TD (k+l)



Proof. By induction on k. If k = 1, then t00 =



q i , so: (i)



X



(i,j)



n(t0 , t00 ; t)at = aB + (t00 ) = aj at0 = λ1 i



at0 at00 ,



(i) t∈TD (k+l)



as at00 = 1. Let us assume the result at all rank ≤ k − 1. We put t00 = Bi+ (



Y



srs ). We put



s∈TD



pj =



X



rs for all j ∈ I . Then:



(j) s∈TD



 X







 Y



n(t0 , t00 ; t)at = n t0 , t00 , Bi+  q j



srs  aB + (t0 Q srs ) i



s∈TD



(i)



t∈TD (k+l)



+



X



(rs1 + 1)n(t0 , s2 ; s1 )aB +  s1 Q srs  i



s1 ,s2 ∈TD rs2 ≥1



(pj + 1) = (rt0 +1 )



N Y



pj !



j=1



Y



(rt0 +1 )



s2



(i)



rs !



Y



a(p1 ,··· ,pj+1 ,··· ,pN ) at0



arss



s∈TD



s∈TD



+



X



(rs1 + 1)nj (s1 , s2 )



s1 ,s2 ∈TD



rs2 as at00 1 rs1 + 1 as2



(i)



= (pj + 1)



a(p1 ,··· ,pj+1 ,··· ,pN ) (i) a(p1 ,··· ,pN )



X



at0 at00 +



as1 at00 as2 



nj (s1 , s2 )rs2



s1 ,s2 ∈TD



 N X  (i,j) (l)  = λp1 +···+pN +1 − pj aj + l=1



 (i,j) = λp1 +···+pN +1 −



N X



X



nj (s1 , s2 )rs2



s1 ,s2 ∈TD rs2 >0



a s1   at0 at00 a s2 



 (l)



pj aj +



X



(r(s ),j) 



rs2 λ|s2 | 2



at0 at00 ,



s2 ∈TD



l=1



using the induction hypothesis on s2 , denoting by r(s2 ) the decoration of the root of s2 . By (i) proposition 19-2, if at0 6= 0, then a(p1 ,··· ,pn ) 6= 0, so: (i,j)



(i,j)



λ1+P rs |s| = λ1+P rs + (i,j) λ|t00 |



=



X



  (r(s),j) (r(s)) rs λ|s| − aj



s (i,j) λp1 +···+pN +1 +



X



(r(s),j)



rs λ|s|



s



So the induction hypothesis is proved at rank n. Combining this lemma with the preceding observations: 23



−



X



(l)



p l aj .



l



2



∗ Proposition 21 Let (S) be a Hopf SDSE. The pre-Lie algebra g(S) = P rim H(S) has a











basis (fi (k))i∈I,k≥1 , and the pre-Lie product of two elements of this basis is given by: (i,j)



fj (l) ? fi (k) = λk



fi (k + l).



4 Level of a vertex (i)



The second item of proposition 19-2 is immediately satised if there exist scalars bj and aj such (i,j)



(i)



that λn = bj (n − 1) + aj for all n ≥ 1 and all i, j ∈ I . This motivates the denition of the level of a vertex.



4.1 Denition of the level Denition 22 Let (S) be a Hopf SDSE, and let i be a vertex of G(S) . It will be said to be



of



(i) level ≤ M if for all vertex j , there exist scalar b(i) ˜j , such that for all n > M : j , a (i)



(i)



λ(i,j) = bj (n − 1) + a ˜j . n The vertex i will be said to be of



level M if it is of level ≤ M and not of level ≤ M − 1.



Remark. In order to prove that i is of level ≤ M , it is enough to consider the j 's which (i,j)



are descendants of i. Indeed, if j is not a descendant of i, by proposition 18-1, λn n ≥ 1.



= 0 for all



Proposition 23 Let (S) be a Hopf SDSE, i a vertex of G(S) and j a direct descendant of



G(S) .



1. i has level 0 or 1 if, and only if, j as level 0. 2. Let M ≥ 2. Then i has level M if, and only if, j has level M − 1. (j) Moreover, if this holds, then for all k ∈ I , b(i) k = bk .



Proof. Let i ∈ G(S) and j be a direct descendant of i. As (S) is Hopf, let us use the second (i)



point of proposition 19, with k = 1 and d1 = j . Then for all l, for all n ≥ 1, as aj 6= 0: (i,l)



(i,l)



λn+1 = λ2



(j)



+ λn(j,l) − al .



So for all M ≥ 1, i is of level ≤ M if, and only if, j is of level ≤ M − 1. Moreover, if this holds, (i) (j) then bk = bk for all k . The rst point is a reformulation of the preceding result for M = 1. Let us assume that M ≥ 2. If i is of level M , then j is of level ≤ M − 1. If j is of level ≤ M − 2, then i is of level ≤ M − 1: contradiction. So j is of level M − 1. The converse is proved in the same way. 2



Corollary 24 Let (S) be a connected Hopf SDSE. Then if one of the vertices of G(S) is of



nite level, then all vertices of G(S) are of nite level. Moreover, the coecients b(i) j depend only of j . They will now be denoted by bj . Proposition 18-1 immediately implies the following result:



Lemma 25 Let (S) be a connected Hopf SDSE and let j be a vertex of G(S) of nite level. If there exists a vertex i in G(S) which is not a descendant of j , then bj = 0. 24



4.2 Vertices of level 0 Let (S) be a Hopf SDSE with I = {1, . . . , N }, and let us assume that i is a vertex of level 0. In (i) this case, the coecients a(p1 ,··· ,pN ) satisfy an induction of the following form:



      



(i)



a(0,··· ,0) = 1, (i) a(p1 ,··· ,pj +1,··· ,pN )



1 pj + 1



=



λj +



N X



! (l) µj pl



(i)



a(p1 ,··· ,pN ) .



l=1 (i)



In order to ease the notation, we shall write a(p1 ,··· ,pN ) instead of a(p1 ,··· ,pN ) and F instead of Fi in this section.



Lemma 26 Under the preceding hypothesis:



1. Let us denote J = {j ∈ I / λj = 0}. There exists a partition I = I1 ∪ · · · ∪ IM ∪ J , and scalars β1 , · · · , βM , such that for all i, j ∈ I \ J = I1 ∪ · · · ∪ IM : (j)



µi



0 if i, j do not belong λi βl if i, j ∈ Il .



 =



2. Moreover F (h1 , · · · , hN ) =



M Y



 fβp 



p=1



to the same Il ,



 λl hl .



X l∈Ip



Proof. Let us x i 6= j . Then: a(p1 ,··· ,pi +1,··· ,pj +1,··· ,pN ) =



=



=



1 pi + 1



λi +



(j) µi



1 (pi + 1)(pj + 1) 1 (pi + 1)(pj + 1)



+



N X



! (l) µ i pl



a(p1 ,··· ,pj +1,··· ,pN )



l=1



λi +



(j) µi



+



N X



! (l) µi pl



λj +



l=1 (i)



λj + µj +



N X



! (l) µj pl



a(p1 ,··· ,pN ) ,



l=1



N X



! (l)



µj pl



λi +



N X



! (l)



µi pl



a(p1 ,··· ,pN ) .



l=1



l=1



For (p1 , · · · , pN ) = (0, · · · , 0), as a(0,··· ,0) = 1: (j)



(i)



(2)



µ i λj = µ j λi . For (p1 , · · · , pN ) = εk , we obtain:       (j) (k) (k) (i) (k) (k) λ i + µi + µ i λj + µ j λ k = λ j + µj + µ j λ i + µi λk . So, if λk 6= 0:



(j) (k)



µi µj



(i) (k)



(3)



= µj µi .



If λk = 0, it is not dicult to prove inductively that a(p1 ,··· ,pN ) = 0 if pk > 0, so F is an element of K[[h1 , · · · , hk−1 , hk+1 , · · · , hN ]]. Hence, up to a restriction to I \ J , we can suppose that all (j)



the λk 's are non-zero. We then put νi



(j)



=



µi λi



for all i, j . Then (2) and (3) become: for all i, j, k , (j)



νi (j)



νi







(k)



νi



(k)



− νj
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(i)



= νj ,



(4)



= 0.



(5)



(j)



Let 1 ≤ i, j ≤ N . We shall say that i R j if i = j or if νi 6= 0. Let us show that R is an equivalence. By (4), it is clearly symmetric. Let us assume that i R j and j R k . If i = j or j = k (j) (k) (k) (k) or i = k , then i R k . If i, j, k are distinct, then νi 6= 0 and νj 6= 0. By (5), νi = νj 6= 0, so i R k . We denote by I1 , · · · , IM the equivalence classes of R . (j) (k) (k) Let us assume that i R j , i 6= j . Then νi 6= 0, so for all k , νj = νi . In particular, (i)



(i)



(j)



νj = νi = νi



(j)



= νj . So, nally, there exists a family of scalars (βi )1≤i≤M , such that: (j)



• If i, j ∈ Il , then νi



(j)



= βl , and µi



= λi βl . (j)



• If i and j are not in the same Il , then νi



(j)



= µi



= 0.



An easy induction then proves:



a(p1 ,··· ,pN ) =



λp11



M · · · λpNN Y



p1 ! · · · pN !











(1 + βp ) · · · 1 + βp 



p=1



 X



pl − 1 .



l∈Ip



2



This implies the assertion on F .



4.3 Vertices of level 1 Let us now assume that i is of level 1. Then, up to a restriction to i and its direct descendants, (i) the coecients a(p1 ,··· ,pN ) = a(p1 ,··· ,pN ) satisfy an induction of the form:



     



(i)



a(0,··· ,0) = 1, (i)



aεj



(i)



= aj ,



  (i)    a(p1 ,··· ,pj +1,··· ,pN ) =



1 pj + 1



λj +



N X



! (l)



µj pl



(i)



a(p1 ,··· ,pN ) if (p1 , · · · , pN ) 6= (0, · · · , 0).



l=1 (i)



In order to ease the notation, we shall write a(p1 ,··· ,pN ) instead of a(p1 ,··· ,pN ) and F instead of Fi in this section.



Lemma 27 Under the preceding hypothesis, one of the following assertions holds:



1. There exists a partition I = I1 ∪ · · · ∪ IM ∪ J , scalars β1 , · · · , βM , a non-zero scalar ν such that:   F (h1 , · · · , hN ) =



M X X 1 1Y fβp  νal hl  + al hl + 1 − . ν ν p=1



l∈Ip



l∈J



2. There exists a partition {1, · · · , N } = I1 ∪ · · · ∪ IM ∪ J , scalars νp for 1 ≤ p ∈ M , such that:   M X X X 1  F (h1 , · · · , hN ) = 1 − ln 1 − νp al hl  + al hl . νp p=1



l∈Ip



l∈J



Proof. Let us compute aj,k in two dierent ways:  In other words:



(k)



λ j + µj







  (j) ak = λk + µk aj .



λ + µ(k) a j j j = 0. λk + µ(j) ak k 26



(6)



(k)



Let us take J = {j / ∀k, λj + µj = 0}. Let us consider an element j ∈ J . Then an easy induction proves that for all (p1 , · · · , pN ) such that p1 + · · · + pN ≥ 2 and pj ≥ 1, a(p1 ,··· ,pN ) = 0. As a consequence:



F (h1 , · · · , hN ) = F (h1 , · · · , hj−1 , 0, hj+1 , · · · , hN ) + aj hj . So:



F = F˜ (hi , i ∈ / J) +



X



aj hj .



j∈J



We now assume that, up to a restriction, J = ∅. Let us choose an i and let us put b(p1 ,··· ,pN ) = (pi + 1)a(p1 ,··· ,pi +1,··· ,pN ) . Then, for all j ∈ I , for all (p1 , · · · , pN ): ! N X 1 (i) (l) b(p1 ,··· ,pj +1,··· ,pN ) = λ j + µj + µj pl b(p1 ,··· ,pN ) . pj + 1 l=1



We deduce from lemma 26 that there exist a partition I = I1 ∪ · · · ∪ IM and scalars β1 , . . . , βM , such that: ( 0 (l)  if j, l arenot in the same Ik , µj = (i) λj + µj βk if j, l ∈ Ik . (i)



(i)



So µj does not depend on i such that µj 6= 0. So there exist scalars µj such that:  0 if j, l are not in the same Ik , (l) µj = (λj + µj ) βk if j, l ∈ Ik . 1. Let us assume that M ≥ 2. Let us choose j ∈ I1 . Then for all k ∈ I2 ∪ · · · ∪ IM , (6) gives: λj aj λk ak = 0. We denote I2 ∪ · · · ∪ Ik = {i1 , · · · , iM }. We proved that the vectors (λj , λi1 , · · · , λiM ) and (aj , ai1 , · · · , aiM ) are colinear. Choosing then a j ∈ I2 , we obtain that there exists a scalar ν , such that (λi )i∈I = ν(ai )i∈I . Two cases are possible. (a) If ν 6= 0, putting a0(p1 ,··· ,pN ) = νa(p1 ,··· ,pN ) if (p1 , · · · , pN ) 6= (0, · · · , 0) and a0(0,··· ,0) ,   then the family a0(p1 ,··· ,pN ) satises the hypothesis of lemma 26. As a consequence, F (h1 , · · · , hN ) satises the rst case. (b) If ν = 0, then we put, for all j , µj = νj0 aj . By (6), for j and k in the same Il , νj0 = νk0 if j and k are in the same Il : this common value is now denoted νl . It is then not dicult to prove that:   M X X 1  ln 1 − νp al hl  . F (h1 , · · · , hN ) = 1 − νp p=1



l∈Ip



This is a second case. (i)



2. Let us assume that M = 1. Then (λj + µj )β1 = µj for all i, j ∈ I . β1 (a) Let us suppose that β1 6= 1. Then, for all j, k ∈ I µj = 1−β λj . So, for all j , 1 1 λj + µj = 1−β1 λj . So (6) implies that (λj )j∈I and (aj )j∈I are colinear. As in 1.(a), this is a rst case.



(b) Let us assume that β1 = 1. So λj = 0 for all j . As in 1.(b), this is a second case.



2 27



4.4 Vertices of level ≥ 2 Lemma 28 Let (S) be a Hopf SDSE and let i be a vertex of G(S) . We suppose that there exists a vertex j , such that: • j •



is a descendant of i.



All oriented path from i to j are of length ≥ 3.



Then Fi = 1 +



X



al hl . (i)



i−→l



Proof. We assume here that I = {1, . . . , N }. Let L be the minimal length of the oriented



paths from i to j . By hypothesis, L ≥ 3. Then the homogeneous component of degree L + 1 of Xi contains trees with a leave decorated by j , and all these trees are ladders (that is to say trees (i) with no ramication). By proposition 16, if t0 ∈ TD (L): (i,j)



X



λL at0 =



nj (t, t0 )at .



(i)



t∈TD (L+1) (i,j)



For a good-chosen ladder t0 , the second member is non-zero, so λL is non-zero. If t0 is not a ladder, the second member is 0, so at0 = 0. As a conclusion, Xi (L) is a linear span of ladders. Considering its coproduct, for all p ≤ L, Xi (p) is a linear span of ladders. In particular, Xi (3) is a linear span of ladders. But:



Xi (3) =



X



(i)



qq m



l al a(l) m qi +



l,m



X



qq



(i) l m al,m ∨qi ,



l≤m



(i)



2



so al,m = 0 for all l, m. Hence, Fi contains only terms of degree ≤ 1.



Remark. This lemma can be applied with i = j , if i is not a self-dependent vertex. Proposition 29 Let (S) be a Hopf SDSE and let i be a vertex of G(S) of level ≥ 2. Then i



is an extension vertex.



Proof. We denote by M the level of i. By proposition 23, all the descendants of i are of level ≤ M − 1, so i is not a descendant of itself. Let M be the level of i and let us assume that M ≥ 3. Let j be a direct descendant of i, k be a direct descendant of j , l be a direct descendant of k . Then j has level M − 1, k has level M − 2, l has level M − 3. So in the graph of the restriction to {i, j, k, l} is: i



/j



/k



/ l or i



/j



/k



/lc



The result is then deduced from lemma 28. Let us now assume that i is of level 2 and is not an extension vertex. Let j be a direct descendant of i and k be a direct descendant of j . By proposition 23, j is of level 1 and k is of level 0, so k is not a direct descendant of i. The graph of the restriction of (S) to {i, j, k} is:



i



/j



/ k or i



/j



/ke



First step. Let us rst prove that there exists a direct descendant j of i such that a(i) j,j 6= 0.



Let us assume that this is not true. As i is not an extension vertex, there exist j, j 0 ∈ I such 28



(i)



that aj,j 0 6= 0, j 6= j 0 . Let k be a direct descendant of j . Considering the dierent levels, the graph associated to the restriction to {i, j, j 0 , k} is: or i i  ===   =   =   ==   =   j< j< j0 >> >> >>  /2



1o



and such that F1 = 1 + h2 and F2 = 1 + h1 . We write: X F0 = a(i,j) hi1 hj2 , i,j



a qq 10 = 2a1 q q 1 , so λ2 ∨q0 + 1. We obtain:



(0,1)



with a(1,0) and a(0,1) non-zero. Then λ2 (0,1)



λ2



a qq 20 = a1 q q 2 + a qq 12 , so λ2 q0 ∨q0



(0,1)



=



a(1,1) a(0,1)



(0,1)



2a(2,0) a(1,1) = + 1. a(1,0) a(0,1) 43



=



2a(2,0) a(1,0) .



On the other hand,



(0,1)



Moreover, λ3 (0,1)



so λ3



=



a qq 21 = a



a(1,1) a(0,1) .



q0



So:



(0,1)



q 2 +a qq 12 , so λ3 qq 1 1 q q1 ∨q0 0



=



2a(2,0) a(1,0)



(0,1)



+1. On the other hand, λ3



a qq 12 = 2a q0



1



q , q q 12 ∨q0



a(1,1) 2a(2,0) a(1,1) +1= = − 1. a(0,1) a(1,0) a(0,1) 2



This is a contradiction.



Lemma 48 Let (S) be a Hopf SDSE, such that any vertex of G(S) has a direct ascendant. Let i be a vertex of G(S) . Then (i is a descendant of a self-dependent vertex) or (i belongs to a multicycle of G(S) ) or (i belongs to a symmetric subgraph of G(S) ). Proof. Let us rst prove that i is the descendant of a vertex of a cycle of G(S) . As any



vertex has a direct ascendant, it is possible to dene inductively a sequence (xl )l≥0 of vertices of G(S) , such that x0 = i and xl+1 is a direct ascendant of xl for all l. As G(S) is nite, there exists 0 ≤ l < m, such that xl = xm . Then xl ← xl+1 ← · · · ← xm−1 ← xm = xl is a cycle of G(S) , and i is a descendant of any vertex of this cycle. Let G0 = x1 → · · · → xs → x1 be a cycle such that i is a descendant of a vertex of G0 , chosen with a minimal s. As s is minimal, there are no edges from xl to xm in G(S) if m 6= l + 1, with the convention xs+1 = x1 . The situation is the following:



x1



v







y1



/ ···



/ xs



/ ···



/ yt−1



/i



Three cases are possible: 1. If s = 1, then i is the descendant of a self-dependent vertex. 2. If s = 2, the situation is the following:



x1 o 



y1



/ x2 / ···



/ yt−1



/i



By minimality of s, there are no self-dependent vertex in {x1 , x2 , y1 , · · · , yt−1 , i}. Applying repeatedly lemma 36, there is an edge from y1 to x1 , then from y2 to y1 , · · · , then from i to yt−1 . So i belongs to a symmetric subgraph of G(S) . 3. If s ≥ 3, then the subgraph formed by x1 , · · · , xs is a multicycle. Let G0 be a maximal multicycle of length s of G, such that i is a descendant of a vertex of G0 . We denote by I 0 the set of vertices of G0 . Let us assume that i ∈ / G0 . There exists x1 → y1 → · · · → yt−1 → 0 yt = i in G, with t ≤ 1, and x1 ∈ I . Up to a reindexation, we can assume that x1 ∈ I10 . By lemma 36, y1 is the direct descendant of any vertex of I1 and the direct ascendant of any vertex of I3 . By lemma 47, y1 is not the direct ascendant of any vertex of Ik0 if k 6= 3.   So I 0 ∪ {x} = I10 ∪ I20 ∪ {i} ∪ · · · ∪ Is0 gives a multicycle of length s, such that i is a descendant of a vertex of I 0 ∪ {i}: this contradicts the maximality of G0 . So i ∈ I 0 .



By the preceding study of Hopf symmetric SDSE:



2



Corollary 49 Let (S) be connected Hopf SDSE, such that any vertex of G(S) has a direct ascendant. Then (any vertex of G(S) is the descendant of a self-dependent vertex, so (S) is fundamental) or ((S) is quasi-complete, so (S) is fundamental) or ((S) is multicyclic). 44



Corollary 50 Let (S) be a connected Hopf SDSE. Then there exists a sequence (Gi )0≤i≤k of subgraphs of G(S) , such that: •



The system (S0 ) associated to the Fi 's, i ∈ G0 , is fundamental or is multicyclic.



• Gk = G(S) . •



For all 0 ≤ i ≤ k − 1, Gi+1 is obtained from Gi by adding a non-self-dependent vertex without any ascendant in Gi .



If G0 is fundamental, any vertex is of nite level. If G0 is multicyclic, no vertex is of nite level. Proof. First step. Let us rst prove the following (weaker) result: if (S) is a Hopf SDSE,



there exists a sequence (Gi )0≤i≤k of subgraphs of G(S) , such that:



• G0 is the disjoint union of several fundamental systems or is multicyclic. • Gk = G(S) . • For all 0 ≤ i ≤ k − 1, Gi+1 is obtained from Gi by adding a non-self-dependent vertex without any ascendant in Gi . Let us proceed by induction on N . If N = 1, then G(S) = G0 is formed by a single vertex which is necessarily self-dependent, so (S) is fundamental. Let us assume the induction hypothesis at rank ≤ N − 1. If any vertex of G(S) has an ascendant, then by corollary 49, we can take G(S) = G0 . If it is not the case, let us take i being a vertex with no ascendant. The induction hypothesis can be applied to the components of G(S) − {i}. We complete the sequence (G0 , · · · , Gk ) given in this way by Gk+1 = G(S) . As a consequence, the set of descendants of any self-dependent vertex, every symmetric subgraph, every multicycle of G(S) is included in G0 .



Second step. Let us assume that G(S) is connected. If G0 is connected, then it is fundamental



or multicyclic. If it is not, let us assume that it is not a non-connected abelian fundamental SDSE. So one of the components H of G0 is not a fundamental abelian SDSE with I = I0 . Then for a good choice of i, the vertex added to Gi−1 to obtain Gi is a connecting vertex, connecting a subgraph containing H and other subgraphs. By the rst step, as it does not belong to G0 , this vertex is not the descendant of a self-dependent vertex and does not belong to a symmetric subgraph. By construction, it does not connect several components of a nonconnected fundamental SDSE: this is a contradiction with lemma 46. So G0 is of the announced form. 2



7.3 Connected Hopf SDSE with a multicycle Let us precise the structure of connected Hopf SDSE containing a multicycle.



Theorem 51 Let (S) be a connected Hopf SDSE containing a N -multicyclic SDSE. Then I admits a partition I = I1 ∪ · · · ∪ IN , with the following conditions:



1. If x ∈ Ik , its direct descendants are all in Ik+1 . 2. If x and x0 have a common direct ascendant, then they have the same direct descendants. Moreover, for all x ∈ I : Fx = 1 +



X



a(x) y hy .



x−→y



If x and x0 have a common direct ascendant, then Fx = Fx0 . Such an SDSE will be called an extended multicyclic SDSE. 45



Proof. We use the notations of corollary 50. We proceed by induction on k. If k = 0, (S) is a multicycle and the result is immediate. Let us assume the result at rank k − 1 and let (S 0 ) be the restriction of (S) to all the vertices except the last one, denoted by x. By the 0 , with the required induction hypothesis, the set of its vertices admits a partition I 0 = I10 ∪· · ·∪IN 0 . Let y ∈ I conditions. Let us rst prove that all the direct descendants of x are in the same Im k and z ∈ Il be two direct descendants of x, with k 6= l. Let y 0 ∈ Ik+1 be a direct descendant of y and z 0 ∈ Il+1 be a direct descendant of z . Lemma 36 implies that x is a direct ascendant of z 0 and y 0 , as y can't be a direct ascendant of z 0 and z can't be a direct ascendant of y 0 because k 6= l. So we can replace y by y 0 and z by z 0 . Iterating the process, we can assume that y and z are in the multicycle: this contradicts lemma 47. So the direct descendants of x are all in Im for 0 ∪ {x} and this proves the rst a good m. We then take Il = Il0 if l 6= m − 1 and Im−1 = Im−1 assertion on G(S) . We now prove the assertion on Fx . We separate the proof into two subcases. Let us rst assume M ≥ 3. There is an oriented path x → xm → · · · → xm+M −1 , with xi ∈ Ii0 for all i. Moreover, there is no shorter oriented path from x to xm+M −1 . As M ≥ 3, from lemma 28: X Fx = 1 + a(x) y hy . x−→y



Let us secondly assume that M = 2. Let 1, . . . , p be the direct descendants of x and let 0 be a direct descendant of 1. Then as 1, . . . , p are in the same part of the partition of I 0 , they are (x,0) not direct descendants of 1. Let us rst restrict to {x, 1, 0}. By proposition 16, λ3 a qq 01 = 0 as (1) a0,0



= 0 by the induction hypothesis, (x)



(x,0) λ3



= 0. Moreover, 0 =



(x)



(x,0) λ3 a1 q



and 0 =



q



∨qx1



(x,i)



Similarly, a2,2 = · · · = ap,p = 0. Let us now take 1 ≤ i < j ≤ p. Then λ2 (x,i) λ2 a



qx



=a



(x)



q 0 , so a1,1 = 0. 1 q q1 ∨qx



a qq ix = 0, so λ2



(x,i)



=0



(x) qq jx = a qq ij , so ai,j = 0. As a conclusion, Fx is of the required form. qx



Proposition 18-3 implies that Fx = Fx0 if x and x0 have a common ascendant, and this implies the second assertion on G(S) . 2



Remark. In particular, the vertex added to Gi in order to obtain Gi+1 is an extension vertex. By proposition 11, any such SDSE is Hopf.



7.4 Connected Hopf SDSE with nite levels We now prove the following theorem:



Theorem 52 Let (S) be a connected Hopf SDSE, such that any vertex of (S) has a nite level.



Then (S) is obtained from a fundamental system by a nite number (possibly 0) of extensions. Such an SDSE will be called an extended fundamental SDSE.



Proof. Let (S) be a connected Hopf SDSE, such that any vertex of (S) is of nite level. We use notations of corollary 50. We shall proceed by induction on k . If k = 0, then S = S0 and the result is obvious. Let us now assume the result at rank k − 1. By the induction hypothesis, the system (S 0 ) associated to Gk−1 is a dilatation of a system of theorem 32. Moreover, G is obtained from Gk−1 by adding a vertex with all its direct descendants in Gk−1 . Let us denote by 0 this vertex. We separate the proof into three cases.



First case. Let us assume that 0 is of level 0. Then all the direct descendants of 0 are of level



0, so are in I0 ∪ J0 ∪ I1 , and νx = 1 for all direct descendants of x in Ji with i ∈ I1 . Moreover, (0,x) (0) for all x ∈ I , λn = bx (n − 1) + ax . Let us take x, y ∈ I . Using proposition 19-1 into two dierent ways:     (0) (x) (0) (y) a(0) a(0) a(0) x,y = by + ay − ay x = bx + ax − ax y . 46



So, for all x, y ∈ I :







   (y) by − a(x) a(0) a(0) y x = bx − ax y . (x)



(7) (y)



(0)



(0)



If x and y are in the same Ii with i ∈ I0 ∪ J0 , then by − ay = bx − ax 6= 0, so ax = ay and for (0,x) (0,y) all n ≥ 1, λn = λn . Hence, up to a restriction, we can assume that there is no dilatations 0 on (S ). (0) Let i ∈ I1 . If νi 6= 1, we already know that ai = 0. Let us assume νi = 1 and let us choose (i)



(j)



j ∈ I0 ∪ J0 ∪ K0 , such that aj 6= bj . Then bi = ai



(i)



= 0, so (7) gives bj − aj



(0)



ai



= 0. So



(0)



ai = 0 for all i ∈ I1 . So the direct descendants of 0 are all in I0 ∪ J0 ∪ K0 . Using proposition 19-1 with i ∈ I0 ∪ J0 ∪ K0 :   (0) X a(p1 ,··· ,pN ) (i) (0) (0) bi pj − ai pi  a(p1 ,··· ,pi+1 ,··· ,pN ) = ai + bi (p1 + · · · + pN ) − pi + 1 j∈I0 ∪J0 ∪K0 −{i}







= So:



F0 =



   (0) (i) ai + bi − ai pi



Y i∈I0



f



 βi (0) a i



(0)



ai hi



Y



f



i∈J0



(0) a(p1 ,··· ,pN )



pi + 1  1 (0) a i



(0)



.



a i hi



 Y



  (0) f0 ai hi .



i∈K0



So (S) is a system of theorem 32, with 0 ∈ K0 ∪ I1 .



Second case. Let us assume that 0 is of level 1 and is not an extension vertex. Then all the direct descendants of 0 are of level 0, so are in I0 ∪ J0 ∪ I1 , and νx = 1 for all direct descendants (0,i) (0) (0,i) (0) of x in I1 . Moreover, for all i ∈ I , λ1 = ai and λn = bi (n − 1) + a ˜i if n ≥ 2. First item. Let us assume that a(0) i = 0. Then by proposition 19-1:   N X (0) (0) (j) (0) a(p1 ,··· ,1,··· ,pN ) = a ˜i + bi (p1 + · · · + pN ) − ai pj  a(p1 ,··· ,0,··· ,pN ) j=1



 (0) 0 = a ˜i −



 X



(j)



(0)



ai pj  a(p1 ,··· ,0,··· ,pN ) .



j∈I1 (0)



If there is a j ∈ I0 ∪ J0 ∪ K0 , such that aj



(0)



= 0.



(0) aj



6= 0



6= 0, then for (p1 , · · · , pN ) = εj , we obtain a ˜i



If it is not the case, as 0 is not an extension vertex, there exists j, k ∈



(0) I1 , aj,k



6= 0 (so



(0) ak



and 6= 0). Then, for (p1 , · · · , pN ) = εj , (p1 , · · · , pN ) = εk , and (p1 , · · · , pN ) = εj + εk , we obtain: (0) (j) (0) (k) (0) (j) (k) a ˜i + ai = a ˜i + ai = a ˜i + ai + ai = 0. (0)



(0)



So a ˜i = 0. So in all cases, a ˜i = 0. Moreover, for (p1 , · · · , pN ) = εj for any j ∈ I1 , we obtain (j) (0) ai aj = 0. As a conclusion, we proved:     (0) (0) 1. For all i ∈ I , ai = 0 =⇒ a ˜i = 0 . (0)



2. Let us put I1 (j)



ai



n o (0) (0) (0) = i ∈ I1 / ai 6= 0 . Then for i ∈ I , such that ai = 0, for all j ∈ I1 ,



= 0.



Second item. Let us take i, j ∈ I . Using proposition 19-1 into two dierent ways:     (0) (0) (i) (0) (0) (j) (0) ai,j = bj + a ˜j − aj ai = bi + a ˜i − ai aj . 47



(8)



(i)



(j)



Let us take i, j ∈ I1 . Then aj = ai



= bi = bj = 0, so (8) gives: (0) (0)



a ˜j ai   (0) So a ˜i



i∈I1



  (0) and ai



i∈I1



(0) (0)



=a ˜ i aj .



are colinear. By the rst item, we deduce that there exists a scalar (0)



(0)



ν ∈ K , such that for all i ∈ I1 , a ˜i = νai . Let us now take i, j ∈ I0 ∪ J0 ∪ K0 , with i 6= j . (j) (i) Then bi = ai and bj = aj , so (8) gives: (0) (0)



a ˜j ai   (0) So a ˜i exists a



i∈I0 ∪J0 ∪K0 scalar ν 0 ∈



  (0) and ai



i∈I0 ∪J0 ∪K0



(0) (0)



=a ˜ i aj .



are colinear. By the rst item, we deduce that there (0)



(0)



K , such that for all i ∈ I0 ∪ J0 ∪ K0 ,  a ˜i = ν 0 ai . Let  us now take (i) (0) (0) (0) (j) (0) 0 i ∈ I0 ∪ J0 ∪ K0 and j ∈ I1 . Then bj = aj = 0, so νaj ai = bi + ν ai − ai aj . In other words: (0) (0) (j) (0) ∀i ∈ I0 ∪ J0 ∪ K0 , ∀j ∈ I1 , (ν − ν 0 )ai aj = (bi − ai )aj . (9)



Third item. Let us assume that I1(0) = ∅. Then all the direct descendants of 0 are in



I0 ∪ J0 ∪ K0 . Moreover, if i ∈ I0 ∪ J0 ∪ K0 :  (0) a(p1 ,··· ,pi+1 ,··· ,pN )



νa(0) i



=



 X



+ bi (p1 + · · · + pN ) −



bi pj −



(i) ai pi 



j∈I0 ∪J0 ∪K0 −{i}







=



(0) νai







+ bi −



(i) ai



(0)



a(p1 ,··· ,pN ) pi + 1



  a(0) (p1 ,··· ,pN ) . pi pi + 1



It is then not dicult to show that (S) is a system of theorem 32, with 0 ∈ I1 .



(0) aj



Fourth item. Let us assume that ν = ν 0 . Let j ∈ I1 . If νj 6= 1, then we already know that (j)



= 0. If νj = 1, then for a good choice of i, bi − ai and the result is proved in the third item.



(0)



6= 0 in (9), so aj



(0)



= 0: then I1



= ∅,



Fifth item. Let us assume that I1(0) 6= ∅. By the preceding item, ν 6= ν 0 . Let us take j ∈ I1(0) . (j)



(0)



By (9), for all i ∈ I0 ∪ J0 ∪ K0 , ai = bi − (ν − ν 0 )ai does not depend of j . As a consequence, (0) (0) (j) Fj = Fk for all j, k ∈ I1 . We put bi = ai for all i ∈ I0 ∪ J0 ∪ K0 , where j is any element of (0) I1 . Let us use proposition 19-1. For all i ∈ I0 ∪ J0 ∪ K0 , if (p1 , · · · , pN ) 6= (0, · · · , 0):   (0)   X  0 (0)  a(p1 ,··· ,pN ) (0) (i) 0 (0) a(p1 ,··· ,pi +1,··· ,pN ) = ν ai + bi − ai pi + (ν − ν )ai pj  . pi + 1 (0) j∈I1



(0)



For all j ∈ I1 , if (p1 , · · · , pN ) 6= (0, · · · , 0): (0) a(p1 ,··· ,pi +1,··· ,pN )



=



(0) a (0) (p1 ,··· ,pN ) νai . pi + 1



(0)



Let us x i ∈ I0 ∪ J0 ∪ K0 and j ∈ I1 . Then:   (0) (0) (i) (0) ai,i = ν 0 ai + bi − ai ai ,   (0) (0) (0) (0) (i) ai,i,j = νai aj ν 0 ai + bi − ai , (0)



ai,j (0)



ai,i,j



(0) (0)



= νai aj ,   (0) (0) (0) (i) (0) = νai aj ν 0 ai + bi − ai + (ν − ν 0 )ai . 48



(0)



(0)



Identifying the two expressions of ai,i,j , as ν 6= ν 0 and aj (0)



  (0) 2 = 0. If for 6= 0, we obtain ν ai (0)



(j)



all i ∈ I0 ∪ J0 ∪ K0 , ai = 0, then by the second item, for all j ∈ I1 , ai = 0, then Fj = 1; this (0) is impossible. So there is an i ∈ I0 ∪ J0 ∪ K0 , such that ai 6= 0. As a consequence, ν = 0. So ν 0 6= 0, and we then easily obtain that:   Y     Y 1 Y (0) (0) (0) f b − 1 h f b h F0 = b − 1 − β h f 1 βi i 0 i i i i i i (0) ν0 (0) i∈I0 bi −1−βi i∈I0 i∈J0 bi −1 X (0) 1 ai hi + 1 − 0 . + ν (0) i∈I1



So (S) is a system of theorem 32, with 0 ∈ J1 .



Third case. 0 is a vertex of level ≥ 2. By proposition 29, it is an extension vertex.
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8 Lie algebra and group associated to H(S), associative case Let us consider a connected Hopf SDSE (S). We now study the pre-Lie algebra g(S) of proposition 21. We separate this study into three cases:



•



Associative case: the pre-Lie algebra g(S) is associative. This holds in particular if (S) is an extended multicyclic SDSE.



•



Abelian case: (S) is an extended fundamental, abelian SDSE (see denition 33).



•



Non-abelian case: (S) is an extended fundamental, non-abelian SDSE.



We rst treat the associative case.



8.1 Characterization of the associative case Proposition 53 Let (S) be a Hopf SDSE. Then the pre-Lie algebra g(S) is associative if, and only if, for all i ∈ I : X (i) Fi = 1 +



a j hj .



i−→j



Proof. =⇒. Let us assume that ? is associative. Let i, j, k ∈ I , let us show that a(i) j,k = 0. If (i)



(i)



(i)



(i)



(i)



aj = 0 or ak = 0, then aj,k = 0. Let us suppose that aj 6= 0 and ak 6= 0. Then: 0 = (fk (1) ? fj (1)) ? fi (1) − fk (1) ? (fj (1) ? fi (1))   (j,k) (i,j) (i,j) (i,k) = λ1 λ1 − λ1 λ2 fi (3)   (i,j) (j,k) (i,k) = λ1 λ1 − λ2 fi (3)   (i) (j) (i,k) = aj ak − λ2 fi (3). (i,k)



So λ2



(j)



= ak . Moreover, by proposition 16: (i) (j)



(i,k)



aj ak = λ2



a qq ji = a qq kj + (1 + δj,k )aj q q k = aj ak + (1 + δj,k )aj,k . q ∨q (i) (j)



i



i



(i)



So aj,k = 0. As a consequence:



Fi = 1 +



X i−→j



49



(i)



a j hj .



(i)



⇐=. Then Xi (n) is a linear span of ladders of weight n for all n ≥ 1, for all i ∈ I . As a consequence, if x ∈ V ect(Xi (n) / i ∈ I, n ≥ 1), for all f, g ∈ g(S) : (f ? g)(x) = (f ⊗ g) ◦ (π ⊗ π) ◦ ∆(x) = (f ⊗ g) ◦ ∆(x) = f (x0 )g(x00 ). So if f, g, h ∈ G(S) , for all x ∈ V ect(Xi (n) / i ∈ I, n ≥ 1):



((f ? g) ? h)(x) = f (x0 )g(x00 )h(x000 ) = (f ? (g ? h))(x). So (f ? g) ? h = f ? (g ? h): g(S) is an associative algebra.
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Corollary 54 Let (S) be a connected Hopf SDSE. Then g(S) is associative if, and only if one of the following assertions holds:



1. (S) is an extended multicyclic SDSE. 2. (S) is an extended fundamental SDSE, with: For all i ∈ I0 , βi = −1. • J0 , K0 , I1 and J1 are empty. •



If the second assertion holds, then (S) is also an extended fundamental abelian SDSE, and another interpretation of g(S) can be given; see theorem 70.



8.2 An algebra associated to an oriented graph n Notations. Let G an oriented graph, i, j ∈ G, and n ≥ 1. We shall denote i −→ j if there is an



oriented path from i to j of length n in G.



Denition 55 Let G be an oriented graph, with set of vertices denoted by I . The associa-



tive, non-unitary algebra AG is generated by Pi (1), i ∈ I , and the following relations:



• If j is not a direct descendant of i in G, Pj (1)Pi (1) = 0. • If i1 → i2 → · · · → in and i1 → i02 → · · · → i0n in G, then: Pin (1) · · · Pi2 (1)Pi1 (1) = Pi0n (1) · · · Pi02 (1)Pi1 (1). Let G be an oriented graph, and let i ∈ I and n ≥ 1. For any oriented path i → i2 → · · · → in in G, we denote Pi (n) = Pin (1) · · · Pi2 (1)Pi (1). If there is no such an oriented path, we put Pi (n) = 0. By denition of AG (second family of relations), this does not depend of the choice of the path.



Lemma 56 Let G be an oriented graph. Then the Pi (n)'s, i ∈ I , n ≥ 1, linearly generate



AG .



Moreover, if Pi (m) and Pj (n) are non-zero, then:  Pj (n)Pi (m) =



Pi (m + n) 0 if not.



m if i −→ j,



Proof. By the rst relation, Pi (n) = Pin (1) · · · Pi2 (1)Pi (1) = 0 if (i, i1 , . . . , in ) is not an oriented path in G. So the Pi (n)'s, i ∈ I , n ≥ 1, linearly generate AG . let us x Pi (m) = Pim (1) · · · Pi2 (1)Pi (1) and Pj (n) = Pjn (1) · · · Pj2 (1)Pj (1) both non-zero. If m i −→ j we can choose i2 , . . . , im such that i → i2 → · · · → im → j . Then: Pj (n)Pi (m) = Pjn (1) · · · Pj2 (1)Pj (1)Pim (1) · · · Pi2 (1)Pi (1) = Pi (m + n). If this is not the case, then j is not a direct descendant of im , so Pj (1)Pim (1) = 0 and Pj (n)Pi (m) = 0. 2 50



Proposition 57 Let G be an oriented graph.



1. The following conditions are equivalent: (a) The family (Pi (n))i∈I,n≥1 is a basis of AG . (b) All the Pi (n) are non-zero. (c) The graph G satises the following conditions: • Any vertex of G has a direct descendant. • If two vertices of G have a common direct ascendant, then they have the same direct descendants. (d) The SDSE associated to the following formal series is Hopf: ∀i ∈ I, Fi = 1 +



X



hj .



i→j



2. If this holds, then AG is generated by Pi (1), i ∈ I , and the following relations: If j is not a direct descendant of i in G, Pj (1)Pi (1) = 0. • If i → j and i → k in G, then Pj (1)Pi (1) = Pk (1)Pi (1).



•



The product of AG is given by:  Pj (n)Pi (m) =



Pi (m + n) 0 if not.



m if i −→ j,



Moreover, if (S) is the system of condition (d), g(S) is associative and isomorphic to AG . Proof. 1. (a) =⇒ (b) is obvious. (b) =⇒ (c). Let us assume (b). Then for all i ∈ I , Pi (2) 6= 0, so there exists a j such that i → j in G: any vertex of G has a direct descendant. Let us assume i → j and i → j 0 in G. Let k be a direct descendant of j . Then Pi (2) = Pj (1)Pi (i) = Pj 0 (1)Pi (1) and Pi (3) = Pk (1)Pj (1)Pi (1) = Pk (1)Pi (2) 6= 0, so Pk (1)Pi (2) = Pk (1)Pj 0 (1)Pi (1) 6= 0. As a consequence, Pk (1)Pj 0 (1) 6= 0 and k is a direct descendant of j 0 . By symmetry, the direct descendants of j 0 are also direct descendants of j : two direct descendants of a same vertex have the same direct descendants. (c) =⇒ (d). Then for all i ∈ I , for all n ≥ 1: X Xi (n) = l(i, i2 , · · · , in ), where the sum runs on all oriented paths i → i2 → · · · −→ in in G(S) . So:



∆(Xi (n)) =



n XX



l(ik+1 , . . . , in ) ⊗ l(i, i2 , · · · , ik ).



k=0



If i → i2 · · · → ik → ik+1 and i → i02 · · · → i0k → i0k+1 , the second condition on G implies that i3 and i03 are direct descendants of i2 and i02 ,. . ., ik+1 and i0k+1 are direct descendants of ik and i0k . So:



∆(Xi (n)) =



n X



X



l(ik+1 , . . . , in ) ⊗ l(i, i2 , · · · , ik ) =



k=0 i→···→ik ,



n X X k=0



k



i−→ik+1 , ik+1 →···→in



51



k



i−→j



Xj (n − k) ⊗ Xi (k).



So (S) is Hopf.



(d) =⇒ (a). Then, for all i ∈ I , for all n ≥ 1: X Xi (n) = l(i, i2 , · · · , in ), where the sum runs on all oriented paths i → i2 → · · · −→ in in G(S) . By proposition 53, g(S) is associative. Moreover, it is quite immediate to prove that in g(S) :



• If j is not a direct descendant of i in G, fj (1)fi (1) = 0. • If i1 → i2 → · · · → in and i1 → i02 → · · · → i0n in G, then: fin (1) · · · fi2 (1)fi1 (1) = fi0n (1) · · · fi02 (1)fi1 (1) = fi1 (n). So there is a morphism of algebras from AG to g(S) , sending Pi (1) to fi (1). This morphism sends Pi (n) to fi (n). As the fi (n)'s are linearly independent, so are the Pi (n)'s.



2. Let A0G be the associative, non-unitary algebra generated by the relations of proposition 57-2. As these relation are immediatly satised in AG , there is a unique morphism of algebras:  A0G −→ AG Φ: Pi (1) −→ Pi (1). Let i1 → i2 → · · · → in and i1 → i02 → · · · → i0n in G. Let us prove that Pik (1) · · · Pi2 (1)Pi1 (1) = Pi0k (1) · · · Pi02 (1)Pi1 (1) in A0G by induction on k . For k = 2, this is implied by the second family of relations dening A0G . Let us assume the result at rank k . Then, both in AG and A0G :



Pik+1 (1)Pik (1) · · · Pi2 (1)Pi1 (1) = Pik+1 (1)Pi0k (1) · · · Pi02 (1)Pi1 (1). This is equal to Pi (k + 1) in AG , so is non-zero. As a consequence, Pik+1 (1)Pi0k (1) 6= 0 in AG , so i0k → ik+1 in G. By denition of A0G , Pik+1 (1)Pi0k (1) = Pi0k+1 (1)Pi0k (1) in A0G , so:



Pik+1 (1)Pik (1) · · · Pi2 (1)Pi1 (1) = Pi0k+1 (1)Pi0k (1) · · · Pi02 (1)Pi1 (1). So the relations dening AG are also satised in A0G , so there is a morphism of algebras:  AG −→ A0G Ψ: Pi (1) −→ Pi (1). It is clear that Φ and Ψ are inverse isomorphisms of algebras.
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Corollary 58 Let (S) a Hopf SDSE. If g(S) is associative, then the graph G(S) satises



condition (c) of proposition 57 and g(S) is isomorphic to AG(S) .



n n Proof. First step. Let i, j, k be vertices of G(S) and n ≥ 1 such that i −→ j and i −→ k .



Let us prove that Fj = Fk by induction on n. If n = 1, by proposition 18-3, Fj = Fk . If n ≥ 2, then there exists vertices of G(S) such that:



i → j1 → . . . → jn−1 → j,



i → k1 → . . . → kn−1 → k. n−1



n−1



The case n = 1 implies that Fj1 = Fk1 , so j1 −→ j and j1 −→ k . By the induction hypothesis, n n (j) (k) Fj = Fk . In other words, if i −→ j and i −→ k , then al = al for all l ∈ I .



Second step. Then, for all i ∈ I , for all n ≥ 1: Xi (n) =



X



(i)



(i



)



ai1 · · · ainn−1 l(i, i2 , · · · , in ), 52



where the sum runs on all oriented paths i → i2 → · · · −→ in in G(S) . The rst step implies (i)



(i



(i)



)



that ai1 . . . ainn−1 depends only of i and n: we denote it by an . Then: X Xi (n) = a(i) n l(i, i2 , · · · , in ), (i)



∆(Xi (n)) =



X X



an



(i) (j)



k+l=n



l



i−→j



al ak



Xj (k) ⊗ Xi (l).



(i)



Dually, putting pi (n) = an fi (n) for all 1 ≤ i ≤ N , n ≥ 1, the pre-Lie product of g(S) is given by:  (i)   am+n m f (m + n) if i −→ j, (i) (j) i fj (n) ? fi (m) = a an   0 motherwise ; ( m pi (m + n) if i −→ j, pj (n) ? pi (m) = 0 otherwise.



Last step. It is then clear that the associative algebra g(S) is generated by the pi (1), i ∈ I , and



that these elements satisfy the relations dening AG(S) . So there is an epimorphism of algebras:  AG(S) −→ g(S) Θ: Pi (1) −→ pi (1).



This morphism sends Pi (n) to pi (n) for all n ≥ 1. As the pi (n)'s are a basis of AG(S) , the Pi (n)'s are linearly independent in AG(S) , so the graph G(S) satises condition (c) of proposition 57. Moreover, Θ is an isomorphism. 2



8.3 Group of characters The non-unitary, associative algebra g(S) is graded, with pi (k) homogeneous of degree k for all k ≥ 1. Moreover, g(S) (0) = (0). The completion gd (S) is then an associative non-unitary algebra. We add it a unit and obtain an associative unitary algebra K ⊕ gd (S) . It is then not dicult to show that the following set is a subgroup of the units of K ⊕ gd (S) :     X G= 1+ xk | ∀k ≥ 1, xk ∈ g(S) (k) .   k≥1



Proposition 59 The group of characters Ch H(S) is isomorphic to G. 



Proof. We put V = V ect(Xi (k)|i ∈ I, k ≥ 1). Let g ∈ V ∗ . Then g can be uniquely extended



in a map gb from H(S) to K by g((1) + Ker(ε)2 ) = (0), where ε is the counit of H(S) . Moreover, gb ∈ gd (S) . This construction implies a bijection:   Ch H(S) −→ G Ω: f −→ 1 + fc |V .  Let f1 , f2 ∈ Ch H(S) . For all x ∈ V , we put ∆(x) = x ⊗ 1 + 1 ⊗ x + x0 ⊗ x00 . As x is a linear span of ladders, x0 ⊗ x00 ∈ V ⊗ V . So:



(f1 .f2 )(x) = (f1 ⊗ f2 ) ◦ ∆(x) = f1 (x) + f2 (x) + f1 (x0 )f1 (x00 ) = f1 |V (x) + f2 |V (x) + f1 |V (x0 )f2 |V (x00 ) d d 0 d 00 = fd 1 |V (x) + f2 |V (x) + f1 |V (x )f2 |V (x )   d d d = fd 1 |V (x) + f2 |V (x) + f1 |V ? f2 |V (x). 53



d d d d So (f\ 1 .f2 )|V = f1 |V + f2 |V + f1 |V ? f2 |V . This implies that Ω is a group isomorphism.
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9 Lie algebra and group associated to H(S), non-abelian case In non-abelian or abelian cases, then any vertex of G(S) is of nite level. By proposition 21, the constant structures of the pre-Lie product satisfy: ( (i) aj if n = 1, (i,j) λn = (i) bj (n − 1) + a ˜j if n ≥ level(i) + 1, (i)



(j)



where the aj 's, a ˜i 's and bj 's are scalars.



9.1 Modules over the Faà di Bruno Lie algebra Let gF dB be the Faà di Bruno Lie algebra. Recall that it has a basis (e(k))k≥1 , with bracket given by: [e(k), e(l)] = (l − k)e(k + l). The gF dB -module V0 has a basis (f (k))k≥1 , and the action of gF dB is given by:



e(k).f (l) = lf (k + l). We can then construct a semi-direct product V0M / gF dB , described in the following proposition:



Proposition 60 Let M ∈ N∗ . The Lie algebra V0M / gF dB has a basis: 



f (i) (k)



 1≤i≤M, k≥1



∪ (e(k))k≥1 ,



and its Lie bracket given by:  



[e(k), e(l)] = (l − k)e(k + l), [e(k), f (i) (l)] = lf (i) (k + l),  (i) [f (k), f (j) (l)] = 0. We now take g = V0⊕M / gF dB . We dene a family of g-modules. Let c ∈ K and υ = (υ1 , . . . , υM ) ∈ K M . The module Wc,υ has a basis (g(k))k≥1 , and the action of g is given by:  e(k).g(l) = (l + c)g(k + l), f (i) (k).g(l) = υi g(k + l). The semi-direct product is given in the following proposition:



Proposition 61 Let g be the following Lie algebra: 



It has a basis:







  Wc1 ,υ(1) ⊕ . . . ⊕ WcN ,υ(N ) / V0M / gF dB .



g (j) (k)



 1≤j≤N, k≥1



  ∪ f (i) (k)



1≤i≤M, k≥1



∪ (e(k))k≥1 ,



and its bracket is given by:                 



[e(k), e(l)] [e(k), f (i) (l)] [e(k), g (i) (l)] [f (i) (k), f (j) (l)] [f (i) (k), g (j) (l)] [g (i) (k), g (j) (l)]



= = = = = = 54



(l − k)e(k + l), lf (i) (k + l), (l + c0i )g (i) (k + l), 0, (j) υi g (j) (k + l), 0.



Let us take g as in this proposition. We dene three families of modules over g: 1. Let ν = (ν1 , . . . , νM ) ∈ K M . The module is given by:  e(k).g(l)    (i) f (k).h(1) f (i) (k).h(l)    (i) g (k).h(l)



0 has a basis (h(k)) Wν,0 k≥1 , and the action of g



2. Let ν = (ν1 , . . . , νM ) ∈ K M . The module is given by:  e(k).h(1) =     e(k).h(l) =  (i) f (k).h(1) =    f (i) (k).h(l) =   (i) g (k).h(l) =



0 has a basis (h(k)) Wν,1 k≥1 , and the action of g



= = = =



(l − 1)h(k + l), νi h(k + 1), 0 if l ≥ 2, 0.



h(k + 1), (l − 1)h(k + l) if l ≥ 2, νi h(k + 1), 0 if l ≥ 2, 0.



00 3. Let c ∈ K , ν = (ν1 , . . . , νM ) ∈ K M , µ = (µ1 , . . . , µN ) ∈ K N . The module Wc,ν,µ has a basis (h(k))k≥1 , and the action of g is given by:  e(k).h(l) = (l + c)h(k + l),    (i) f (k).h(l) = νi h(k + l), g (i) (k).h(1) = µi h(k + 1),    (i) g (k).h(l) = 0 if l ≥ 2.



9.2 Description of the Lie algebra Theorem 62 Let us consider a connected, fundamental non-abelian SDSE. Then g(S) has the following form: g(S) ≈ W /











Wc1 ,υ(1) ⊕ . . . ⊕ WcN ,υ(N ) /



V0M



/ gF dB







,



0 , W 0 and W 00 where W is a direct sum of Wν,0 c,ν,µ . ν,1



Proof. First step. We rst consider a Hopf SDSE (S), dilatation of a system of theorem 32, such that I = I0 ∪ J0 ∪ K0 . The set J of the vertices of G(S) admits a partition J = (Jx )x∈I0 ∪ (Jx )x∈J0 ∪ (Jx )x∈K0 . We put: A = {j ∈ J / bj 6= 0}, B = {j ∈ J / bj = 0}. In other terms, i ∈ A if, and only if, (i ∈ Jx , with x ∈ I0 such that bx 6= −1) or (i ∈ Jx , with x ∈ J0 ). As we are in the non-abelian case, A 6= ∅. Let us choose ix ∈ Jx for all x ∈ I , and ix0 ∈ A. In order to enlighten the notations, we put i0 = ix0 . We dene, for all k ≥ 1:  1   pi0 (k) = fi (k),   bx0 0    1   pi (k) = (fi (k) − fi0 (k)) if i ∈ Jx0 − {i0 },    bx0   1 1 pix (k) = fi (k) − fi (k) if x 6= x0 and x ∈ A, bx bx0 0      pix (k) = fi (k) if x ∈ B,   1    pi (k) = (fi (k) − fix (k)) if i ∈ Jx − {ix }, x 6= x0 and x ∈ A,   bx   pi (k) = fi (k) − fix (k) if i ∈ Jx − {ix }, x ∈ B. Then direct computations show that the Lie bracket of g(S) is given in the following way: for all k, l ≥ 1, 55



• [pi0 (k), pi0 (l)] = (l − k)pi0 (k + l).  (l + dx0 )pi (k + l) if i ∈ Jx0 − {i0 }, • For all i ∈ I , [pi0 (k), pi (l)] = lpi (k + l) if i ∈ / J x0 .  −dx0 pi (k + l) if x ∈ A, • For all i ∈ Jx0 − {i0 }, for all x 6= x0 , [pix (k), pi (l)] = 0 if x ∈ B. • For all x, x0 ∈ I − {x0 }, [pix (k), pix0 (l)] = 0. • For all



x, x0



∈ I − {x0 }, i ∈ Jx0 − {ix0 }, [pix (k), pi (l)] =







0 if x 6= x0 , dx pi (k + l) if x = x0 .



• For all x, x0 ∈ I − {x0 }, i ∈ Jx − {ix }, j ∈ Jx0 − {ix0 }, [pi (k), pj (l)] = 0. We used the following notations:



 −βx   if x ∈ I0 , βx 6= −1,    1 + βx 1 if x ∈ I0 , βx = −1, dx =   −1 if x ∈ J0 ,    0 if x ∈ K0 . So the Lie algebra g(S) is isomorphic to:







 W |Jx0 |−1



dx0 ,(−dx0 ,··· ,−dx0



,0,··· ,0) ⊕



M



  |Ix |−1  / V0|I|−1 / gF dB . W0,(0,··· ,0,dx ,0,··· ,0)



x∈I−{x0 }



A basis adapted to this decomposition is:    [ (pi (k))i∈Jx0 −{i0 },k≥1 ∪  (pi (k))i∈Jx −{ix },k≥1  ∪  x∈I−{x0 }



 [



(pix (k))k≥1  ∪ (pi0 (k))k≥1 .



x∈I−{x0 }



Second step. We now assume that I1 6= ∅. Then the descendants of j ∈ I1 form a system of



the rst step, so:



g(S) = WI1 / g(S0 ) , where WI1 = V ect(fj (k) / j ∈ I1 , k ≥ 1} and (S0 ) is a restriction of (S) as in the rst step. Let us x j ∈ I1 and let us consider the g(S0 ) -module Wj = V ect(fj (k) / k ≥ 1). With the notations of the preceding step:   (j) ai 0 • [pi0 (k), fj (l)] = l − 1 + bx fj (k + l) if l = 1. 0



(j)



 • [pi0 (k), fj (l)] =



l−1+ 



• [pix (k), fj (l)] =



(j)



(j)



aix bx



 • [pix (k), fj (l)] = νj



a νj bxi0 0



−



ai 0 b x0



−



ai 0 b x0



fj (k + l) if l ≥ 2.



fj (k + l) if l = 1, x ∈ A.



(j)



(j)



aix bx















fj (k + l) if l ≥ 2, x ∈ A.



(j)



• [pix (k), fj (l)] = aix fj (k + l) if l = 1, x ∈ B . (j)



• [pix (k), fj (l)] = νj aix fj (k + l) if l ≥ 2, x ∈ B . 56



• [pi (x), fj (l)] = 0 if i is not a ix . If νj 6= 0, we put pj (k) = fj (k) if k ≥ 2 and pj (1) = νj fj (1). Then, for all l:   (j) ai 0 pj (k + l). • [pi0 (k), pj (l)] = l − 1 + νj bx 0



 • [pix (k), pj (l)] = νj



(j)



(j)



aix bx



−



ai 0 b x0







pj (k + l) if x ∈ A.



(j)



• [pix (k), pj (l)] = νj aix pj (k + l) if x ∈ B . • [pi (x), pj (l)] = 0 if i is not a ix . (j)



So Wj is a module Wc,υ . If νj = 0 and ai0 6= 0, we put pj (k) = fj (k) if k ≥ 2 and pj (1) = b x0



(j) 0



ai



fj (1). Then: • [pi0 (k), pj (l)] = pj (k + l) if l = 1. • [pi0 (k), pj (l)] = (l − 1)pj (k + l) if l ≥ 2.  (j)  (j) ai aix 0 • [pix (k), fj (l)] = bx − bx fj (k + l) if l = 1, x ∈ A. 0



• [pix (k), fj (l)] = 0 if l ≥ 2, x ∈ A. (j)



• [pix (k), fj (l)] = aix fj (k + l) if l = 1, x ∈ B . • [pix (k), fj (l)] = 0 if l ≥ 2, x ∈ B . • [pi (x), pj (l)] = 0 if i is not a ix . (j)



0 . If ν = 0 and a So Wj is a module Wν,1 j i0 = 0, we put pj (k) = fj (k) for all k ≥ 1. Then:



• [pi0 (k), pj (l)] = (l − 1)pj (k + l).   (j) (j) ai aix 0 fj (k + l) if l = 1, x ∈ A. • [pix (k), fj (l)] = bx − bx 0



• [pix (k), fj (l)] = 0 if l ≥ 2, x ∈ A. (j)



• [pix (k), fj (l)] = aix fj (k + l) if l = 1, x ∈ B . • [pix (k), fj (l)] = 0 if l ≥ 2, x ∈ B . • [pi (x), pj (l)] = 0 if i is not a ix . 0 . So Wj is a module Wν,0



Last step. We now consider vertices in J1 . If j ∈ J1 , then its descendants are vertices of the rst step and i elements of I1 such that νi = 1. As before: g(S) = WJ1 / g(S1 ) , where WJ1 = V ect(fj (k) / j ∈ J1 , k ≥ 1} and (S1 ) is a restriction of (S) as in the second step. Let us x j ∈ J1 and let us consider the g(S1 ) -module Wj = V ect(fj (k) / k ≥ 1). As νj 6= 0, putting pj (k) = fj (k) if k ≥ 2 and pj (1) = νj fj (1):   (j) ai 0 • [pi0 (k), pj (l)] = l − 1 + νj bx pj (k + l). 0



57



 • [pix (k), pj (l)] = νj



(j)



(j)



aix bx



−



ai 0 bx0







pj (k + l) if x ∈ A.



(j)



• [pix (k), pj (l)] = νj aix pj (k + l) if x ∈ B . (j)



• [pi (k), pj (l)] = νj ai pj (k + l) if l = 1, i ∈ I1 , with νi = 1. • [pi (k), pj (l)] = 0 if l ≥ 2, i ∈ I1 . • [pi (x), pj (l)] = 0 if i ∈ / I1 and is not a ix . 2



00 So Wj is a module Wc,ν,µ .



Theorem 63 Let (S) be a connected, extended, fundamental, non-abelian SDSE. Then the Lie algebra g(S) is of the form: gm / (gm−1 / (· · · g2 / (g1 / g0 ) · · · ),



where g0 is the Lie algebra associated to the restriction of (S) to the vertices which are not extension vertices (so g0 is described in theorem 62) and, for j ≥ 1, gj is an abelian (gj−1 / (· · · g2 / (g1 / g0 ) · · · )-module having a basis (h(j) (k))k≥1 . Proof. The Lie algebra gj is the Lie algebra V ect(fxj (k) / k ≥ 1), where J2 = {x1 , . . . , xm },



2



with the notations of theorem 14.



9.3 Associated group  Let us now consider the character group Ch H(S) of H(S) . In the preceding  cases, g(S) contains a sub-Lie algebra isomorphic to the Faà di Bruno Lie algebra, so Ch H(S) contains a subgroup isomorphic to the Faà di Bruno subgroup: GF dB = {x + a1 x2 + a2 x3 + · · · | ∀i, ai ∈ K}, with the product dened by A(x).B(x) = B ◦ A(x). Moreover, each modules earlier dened on gF dB corresponds to a module over GF dB by exponentiation:



Denition 64 1. The module V0 is isomorphic to yK[[y]] as a vector space, and the action of GF dB is given by: A(x).P (y) = P ◦ A(y).



  2. Let G = V⊕M o GF dB . Let c ∈ K , and υ = (υ1 , · · · , υM ) ∈ K M . Then Wc,υ is zK[[z]] 0 as a vector space, and the action of G is given by: (P1 (y), · · · , PM (y), A(x)).Q(z) = exp



M X i=1



! υi Pi (z)



A(z) z



c



3. Let us consider the following semi-direct product:



    G = Wc1 ,ε(1) ⊕ · · · ⊕ WcN ,ε(N ) / V⊕M / G F dB . 0 58



Q ◦ A(z).



(a) Let ν = (ν1 , · · · , νM ) ∈ K M . Then W0ν,0 is tK[[t]] as a vector space, and for all X = (Q1 (z), · · · , QN (z), P1 (y), · · · , PM (y), A(x)) ∈ G: ! M X X.t = 1+ νi Pi (t) t, i=1



 X.R(t) =



t A(t)



 R ◦ A(t),



for all R(t) ∈ t2 K[[t]]. (b) Let ν = (ν1 , · · · , νM ) ∈ K M . Then W0ν,1 is tK[[t]] as a vector space, and for all X = (Q1 (z), · · · , QN (z), P1 (y), · · · , PM (y), A(x)) ∈ G: !   M X A(t) X.t = 1+ , νi Pi (t) t + t ln t i=1   t R ◦ A(t), X.R(t) = A(t) for all R(t) ∈ t2 K[[t]]. (c) Let c ∈ K , ν = (ν1 , · · · , νM ) ∈ K M , µ = (µ1 , . . . , µN ) ∈ K N . Then W00c,ν,µ is tK[[t]] as a vector space, and for all X = (Q1 (z), · · · , QN (z), P1 (y), · · · , PM (y), A(x)) ∈ G: ! !   M M X X A(t) c X.t = exp 1+ µi Pi (t) µi Qi (t) A(t), t i=1 i=1 ! c  M X t X.R(t) = exp µi Pi (t) R ◦ A(t), A(t) i=1



for all R(t) ∈ t2 K[[t]]. Direct computations prove that they are indeed modules.



Theorem 65 Let  (S) be a connected Hopf SDSE in the non-abelian, fundamental case. Then



the group Ch H(S) is of the form:



Gm o (Gm−1 o (· · · G2 o (G1 o G0 ) · · · ),



where G0 is a semi-direct product of the form: G0 = W0 o (W o (V o GF dB )),



where V is a direct sum of modules V0 , W a direct sum of modules Wc,υ , and W0 a direct sum of modules W0ν,0 , W0ν,1 and W00c,ν,µ . Moreover, for all m ≥ 1, Gm = (tK[[t]], +) as a group. Proof. The group Ch H(S) is isomorphic to the group of characters of U(g)∗ , where g is 



described in theorem 63. This implies that this group has a structure of semi-direct product as described in theorem 65. Let us consider the Hopf algebra H of coordinates of G0 . It is a graded Hopf algebra, and direct computations prove that its graded dual is the enveloping algebra of g0 of theorem 63. So H is isomorphic to H(S0 ) . 2



10 Lie algebra and group associated to H(S), abelian case We now treat the abelian case. Recall that in this case, J0 = K0 = ∅ and, for all i ∈ I0 , βi = −1. 59



10.1 Modules over an abelian Lie algebra Let gab be an abelian Lie algebra, with basis e(i) (k) over this Lie algebra:



 1≤i≤M,k≥1



. We dene a family of modules



Denition 66 Let υ = (υ1 , · · · , υM ) ∈ K M . Then Vυ has a basis (f (k))k≥1 , and the action



of gab is given by:



e(i) (k).f (l) = υi f (k + l). We can then describe the semi-direct product:



Proposition 67 Let us consider the following Lie algebra: N M



g=



! Vυ(i)



/ gab .



i=1



It has a basis: (e(i) (k))1≤i≤M,k≥1 ∪ (f (i) (k))1≤i≤N,k≥1 ,



and the Lie bracket is given by:  (i) (j)   [e (k), e (l)] = 0, (j) (i) [e (k), f (j) (l)] = υi f (j) (k + l),   [f (i) (k), f (j) (l)] = 0. We now dene two families of modules over such a Lie algebra.



Denition 68 Let g be a Lie algebra of proposition 67. 1. Let ν = (ν1 , . . . , νM ) ∈ K M . The module Wν has a basis (g(k))k≥1 , and the action of g is given by:  (i)  e (k).g(1) = νi g(k + 1), e(i) (k).g(l) = 0 if l ≥ 2,  (i) f (k).g(l) = 0. M N 2. Let ν = (ν1 , . . . , ν M ) ∈ K and µ = (µ1 , . . . , µN ) ∈ K , such that for all 1 ≤ i ≤ M , for (j) 0 all 1 ≤ j ≤ N , µj νi − υi = 0. The module Wν,µ has a basis (g(k))k≥1 , and the action of g is given by:  (i)  e (k).g(l) = νi g(k + l), f (j) (k).g(1) = µj g(k + 1),  (j) f (k).g(l) = 0 if l ≥ 2.











0 Remark. The condition µj νi − υi(j) = 0 is necessary for Wν,µ to be a g-module. Indeed: (j)



[e(i) (k), f (j) (l)].g(1) = υi µj g(k + l + 1),    e(i) (k). f (j) (l).g(1) − f (j) (l). e(i) (k).g(1) = µj νi g(k + l + 1). 



60



10.2 Description of the Lie algebra We here consider a connected Hopf SDSE (S) in the abelian case.



Theorem 69 Let us consider a Hopf SDSE of abelian fundamental type, with no extension



vertices. Then g(S) has the following form:



g(S) ≈ W / ((Vυ(1) ⊕ . . . ⊕ Vυ(N ) ) / gab ) , 0 . where W is a direct sum of Wν and Wν,µ



Proof. First step. We rst consider a Hopf SDSE such that: I=



[



Jx .



x∈I0



For all x ∈ I0 , let us x ix ∈ Jx . We put pix (k) = fix (k) and pi (k) = fi (k)−fix (k) if i ∈ Jx −{ix }. Then direct computations show that:



• [pix (k), pix0 (l) ] = 0. • [pix (k), pj (l)] = δx,x0 pj (k + l) if j ∈ Jx0 − {ix0 }. • [pi (k), pj (l)] = 0 if i, j are not ix 's. So:



 g(S) ≈ 



 M



⊕|J |−1



x  / gab , V(0,...,0,1,0,...,0)



x∈I0



where gab = V ect(pix (k) / x ∈ I0 , k ≥ 1).



Second step. We now assume that I1 6= ∅. Then the descendants of j ∈ I1 form a system as in the rst step, so: g(S) = WI1 / g(S0 ) , where WI1 = V ect(fj (k) / j ∈ I1 , k ≥ 1} and (S0 ) is the restriction of (S) to the regular vertices. Let us x j ∈ I1 and let us consider the g(S0 ) -module Wj = V ect(fj (k) / k ≥ 1). With the notations of the preceding step: (j)



• [pix (k), fj (l)] = aix fj (k + l) if l = 1. (j)



• [pix (k), fj (l)] = νj aix fj (k + l) if l ≥ 2. • [pi (x), fj (l)] = 0 if i is not a ix . If νj 6= 0, we put pj (k) = fj (k) if k ≥ 2 and pj (1) = νj fj (1). Then, for all l: (j)



• [pix (k), fj (l)] = νj aix fj (k + l). • [pi (x), fj (l)] = 0 if i is not a ix . So Wj is a module Vυ . If νj = 0, we put pj (k) = fj (k) for all k ≥ 1. Then: (j)



• [pix (k), fj (l)] = aix fj (k + l) if l = 1. • [pix (k), fj (l)] = 0 if l ≥ 2. • [pi (x), fj (l)] = 0 if i is not a ix . 61



So Wj is a module Wν .



Last step. We now consider vertices in J1 . If j ∈ J1 , then its descendants are vertices of the rst step and vertices in I1 such that νi = 1. As before: g(S) = WJ1 / g(S1 ) , where WJ1 = V ect(fj (k) / j ∈ J1 , k ≥ 1} and (S1 ) is the restriction of (S) to the regular vertices and the vertices of I1 . Let us x j ∈ J1 and let us consider the g(S1 ) -module Wj = V ect(fj (k) / k ≥ 1). As νj 6= 0, putting pj (k) = fj (k) if k ≥ 2 and pj (1) = νj fj (1): (j)



• [pix (k), pj (l)] = νj aix pj (k + l). • [pi (k), pj (l)] = 0 if i ∈ Jx − {ix }. (j)



• [pi (k), pj (l)] = νj ai pj (k + l) if l = 1 and i ∈ I1 . • [pi (k), pj (l)] = 0 if l ≥ 2 and i ∈ I1 . 2



0 . So Wj is a module Wν,µ



Theorem 70 Let (S) be a connected Hopf SDSE in the non-abelian, fundamental case. Then the Lie algebra g(S) is of the form: gm / (gm−1 / (· · · g2 / (g1 / g0 ) · · · ),



where g0 is the Lie algebra associated to the restriction of (S) to the non-extension vertices (so is described in theorem 69), and, for j ≥ 1, gj is an abelian (gj−1 / (· · · g2 / (g1 / g0 ) · · · )-module having a basis (h(j) (k))k≥1 . Proof. Similar with the proof of theorem 62.



2



10.3 Associated group  Let us now consider the character group Ch  H(S) of H(S) . In the preceding cases, g(S) contains an abelian sub-Lie algebra gab , so Ch H(S) contains a subgroup isomorphic to the group:    (i) (i) 2 (i) Gab = a1 x + a2 x + · · · , | ∀1 ≤ i ≤ M, ∀k ≥ 1, ak ∈ K , 1≤i≤M



with the product dened by (A(i) (x))i∈I .(B (i) (x))i∈I = (A(i) (x) + B (i) (x) + A(i) (x)B (i) (x))i∈I . Note that Gab is isomorphic to the following subgroup of the following group of the units of the ring K[[x]]M : ( ! ) 1+xf1 (x)



G1 =



.. .



| f1 (x), . . . , fM (x) ∈ K[[x]] .



1+xfM (x)



The isomorphism is given by:  Gab −→  G1     (1) (1) 1+a1 x+a2 x2 +...   (i) (i) .. . a1 x + a2 x2 + · · · −→    .  1≤i≤M (M ) (M ) 2 1+a1



x+a2



x +...



Moreover, each modules earlier dened on gab corresponds to a module over Gab by exponentiation, as explained in the following denition:



Denition 71 62



1. Let υ = (υ1 , . . . , υM ) ∈ K M . The module Vυ is isomorphic to yK[[y]] as a vector space, and the action of Gab is given by: ! M X (A(i) (x))1≤i≤M .P (y) = exp υi A(i) (y) P (y). i=1



2. Let us consider the following semi-direct product: ! N M G= Vυ(i) / Gab . i=1



(a) Let ν = (ν1 , . . . , νM ) ∈ K M . The module Wν is zK[[z]] as a vector space, and the action of G is given in the following way: for all X = (P1 (y), . . . , PN (y), A1 (x), . . . , Am (x)) ∈ G,  ! M X   X.z = 1+ νi Ai (z) z, i=1   X.z 2 R(z) = z 2 R(z), for all R(z) ∈ K[[z]]. (b) Let ν = (ν1 , . . . , νM ) ∈ K M and µ = (µ1, . . . , µN ) ∈ K N , such that for all 1 ≤ (j) i ≤ M , for all 1 ≤ j ≤ N , µj νi − υi = 0. The module W0ν,µ is zK[[z]] as a vector space, and the action of G is given in the following way: for all X = (P1 (y), . . . , PN (y), A1 (x), . . . , Am (x)) ∈ G, ! !  M N X X    X.z = exp 1+ νi Ai (z) µi Pi (z) z,   i=1 i=1 ! M X   2   νi Ai (z) z 2 R(z),  X.z R(z) = exp i=1



for all R(z) ∈ K[[z]].



  (j) Direct computations prove that they are indeed modules. The condition µj νi − υi =0 is necessary for W0ν,µ to be a module. Indeed:



Ai (x).(Pj (y).z) = (exp(νi Ai (z)) + µj exp(νi Ai (z))Pj (z)) z,   (j) (Ai (x)Pj (y)).z = exp(υi Ai (y))Pj (y)Ai (x) .z   (j) = 1 + exp(υi Ai (z))Pj (z) z + (exp(νi Ai (z)) − 1)z   (j) = exp(νi Ai (z)) + µj exp(υi Ai (z))Pj (z) z.



Theorem 72 Let (S) be a connected Hopf SDSE in the abelian case. Then the group 



Ch H(S)



is of the form:



GN o (GN −1 o (· · · G2 o (G1 o G0 ) · · · ),



where G0 is a semi-direct product of the form: G0 = W o (V o Gab ),



where V is a direct sum of modules Vυ , and W a direct sum of modules Wν and W0ν,µ . Moreover, for all m ≥ 1, Gm = (tK[[t]], +) as a group. Proof. Similar as the proof of theorem 65. 63
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11 Appendix: dilatation of a pre-Lie algebra Let (S) be a Hopf SDSE with set of indices I . We choose a set J and consider the disjoint union I 0 of several copies Ji of J indexed by I . The Lie algebra g(S) has a basis (fi (k))i∈I, k≥1 and the Lie bracket is given by: (j,i)



[fi (k), fj (l)] = λl



(i,j)



fj (k + l) − λk



fi (k + l).



Let (S 0 ) be the dilatation of (S) with set of indices I 0 . Then the Lie algebra g(S 0 ) has a basis (fi (k))i∈J, k≥1 and the Lie bracket is given in the following way: for all x ∈ Ji , y ∈ Jj , (j,i)



[fi (k), fj (l)] = λl



(i,j)



fy (k + l) − λk



fx (k + l).



We shall say that g(S 0 ) is a dilatation of g(S) . We prove in this section that this construction is equivalent to give a pre-Lie product of g(S) .



11.1 Dilatation of a pre-Lie algebra Denition 73 [4] A permutative, associative algebra is a couple (A, ·) where A is a vector



space and · is a bilinear associative (non-unitary) product on A such that for all a, b, c ∈ A:



abc = bac.



Proposition 74 Let (A, ·) be a vector space with a bilinear product. For any pre-Lie algebra



(g, ?),



we dene a product on g ⊗ A by:



(x ⊗ a) ? (y ⊗ b) = (x ? y) ⊗ (ab).



Then g ⊗ A is pre-Lie for any pre-Lie algebra g if, and only if, A is permutative, associative. Proof. ⇐=. Let g be a pre-Lie algebra, and let x, y, z ∈ g, a, b, c ∈ A. Then: ((x ⊗ a) ? (y ⊗ b)) ? (z ⊗ c) − (x ⊗ a) ? ((y ⊗ b) ? (z ⊗ c)) = ((x ? y) ? z − x ? (y ? z)) ⊗ abc = ((y ? x) ? z − y ? (x ? z)) ⊗ bac = ((y ⊗ b) ? (x ⊗ a)) ? (z ⊗ c) − (y ⊗ b) ? ((x ⊗ a) ? (z ⊗ c)). So g ⊗ A is pre-Lie. =⇒. Let us assume that g ⊗ A is pre-Lie for any pre-Lie algebra g. Let us choose g as ∗ ), with D containing three distinct elements i, j, k . Then, for any the pre-Lie algebra P rim(HD a, b, c ∈ A:



((f q i ⊗ a) ? (f q j ⊗ b)) ? (f q k ⊗ c) − (f q i ⊗ a) ? ((f q j ⊗ b) ? (f q k ⊗ c))   q q i i = f q j ⊗ (ab)c − fi q q j + f q j ⊗ a(bc) qk ∨qk qk = f qq ij ⊗ ((ab)c − a(bc)) − fi q q j ⊗ a(bc) qk ∨qk = ((f q j ⊗ b) ? (f q i ⊗ a)) ? (f q k ⊗ c) − (f q j ⊗ b) ? ((f q i ⊗ a) ? (f q k ⊗ c)) = f qq ji ⊗ ((ba)c − b(ac)) − fi q q j ⊗ b(ac). q ∨q k



So:



k



f qq ij ⊗ ((ab)c − a(bc)) − fi q q j ⊗ a(bc) = f qq ji ⊗ ((ba)c − b(ac)) − fi q q j ⊗ b(ac). qk ∨qk qk ∨qk qq i



Applying q jk ⊗ IdA on the two sides of this equality, we obtain (ab)c − a(bc) = 0. So A is assoi q qj ciative. Applying ∨qk ⊗ IdA on the two sides of this equality, we obtain a(bc) = b(ac), so A is 64



2



permutative, associative.



Example. Let I a set, and let AI = V ect(ei )i∈I . Then A is given a permutative, associative product: for all i, j ∈ I , ei .ej = ej . Let (g, ?) be a pre-Lie algebra. The pre-Lie product of g ⊗ A is given by:



(x ⊗ ei ) ? (y ⊗ ej ) = x ? y ⊗ ej . The following proposition is immediate:



Proposition 75 Let (S) be a Hopf SDSE with set of indices I and (S 0 ) be a dilatation of



(S),



with set of indices J being the disjoint union of nite sets Ji indexed by i ∈ I . Let J 0 be a set and for all i ∈ I , let φi : Ji −→ J 0 be a map. The following morphism is a morphism of pre-Lie algebras:  g(S 0 ) −→ g(S) ⊗ AJ 0 fx (k), x ∈ Ji −→ fi (k) ⊗ eφi (x) .



It is injective (respectively surjective, bijective) if, and only if, φi is injective (respectively surjective, bijective) for all i ∈ I .



11.2 Dilatation of a Lie algebra Let Set be the category of sets, Vect be the category of Vector spaces, and Lie the category of Lie algebras.



Denition 76 Let V be a vector space. We dene a function FV from Set to Vect in the



following way:



1. If I is a set:



FV (I) =



M



V.



i∈I



The element v ∈ V in the copy of V corresponding to the index i ∈ I will be denoted by vi . 2. If σ : I −→ J is a map:



 FV (σ) :



FV (I) −→ FV (J) vi −→ vσ(i) .



Denition 77 Let g be a Lie algebra. A dilatation of g is functor F : Set −→ Lie such that F ({1}) = g and making the following diagram commuting: Set H



F



HH HH HH Fg HH#



/ Lie w w w ww ww w w{



Vect



where the functor from Lie to Vect is the forgetful functor.



g



Proposition 78 Let g be a Lie algebra. There is a bijection between the set of dilatations of and the set of pre-Lie product inducing the Lie bracket of g. 65



Proof. First step. Let ? be a pre-Lie product inducing the Lie bracket of g. Let I be a set. We identify v ⊗ ei ∈ g ⊗ AI and vi ∈ Fg (I). So Fg (I) is given a structure of pre-Lie algebra by: vi ? wj = (v ? w)j . The induced Lie bracket is given by:



[vi , wj ] = (v ? w)j − (w ? v)i . It is then easy to prove that this structure of pre-Lie algebra on Fg (I) for all I gives a dilatation of g.



Second step. Let F be a dilatation of g. So for any set I , Fg (I) is now a Lie algebra. Moreover, if σ : I −→ J is any map, then Fg (σ) : Fg (I) −→ Fg (J) is a Lie algebra morphism. We rst consider Fg ({1, 2}). Let π2 be the projection on Fg ({2}) which vanishes on Fg ({1}) in Fg ({1, 2}). We dene ? on g in the following way: if v, w ∈ V , (v ? w)2 = π2 ([v1 , w2 ]). Let σ : {1, 2} −→ {1, 2}, permuting 1 and 2. Then Fg (σ) permutes the two copies of g in Fg ({1, 2}), so Fg (σ) ◦ π1 = π2 ◦ Fg (σ). Moreover, Fg (σ) is a morphism of Lie algebras, so for all v, w ∈ V :



Fg (σ) ◦ π2 ([w1 , v2 ]) = π1 ◦ Fg (σ)([w1 , v2 ]), Fg (σ)((w ? v)2 ) = π1 ([w2 , v1 ]) (w ? v)1 = −π1 ([v1 , w2 ]). So, in Fg ({1, 2}):



[v1 , w2 ] = π1 ([v1 , w2 ]) + π2 ([v1 , w2 ]) = (v ? w)2 − (w ? v)1 . Let us now consider any set I and i, j ∈ I , not necessarily distinct. Considering τ : {1, 2} −→ {i, j} sending 1 to i and 2 to j , as Fg (τ ) is a morphism of Lie algebras, for all v, w ∈ g, in Fg (I):



[vi , wj ] = [Fg (τ )(v1 ), Fg (τ )(w2 )] = Fg (τ )([v1 , w2 ]) = Fg (τ )((v ? w)2 − (w ? v)1 ) = (v ? w)j − (w ? v)i . In particular, if i = j = 1, in Fg ({1}) = g, [v, w] = v ? w − w ? v : the product ? induces the Lie bracket of g(S) . Let x, y, z ∈ g. In Fg ({1, 2, 3}):



0 = [x1 , [y2 , z3 ]] + [y2 , [z3 , x1 ]] + [z3 , [x1 , y2 ]] = (x ? (y ? z))3 − (x ? (z ? y))2 − ((y ? z) ? x)1 + ((z ? y) ? x)1 +(y ? (z ? x))1 − (y ? (x ? z))3 − ((z ? x) ? y)2 + ((x ? z) ? y)2 +(z ? (x ? y))2 − (z ? (y ? x))1 − ((x ? y) ? z)3 + ((y ? x) ? z)3 . Considering the terms in the third copy of g:



(x ? (y ? z))3 − (y ? (x ? z))3 − ((x ? y) ? z)3 + ((y ? x) ? z)3 = 0. So ? is pre-Lie.



Last step. We dene in the rst step a correspondance sending a pre-Lie product on g to a



dilatation of g, and in the second step a correspondance sending a dilatation of g to a pre-Lie product on g. It is clear that they are inverse one from the other. 2 66
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Lecture 1. SYSTEMS OF ALGEBRAIC EQUATIONS 

Prove that the systems of algebraic equations over the eld Q of rational .... Since t1 is transcendental over k, k x1] is isomorphic to the polynomial algebra k T1].










 








Solving nonâ€“linear systems of equations 

The core of modern macroeconomics lies in the concept of equilibrium, which is usually expressed as a system of plausibly nonâ€“linear equations which can.Missing:










 








multigrid for systems of equations .fr 

Jul 8, 2011 - 0 In principle, the extension of multigrid methods from scalar PDEs to systems of PDEs is straightforward. ..... The smoothing properties of a particular relaxation method for a given problem can again ...... given in [4,303, 3051.
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xxxxxxxxxxxxxx. 2. Ã•Ã• yy. UU wwpppppppppppppp. 3 oo. GG 4. 5 ii. â€°â€°. â€�â€�bbbbbbb dd. Ã�Ã�Ã�Ã�Ã�Ã�Ã�. The main result of this paper is theorem 14, which says ...










 








Pre-Lie algebras and systems of Dyson-Schwinger equations ... .fr 

The fifth section introduces the tool of "leaf-cutting" for systems (lemma ... in the literature. ... especially for the opportunity of giving a mini-course on the algebraic aspects of .... As a consequence, the space of primitive elements of the dua










 








Lie algebras associated to systems of Dyson-Schwinger equations 

1. g(S) is an associative algebra of paths associated to a certain oriented graph. 2. Or g(S) is an ... webpage: http://loic.foissy.free.fr/pageperso/accueil.html. 1 ...










 








Equations of Elasticity 

In general, the concept of normal strain is introduced and defined in the context of a uniaxial ... having original length L0 (the gauge length) is measured and the ...










 








H.1 TRIDAG: Solution of tridiagonal systems of equations The ... - AOE 

c code set up to run on WATFOR-77 c w.h. mason, April 10, 1992 dimension a(nn),b(nn),c(nn),d(nn) if(nn .eq. 1) then d(1)=d(1)/b(1) return end if do 10 k = 2,nn.










 








From Reactive Boltzmann Equations to Reaction{Di usion Systems 1 

Sep 5, 2005 - We consider the reactive Boltzmann equations for a mixture of di ... neutron transport (Cf. 6]) or the Rosseland approximation of radiative transfer (Cf. 13]). ... Without loss of generality we have set particle mass, number density ...
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Roots of Equations: Bracketing Methods .fr 

Try as you might, you cannot manipulate this equation to explicitly solve for ... Although the quadratic formula is handy for solving Eq. (5.4), there are many other.










 








Derivation of Basic Television Color Equations 

cedures for deriving basic color equations for color ..... light. In effect, television systems have always tacitly assumed that the color reproduction goal is to ...










 








Chapter 2. Solution of Linear Algebraic Equations 

Chapter 2. Solution of Linear. Algebraic Equations. 2.0 Introduction. A set of linear algebraic equations looks like this: a11x1 + a12x2 + a13x3 + Â·Â·Â· + a1N xN = b1.










 








Boundary control of linearized Saint-Venant equations 

be encountered, this study can only be done numerically. .... a pole in zero (the canal pool acts as an integrator) and the ..... McGraw-Hill Book Company,.










 








Introduction and the equations of fluid dynamics 

Up to this point the equations governing fluid flow and solid mechanics appear to be similar with ... each of which has a certain behaviour in the numerical solution. ..... To complete the relationship it is necessary to determine heat source terms.










 








Galois Theory of Linear Differential Equations 

ii .... is presented together with examples for equations of order 2 and 3. We note that some of ...... (3) The C-vector space V in part (2) is referred to as the solution space of the ...... lj1,j2 belongs to S(r)f if lj1,j2 = 0 implies that there a










 








Aggregation equations 

May 23, 2018 - Possible Dirac masses creation. The velocity is not Lipschitz continuous, the characteristic method cannot be used. B. Fabr`eges. Aggregation ...










 








Solution of non-linear algebraic equations 

in which a, is a converged solution at a previous load level or time step. The jacobian .... Some algebra will readily verify that substitution of .... where AI is a prescribed 'length' in the space of n + 1 dimensions. ..... M. Hestenes and E. Stief










 








Principles of Operating Systems 

Sep 15, 2005 - higher (but the total time to complete a process is also longer). With multitasking ... the same illusion of parallelism is achieved at a finer grain process 1 prg 1 .... illusion of full-time interactivity toward the user while perfor










 








Principles of Operating Systems 

the disk can be divided up into several partitions that each hold .... 4/27/2006. CS 446/646 - Principles of Operating Systems - 6. File System. 49. 6.d File System ...










 








Testing Challenges of Maritime Safety and Security Systems-of-Systems 

{a.gonzalezsanchez,e.a.b.piel,h.g.gross}@tudelft.nl. 2Thales Nederland. ... are defined by the typical requirements of highly flexi- ble, adaptable and evolvable ...










 








Principles of Operating Systems 

Jan 31, 2006 - Note: The historical evolution of computers have left us with a great variety of O/S types, not all of which widely known. In this section, we briefly ...










 








Institute of Elektronic Systems 

F.0.2 Shift between manual and autonomous . . . . . . . . . . . . . . . . . . .... The modelling included a simplified linear and non-linear model of the ... were specified, and the resulting equations were rewritten into a state-space representation










 








Principles of Operating Systems 

ex: Java VM ex: MS-DOS ... G. (2003). Operating Systems Concepts with Java (6th Edition). ..... Client RPC using a single thread vs. multiple threads. 2/7-14/ ...
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