Soil-footing interaction of a building submitted to lateral cyclic ... - CFMS

Nov 25, 2005 - Soft saturated clay : Undrained shear strength increasing linearly with depth (CPT ... Comparison between theoretical and experimental data.
4MB taille 4 téléchargements 362 vues
From Modelling to Practice in Geotechnical Engineering

Comité Français de Mécanique des Sols et de Géotechnique

Soil-footing interaction of a building submitted to lateral cyclic loading : centrifuge modelling Luc THOREL, Jacques GARNIER, Gérard RAULT Paris, BGA / CFMS joint meeting

25th november 2005

Outline Introduction Case History Centrifuge test programme Experimental setup Results Conclusions and prospects

Introduction Topic A : Fault-Rupture Soil Structure Interaction Topic B: Strong Seismic Response of Composite Foundation Systems QUAKER B2 : Non linearity of Effect of pile inclination soil-footing interaction Structure

Soft soil

s

D

Horizontal load H

Inclined pile Rough interface

Elastic layer

Vertical load V

B

2B

Bedrock (bottom of the container) B

Saturated clay

Introduction : Objectives Main objectives

Rotation of buildings on shallow footings (cyclic overturning moments)

Determine the relationship between the horizontal load and the rotation of the foundation under static and cyclic horizontal loading

Cyclic loads

Saturated clay

Case History (1)

Izmit (Turkey), 17th august 1999 [AFPS picture]

Case History (2)

Izmit (Turkey), 17th august 1999 Tigcilar District, Adapazari [Gazetas et al. 2003]

Centrifuge test programme (1) 1 - Building •

Geometry : square footing (B = 10 m)



Vertical load = Dead weight



2 – Soil

Two buildings

Soft saturated clay : Undrained shear strength increasing linearly with depth (CPT tests)

3 – Loading programmes •

Vertical monotonic loading to failure

(→ Determination of vertical bearing capacity)



Horizontal monotonic loading to failure (with constant vertical dead weights M1 or M2)



Cyclic horizontal loading under self weight (with and without a sand layer below the footing)

Centrifuge test programme (2) Seven containers (Tub1 to Tub7), fifteen tests (T1 to T15) Vertical bearing capacity : Four tests in Tub1, Tub2 & Tub3 Horizontal monotonic loading -Without sand layer -With a sand layer Horizontal cyclic loading -Without sand layer -With a sand layer

Building M1 : 4 tests (T7, T9, T10, T14) Building M2 : 1 test (T12) Building M1 : 1 test (T13) Building M2 : 1 test (T15)

Building M1 : 2 test (T9, T10) Building M2 : 1 test (T11) Building M1 : 1 test (T13) Building M2 : 1 test (T15)

Experimental set-up Lateral cyclic loading under constant vertical load Vertical dispa cem ent transducers servo-actuator displacem ent transducer

Settlem en t transducers

H orizontal displacem ent transducer

Fork Load cell Axe

C-D64 & C-D17

IDH 76

B Beam

A D D W ater level

Soil vertical displacem ent transducer Soil level

W ater level

H W D 32 P P T (C -P 8 0 - 60 m m )

Connecting pipe P PT (C -P9 7 -16 0 m m )

Clay layer n°4

Clay layer n°3

C lay layer n°2 WP107 L ayer n °1 - dra ining sa n d

Experimental set-up : Model building Two model buildings (100G tests) - Heavy building M1 (Weight 1370 t)

Vertical load = 60% of vertical bearing capacity

- Light building M2 (Weight 580t)

Vertical load = 26% of vertical bearing capacity

Square footing: 10m x 10m

PPTs PPTs

Model building M1

Model building M2

Experimental set-up : lateral loading device Cyclic loading device

Model M2 after the test

Servo-jack LVDTs

Load cell

LVDTs

Loading direction Load cell Building model

PPTs

Experimental set-up : Instrumentation

Load cell Building M1

Vertical and horizontal displacements ID V 6 2

ID V 6 3 ID V 6 6

ID H 7 6

L o a d cell F 5 1

IP 76 IP 98 IP 118 IP 116

SD 79 SD 58

+ /- 0 .1 2 b

0 .2 2 b 0 .2 5 b

+ /-0 .3 5 b

Pore pressure at the base

Pore pressure below the footing

Loading direction

Experimental set-up : In the Centrifuge

Building M1

Building M2

Results : Vertical undrained loading tests Comparison between theoretical and experimental data

cu = 0.19σ ' v OCR 0.59

1-Undrained shear strength cu

Shear strength at depth z = 15m (about 1.5B to 2B) Theoretical value:

'c=560kPa

'v=15x7=105kPa

Experimental values (100G CPT tests):

cu=54kPa

Tub01 cu= 64kPa Tub03 (1st consolidation) cu= 81kPa Tub04 (last consolidation) cu= 66kPa Tub05 (last consolidation) cu= 75kPa

2-Vertical bearing capacity qr Tub & Test

qr (kPa) Exper.

qc (kPa)

Ncz (Tables JPG)

qr (kPa) Theor.

Tub01-Test01 Tub02-Test03 Tub02-Test04 Tub03-Test06

156 258 240 220

12.5+3.24z No CPT test No CPT test 18.5+4.24z

9.49 ??? ??? 9.83

141 ??? ??? 216

Results : Monotonic lateral loading 2.5 2.0

Lateral static resistance

1.5 1.0 0.5 0.0 -0.5 -1.0

test 9 - fir

-1.5

m notonic loading

Test 7

te t 9 - las mo ot nic loadi g

t 0

b

d un oadin (

Test e 9

er ycli sequences (se

Model M1

-2.0 0.0

0.2

0.4

0.6

Prototype horizontal displacement at the gravity center (m)

0.8

Results of monotonic lateral loading on building M1 (Tests 7 and 9) Ultimate monotonic resistance before cyclic loading (HR & MR) Building M1 Building M2

HR = 1.4 MN HR = 0.75 MN

(MR = 14 MN x m) (MR = 7.5 MN x m)

Results : Horizontal cyclic loading (1) Building M2 without sand layer

Load vs. Time

3a

10

Cyclic sequences (LC) : 1a & 1b – 1st cyclic sequence : 2 x 10 cycles at 0.16 HZ ± 3 daN

Force (daN)

5

1a

1b

2

4

2a

4

3b

2b

0

-5

2a & 2b – 2nd cyclic sequence : 2 x 10 cycles at 0.16 Hz ± 6 daN

-10 0

6

8

10

12

14

T im e (m inu te) vs. Time Horizontal displacement

16

18

16

18

20

4 – 4th cyclic sequence : 8 cycles at 0.16 Hz ± 10 daN

Failure under the 4th cyclic loading sequence : HR ~ 1MN prototype scale

horizontal displacem ent at the head of the building : ID H 76 Horizontal displacement (mm)

3a & 3b – 3rd cyclic sequence : 2 x 10 cycles at 0.16 Hz ± 8 daN

H orizontal displacem ent at the gravity center : W aSV 1 15 ID H

10 7

L oa

5

76

W aS

5 d F5

V1

dim en sio ns o f the fo undation b = 100 m m ; h = 165 m m

0 0

2

4

6

8

10

T im e (m inu te)

12

(Test T11, Tub 5)

14

11

Results : Horizontal cyclic loading (2) Vertical displacement vs. Time

Building M2 without sand layer

10 ID V 63

2a & 2b – 2nd cyclic sequence : 2 x 10 cycles at 0.16 Hz ± 6 daN 3a & 3b – 3rd cyclic sequence : 2 x 10 cycles at 0.16 Hz ± 8 daN 4 – 4th cyclic sequence : 8 cycles at 0.16 Hz ± 10 daN

Failure under the 4th cyclic loading sequence (HR ~ 1MN)

Vertical settlement (mm)

1a & 1b – 1st cyclic sequence : 2 x 10 cycles at 0.16 HZ ± 3 daN

ID H 76

ID V 63 & ID V 66

S D 79 S D 58

6

L oad ce ll F55 b /4

4

0 .2 2 b 0 .2 5 b

2

ID V 62 S D 79 SD 58

0

θ (°)

0

2

4

6

8

10

12

Tim e (m inute)

14

16

18

16

18

Rotation vs. Time

0.0

1a

-1.0 Pressure variation (kPa)

Cyclic sequences (LC) :

ID V 62

ID V 66

8

1b

-2.0

2a

2b

3a

-3.0

3b

-4.0 -5.0

4

-6.0 -7.0 -8.0 0

2

4

6

8

10

Tim e (m inute)

12

(Test T11, Tub 5)

14

12

Results : Horizontal cyclic loading (3) Building M2 without sand layer

Pore pressures at the interface soil building vs. Time 30

2a & 2b – 2nd cyclic sequence : 2 x 10 cycles at 0.16 Hz ± 6 daN

1a

10

-10

3a

3b

P Pt IP 121 (at +0.12 b : interface soil/building)

-20

P Pt IP 119 (at -0.12 b : interface soil/building)

4

P Pt IP 120 (at -0.35 b : interface soil/building

-30

3a & 3b – 3rd cyclic sequence : 2 x 10 cycles at 0.16 Hz ± 8 daN

2

4

6

8

12

14

16

18

Pore pressures below the building B2

IP 120 IP 119 IP 121 IP 122

L o ad cell F 55

-5 b /6

-b /3 + b /3

IP 112

20.0

IP 105

30.0 IP 115

Pressure variation (kPa)

10

Tim e (m inute)

50.0

40.0

Failure under the 4th cyclic loading sequence (HR ~ 1MN)

1b

P Pt IP 122 (at +0.35 b : interface soil/building)

0

4 – 4th cyclic sequence : 8 cycles at 0.16 Hz ±10 daN

2b

0

IP 113

1a & 1b – 1st cyclic sequence : 2 x 10 cycles at 0.16 HZ ± 3 daN

2a

20 Pressure variation (kPa)

Cyclic sequences (LC) :

+ 5 b /6

10.0

0.0

-10.0 0

2

4

6

8

10

Tim e (m inute)

12

(Test T11, Tub 5)

14

16

18

13

Results : Horizontal cyclic loading (4)

Cyclic sequences (LC) :

1a & 1b – 1st cyclic sequence :

2 x 10 cycles at 0.16 HZ ± 3 daN

2a & 2b – 2nd cyclic sequence :

5 Loa

0

4 – 4th cyclic sequence :

8 cycles at 0.16 Hz ±10 daN

Failure under the 4th cyclic loading sequence (HR ~ 1MN)

IDV 62

76

5

5 d F5

0

dim en sio ns of th e fou nd ation b = 100 m m ; h = 165 m m

-5

1a & 1b

2a & 2b

-10

-10 -0.20

Overturning moment prototype (MN x m)

2 x 10 cycles at 0.16 Hz ± 8 daN

ID H

-5

2 x 10 cycles at 0.16 Hz ± 6 daN

3a & 3b – 3rd cyclic sequence :

10 IDV 66

10 IDV 63

Overturning moment prototype (MN x m)

Building M2 without sand layer

Overturning moment prototype vs rotation

-0.10

R otation (degree)

0.00

-0.4

10

10

5

5

0

0

-5

-5

-10

3a & 3b -2.0

-1.0

0.0

0.0

4

-10

rotation (degree)

-0.2

R otation (degree)

-8

-6

-4

-2

R otation (degree)

(Test T11, Tub 5)

0

14

Results : Horizontal cyclic loading (5) Effect of a sand layer below the footing (e=0.05B)

Filling with sand

Excavation in the clay

Two tests with a sand layer - Building M1 (Test T13) - Building M2 (Test T15) View after loading the test

Results : Horizontal cyclic loading (6) Effect of a sand layer below the footing 2

Lateral static resistance

Load Controlled

1 0 -1 -2 0

10

20

30

40

50

Time (mn) 60

Example of cyclic lateral loading sequences (Test 13) 80

Vertical displacements

60

3

40 20 0 -20

Horizontal displacements

-40 -60 -80 0

10

20

30

40

50

Time (mn)60

Building displacements under the cyclic loading sequences (Test 13)

(T13, M1)

Results : Horizontal cyclic loading (7) Effect of a sand layer below the footing ID V 62

ID V 63

15

ID V 66

ID H 76

10 L o a d ce ll F 5 5 S D 79

5

SD 58

0

-5

0 .2 2 b

42

43

44

Time (mn)

0.2 5 b

+ /- 0 . 1 2 b

45

+ /- 0. 35 b

Pore pressure at the base (Test 13, last cyclic loading sequence) 40.0

IDV 63

ID V 62

I DV 66

IDH 76

30.0 20.0 S D 79

10.0

SD 5 8

L o a d c ell F55

0.0 b/4

-10.0 42

43

44

Time (mn)

-b /3

45

- 5 b/6

+ b/ 3 + 5b /6

Pore pressure below the footing at depth B/4 (Test 13, last cyclic loading sequence)

Results : Effect of cyclic sequences on lateral resistance

M (MN.m)

2 5 .0

Test T9 (after cycles) 3 Test T10 (after cycles)

2 0 .0

1 5 .0

Test T14 Test T7 Test T9

1 0 .0

5 .0

Tests on Building M1

2

0 .0

1

-5 .0

-1 0 .0

1 - r e m o v i n g t h e b u i l d in g in t h e in it i a l p o s it io n 2 - s h if t d u e to c y c lic s e q u e n c e s 3 - la s t h o r iz o n ta l s ta tic s e q u e n c e

- 3 .0

-2 .0

-1 .0

Rotation(degree)

θ (°) 0 .0

Results : Effect of cyclic sequences on lateral resistance (2)

V (MN)

30

Vertic al load (M N )

25 20 15

Building M1

Be fo re cycle s

10

Afte r cycle s

Building M2

5 0 0

5

10

15

20

Ov erturning moment (MN x m)

Failure envelope from the centrifuge tests

M (MN.m)

Conclusions & prospects Non-linear load-displacement behaviour Strain accumulation : settlement & rotation Large amount of work being dissipated in the foundation (M-θ curve) Effect of a draining layer at the base of the footing Development (or not) of “suction” on the soil-foundation interface Smaller and more localised variations of pressure below the foundation

Effect of two vertical weight => failure envelope Comparison with numerical analysis (collaboration with University of Athens) Soil reinforcement below the foundation (e.g. piled embankment) Seismic loading (e.g. with the LCPC Shaker)

Contacts : www.lcpc.fr/rms [email protected] tel : (33) (0)24084 5816 fax : (33) (0)24084 5997

QUAKER Programme : www.dundee.ac.uk/civileng/quaker/

Thank you for your attention