basic concepts of soil behaviour - CFMS

2. - FEM calculations (2D / 3D) Elastic non-linear models -. Available in some codes after Science-EC project (1993). Material properties: Elastic and elastic ...
3MB taille 2 téléchargements 368 vues
CONCEPTION DES CHAUSSÉES: Approache mécanique, caractérisation des matériaux et leur évaluation dans les plates-formes routières António Gomes Correia Université de Minho, Portugal Président TC3 - SIMSG

CFMSG – 04-10-20

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

PRESENTATION ˆ INTRODUCTION ˆ PAVEMENT MODELLING AND DESIGN

ˆ NON LINEAR BEHAVIOUR OF SOILS AND UGM ˆ QUALITY ASSESSMENT - LABORATORY ˆ Simple tests ˆ Functional tests ˆ Mechanical behaviour - Cyclic triaxial tests

ˆ QUALITY ASSESSMENT - FIELD ˆ Routine analysis ˆ Advanced analysis

ˆ FINAL REMARKS

CFMSG – 04-10-20

CFMSG – 04-10-20

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

EMPIRICAL PAVEMENT DESIGN

MECHANISTIC PAVEMENT DESIGN

MOVE FROM EMPIRICAL SPECIFICATIONS – INDEX PROPERTIES TO PERFORMANCE-BASED SPECIFICATIONS MECHANICAL PROPERTIES CFMSG – 04-10-20

CFMSG – 04-10-22

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

PAVEMENT MODELLING & DESIGN

CFMSG – 04-10-20

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

PAVEMENT MODELLING – 2D / 3D

CFMSG – 04-10-20

CFMSG – 04-10-20

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

MECHANISTIC PAVEMENT DESIGN 1. Multi linear elastic systems calculations - linear elastic models - most widely used for pavement design and back analysis calculations. Material properties: Modulus (E) and Poisson ratio (ν).

2. - FEM calculations (2D / 3D) Elastic non-linear models -

Available in some codes after Science-EC project (1993). Material properties: Elastic and elastic non-linear stress-strain relationships (K(p,q); G(p,q)) – variants of Boyce model. Visco-elastic and elastic non-linear stress-strain models Implemented in FEM codes during COURAGE (1999). Material properties: Elastic non-linear stress-strain; temperature and strain rate dependent.

3. FEM calculations (2D / 3D) - Visco-elastic and elastoplastic

models - Implemented in FEM codes and still in development to predict permanent deformations. Material properties: General stress-strain.

PAVEMENT DESIGN PROCESS

Modèles des matériaux

Routine

Dimensionnement Mod. réponse (mod. structurel)

Mod. calage Critère de dim.

Niveaux dimensionnement Avancé

Recherche

Besoin d’une coopération entre le responsable de la modélisation et le responsable des investigations in-situ et en laboratoire CFMSG – 04-10-20

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

QUALITY ASSESSMENT LABORATORY

CFMSG – 04-10-20

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

QUALITY ASSESSMENT Laboratory tests ªSIMPLE TESTS:

to general material assessment (petrography, flakiness, plasticity) and fragmentation assessment (LA, MBg, DSC, MDE, Gyratory) - Uses a limited portion of material’s parent grading curve - Not able to predict the overall behaviour of the material.

ª FUNCTIONAL TESTS: ª Construction level - to assess the bearing capacity of UGM to carry loading applied (shear strength test) and spreading the loading (RLT- stifness).

ª Long term behavior - to assess stifness - capacity of spreading the loading (RTL stifness) and resistance to permanent deformation (RLT - permanent deformation )

CFMSG – 04-10-20

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

SELECTION OF MOST APROPRIATED MATERIAL

based in simple tests (SOIL AND UGM) for most part experienced based Similar to AC – volumetric design (Marshall method)

CFMSG – 04-10-20

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

A RATIONAL APPROACH TO LABORATORY STUDY OF MECHANICAL BEHAVIOUR Strength & Stiffness

CFMSG – 04-10-20

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

NON LINEAR BEHAVIOUR OF SOILS AND UGM

CFMSG – 04-10-20

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

Shear stress, τ’

NON LINEAR ENVELOPE OF MAXIMUM SHEARING STRENGTH - UGM Peak strength Strength at critical state

φ´cv

φ´p

Normal effective stress, σ’ NON LINEARITY INCREASES WITH INCREASING RELATIVE DENSITY AND GRAIN CRUSHABILITY

NON LINEAR BEHAVIOUR DEFINITIONS OF MODULUS σ

E0

E

Esec E tg E0

Esec

Etg

ε CFMSG – 04-10-20

lg ε

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

CYCLIC TRIAXIAL TEST PERFORMANCE TEST

CFMSG – 04-10-20

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

EUROPEAN STUDY - COURAGE Grading curves 100 90 80

Material A, granite, IST Portugal Material B, gneiss, LCPC France Material C, limestone, ZAG Slovenia

Passing [%]

70 60 50 40 30 20 10 0 0.01

CFMSG – 04-10-20

0.1

1

Sieve size [mm]

10

100

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

CYCLIC STRESS PATHS

ª CYCLIC TRIAXIAL TESTS OF UGM (CEN prENV 00227413 - 1997) E4

600

D4

q (kPa) E3

500

D3

400 C4

E2

300

D2

C3 F2

200

E1 F1

D1

B4

C2

B3

100 C1

B1 A1

0 0

B2

A2

100

A3

200

A4

p (kPa) 300

VARIABLE CONFINING PRESSURE CFMSG – 04-10-20

400

CEN - method A

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

CYCLIC STRESS PATHS

ª CYCLIC TRIAXIAL TESTS OF UGM (CEN prENV 00227413 - 1997)

300

q (kPa)

250

200

CONSTANT CONFINING PRESSURE CEN - method B

150

100

50

p (kPa)

0 0

CFMSG – 04-10-20

CFMSG – 04-10-22

50

100

150

200

250

300

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

CYCLIC TRIAXIAL TEST (ECP) Local strain measurements

CFMSG – 04-10-20

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

CYCLIC TRIAXIAL TEST (ECP) Results of strain measurements

CFMSG – 04-10-20

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

CYCLIC TRIAXIAL TEST (LPC)

CFMSG – 04-10-20

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

CYCLIC TRIAXIAL TEST (UMinho)

CFMSG – 04-10-20

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

SOIL / SOIL+ROCK / ROCK

TYPICAL MOISTURE & DENSITY CONDITIONS FOR UGM - BASE

w OPM - 4

WATER CONTENT w w OPM - 2

w OPM - 1

100 % ρd OPM

1 Specimen 1 Specimen

2 Specimens 1 Specimen

CFMSG – 04-10-20

DRY DENSITY

1 Specimen

97 % ρd OPM 95 % ρd OPM

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

TYPICAL RESULTS OF CYCLIC TRIAXIAL TEST – Plastic strains STABILISATION AFTER A NUMBER OF CYCLES ? QUASI-ELASTIC BEHAVIOUR ? p

p

p

[ε1 - ε1 (100)] (10-4)

200

0

p

[ε3 - ε3 (100)] (10-4)

MFC : 5 % F 150

-50 γd = 97 %, w = 3.7 % γd = 97.2 %, w = 3.9 %

100

γd = 97 %, w = 4.1 %

-100

γd = 96.9 %, w = 3.2 % γd = 96.8 %, w = 2.1 %

50

Nº (cycles)

0 0

5000

CFMSG – 04-10-20

CFMSG – 04-10-22

10000

15000

-150

Nº (cycles)

-200

20000

0

5000

10000

15000

20000

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

TYPICAL RESULTS OF CYCLIC TRIAXIAL TEST – Plastic strains 5% Fines Permanent strains* (x10-4)

0.0 50.0 100.0 150.0 200.0 250.0 0

5000

10000

15000

20000

25000

Number of cycles

95.0%; 3.82%

95.0%; 3.54%

97.0%; 3.65%

97.2%; 3.87%

97.0%; 4.1%

100.0; 3.70%

100.0%; 3.74%

CFMSG – 04-10-20

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

Courage test results PERMANENT STRAIN PARAMETER, A1 RESULTS 350 Gneiss, Control Grading Granite, Control Grading Limestone, Control Grading UK RCC&A Supply Grading A - greywacke B - carboniferous limestone C - argillaceous limestone D - ryolite E - crushed limestone F - crushed granodiorite G - basalt/dolerite

PERMANENT STRAIN PARAMETER A1 x 10 (m/m)

-4

325 300 275 250 225 200 175 150 125 100 75 50 25 0 0

10

20

30

40

50

60

70

80

90

100

RELATIVE MOISTURE CONTENT (% of OMC)

CFMSG – 04-10-20

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

Wheel track – University of Oulu – Fil.

AC 30 mm

1

180 mm 330 mm

UNBOUND GRANULAR MATERIAL 300 mm (test material)

3 2

FILTER SAND 270 mm Vertical deflection potentiometers

CFMSG – 04-10-20

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

Courage test results PERMANENT S TRAIN RATE RES ULTS

PERMANENT STRAIN RATE PARAMETER dε p /dN x 10-5 (%/cycle)

0.16

FAILED Gneiss, Control Grading Granite, Control Grading Limestone, Control Grading UK RCC&A Supply Grading Gneiss, WT test Granite, WT test Limestone, WT test

0.14 0.12

HIGH STRAIN SUSCEPTIBILITY

0.1 0.08 0.06 0.04 LOW STRAIN SUSCEPTIBILITY

0.02 0 0

10

20

30

40

50

60

70

80

90

100

RELATIVE MOISTURE CONTENT (% of OMC) measured at 3000 cycles

CFMSG – 04-10-20

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

Un.-Rel. Strains ε

v

p *n  γ + 2 n − 1 = n −1  + pa  3 K a 18 G a 

TYPICAL RESULTS OF CYCLIC TRIAXIAL TEST- VCP (Anisotropic Boyce model; Hornych et al., 2000)

(γ + 2 ) q *   p * 

Volumetric strains 50

2

γ − 1  q *    + 3 G a  p *   

εq

2 q* 2 p *n  γ − 1 n −1 2 γ + 1  q *      ( ) 1 + = + γ −   p* 3 p an −1  3 K a 18 Ga 6 Ga  p *      

NON-LINEAR BEHAVIOUR

Shear strains

20

Anisotropic Boyce model

40

15

Measurements

30 10 v

q

20 5

10 Anisotropic Boyce model

0

0

Measurements

-10

-5 0

100

200 P (kPa)

CFMSG – 04-10-20

300

400

0

100

200

300

400

P (kPa)

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

TYPICAL RESULTS OF CYCLIC TRIAXIAL TEST- CCP Un.-Rel. Strains ε = 0,001%

CFMSG – 04-10-20

CFMSG – 04-10-22

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

UGM – STIFFNESS RANKING Variation du module Esec en fonction TOTAL STRESSESde– σ EFFECTIVE STRESSES v et σv’ (ECP, Coronado, 2005)

1000

Module sécant Esec ( MPa)

Module sécant Esec ( MPa)

1000 0.50

y = 61.34x0.41

y = 36.05x

0.31

y = 46.77x

y = 97.12x

0.44

y = 228.45x0.116

Normalisé pour e=0.33

100 10

100

Contrainte verticale σv (kPa)

Soacha 30% fins d10=20µm

E plus grand en contrainte totales Servita 20% fins, d10=45µm Vista H. 10% fins, d10=80µm

0.26

y = 101.23x

Normalisé pour e=0.33

100 1000 10

100

Contrainte verticale effective σ'v (kPa)

1000

Soacha 30% fins d10=20µm

E plus petit en contrainte effectives Servita 20% fins, d10=45µm Vista H. 10% fins, d10=80µm

TYPICAL RESULTS OF COMPRESSION TRIAXIAL TEST- CCP PECULIAR BEHAVIOUR OF COMPACTED UGM

CFMSG – 04-10-20

CFMSG – 04-10-22

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

EMPIRICAL versus MECHANICAL PARAMETERS

QUALITY ASSESSMENT

DIFFERENT RANKING ! Processed materials behave in a different way to natural materials - Los Angelos and Micro-Deval. They generally give better mechanical performance in the field than would be expect from the results of such tests. Therefore performance-related tests (CLTx)

CFMSG – 04-10-20

CFMSG – 04-10-22

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

QUALITY ASSESSMENT FIELD

CFMSG – 04-10-20

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

UGM – QUALITY ASSESSMENT BY IN-SITU TESTS

ªSIMPLE TESTS:

to density and moisture content material

assessment

ª FUNCTIONAL TESTS: ª Construction level - to assess the bearing capacity of

UGM to carry loading applied and the capacity of spreading the loading (LPT, FWD, SASW, …).

ª Long term behavior - to assess stifness - capacity of

spreading the loading (LPT, FWD, … -representative state conditions?) and resistance to permanent deformation (LPT permanent deformation).

CFMSG – 04-10-20

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

NEED TO MOVE FROM EMPIRICAL TO MECHANISTIC-BASED SPECIFICATIONS MECHANISTIC-BASED SPECIFICATIONS (focus on the mechanical properties)

FACILITATE QUANTITATIVE EVALUATIONS (necessary to alternative construction practices and materials – reclaimed materials) Performance-based specification is required to control the long-term functional and structural performance CFMSG – 04-10-20

CFMSG – 04-10-22

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

MECHANICAL-BASED IN SITU TESTS, AIPCR, C12, 1995 „ „ „ „ „ „ „ „ „ „ „

PLATE BEARING TEST CALIFORNIA BEARING RATIO TEST - CBR DYNAPLAQUE FALLING WEIGHT DEFLECTOMETER – FWD DEFLECTOGRAPH CLEGG IMPACT HAMMER MEXECONE PENETOMETER DYNAMIC CONE PENETROMETER COMPACTION METERS DYNAMIC PLATE BEARING TESTS VARIABLE IMPACT TESTER

CFMSG – 04-10-20

CFMSG – 04-10-22

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

STIFFNESS - TARGET VALUES (Chaddock & Brown, 1995); Zaghloul, 1997; Flemming, 2000; Nunn et al., 1997; GTR, 1997)

STIFFNESS „ „ „ „

„ „ „

50 MPa – Formation (GTR, 1997) 50 to 65 MPa – Formation (Flemming et al., 1998) 100 MPa – Foundation (Flemming et al., 1998) 80 MPa – Formation - FWD – stress=200 kPa; D=450 mm (Chaddock & Brown, 1995) 45 MPa – Ev2 – DIN - Foundation 120 MPa – Ev2 – DIN – Sub-base (light traffic) 150 MPa – Ev2 – DIN – Sub-base (heavy traffic)

CFMSG – 04-10-20

CFMSG – 04-10-22

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

CONSTRUCTION TECHNOLOGIES • Rockfill

CFMSG – 04-10-20

(experience from dam construction) „

Soil and rock mixtures

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

ROCKFILL COMPACTION Punctual control: density+water content

SOIL COMPACTION Punctual control: density+water content

REQUIREMENTS FOR HOMOGENEITY Brandl (1977)

Parameters

Coefficient of variation v (%) Subgrade

Sub-base

Base

Dry density

5

4

3

Moduli (Ev1, Ev2)

30

20

15

CFMSG – 04-10-20

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

ROUTINE ANALYSIS

CFMSG – 04-10-20

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

MODULUS FROM FIELD TESTS (Jamiolkowski et al., 1988, 2003)

G0, E0 (ε < εl)

Gsec, Esec (εsec > εl)

INDEPENDANT FROM:

Strain level Stress history DEPENDANT ON: Relative density Ambient stress Compressibility Aging & Fabric

G0 = S ⋅ p

1− n a

⋅ F (e) ⋅ p ′

n

DEPENDANT ON: Strain level Stress history Relative density Ambient stress Compressibility Aging & Fabric Strain rate CORRELATIONS WITH G0, E0 are more reliable than with Gsec, Esec

Punctual control: LPT (ASTM, DIN, LCPC) 300 Module de plaque (kPa)

Module de plaque

Pression appliquée (kPa)

250

200

46000 44000 42000 40000 38000 0

100

200

300

Valeur du cycle de rechargement (kPA)

150

100

50

0 0

1

E=

CFMSG – 04-10-20

2

3 4 Déplacement moyen (mm)

(

1,5 Qappl D 2 1 − υ 2

5

6

)

δ

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

800

3,2

700

2,8

600

2,4

500

2,0

400

1,6

300

1,2

200

0,8

100

0,4

0

0,0 250

0

50

100

150

200

resilient surface deflection (mm)

resilient vertical strain (mdef)

PLATE LOAD TESTS ON THE UGM BASE Response of Soil and Granular Base

soil - gauge V7 - 12/02/97 soil - gauge V4 - 13/02/97 soil - gauge V7 - 14/02/97 granular base - gauge V8 - 14/02/97 granular base - gauge V9 - 14/02/97 granular base - deflectometers

pressure (kPa)

CFMSG – 04-10-20

A. Gomes Correia ([email protected]) University of Minho; Campus de Azurém, Guimarães; Portugal

Spectral-Analysis-of-Surface-Waves (SASW) (Nazarian et al., 1987; Rix & Stokoe, 1990; Stokoe, 2004; Allen et al., 2000)

„

Principle: „

Measuring the propagation velocity of surface waves of Rayleigh type, generating an experimental dispersion curve (wave velocity versus frequency), and evaluating shear wave velocity profile (G0) by matching theoretical dispersion curve with experimental curve.

„

Advantages: „ „ „ „

„

„

It is non destrutive. Any layer thikness can be evaluated. Soft layers after compaction may be detected after construction. Stiffness evaluations represent moduli values which are independent of strain level (e