Modelling of Ground Improvement in a Drum Centrifuge ... - CFMS

Modelling the inflight construction of sand compaction piles in the centrifuge ... zone identification and soil properties around stone columns constructed in-flight.
28MB taille 2 téléchargements 348 vues
Professorship for Geotechnics Modèles Physiques en géotechnique

Dr. Jan Laue Ground Improvement

Modelling of Ground Improvement in a Drum Centrifuge

Professorship for Geotechnics Modèles Physiques en géotechnique

Dr. Jan Laue Ground Improvement

Modelling of Ground Improvement in a Drum Centrifuge ETH Drum Centrifuge Inflight Construction of Sand Compaction Piles -

for Ground Improvement under Embankments

Heavy Tamping as Improvement Measure for Double Porous Materials

Professorship for Geotechnics

Dr. Jan Laue Ground Improvement

Modèles Physiques en géotechnique

The Drum Centrifuge at ETHZ

View on the safety shield of the ETH Zürich Drum Centrifuge (Springman et al. 2001)

Professorship for Geotechnics

Dr. Jan Laue Ground Improvement

Modèles Physiques en géotechnique

The Drum Centrifuge at ETHZ

Channel of the ETH Zürich Drum Centrifuge

Professorship for Geotechnics

Dr. Jan Laue Ground Improvement

Modèles Physiques en géotechnique

The Drum Centrifuge at ETHZ • Drum specification Diameter: 2.2 m G max: 440 Drum dimensions: • Depth: 300 mm • Max diameter: 2200 mm • Height: 700 mm

maximum payload: 2000 kg Out of Balance: 10 kgm @ 440 g

Professorship for Geotechnics

Dr. Jan Laue Ground Improvement

Modèles Physiques en géotechnique

The Drum Centrifuge at ETHZ

Actuator with CPT tool

Actuator with scraping tool at work

Professorship for Geotechnics

Dr. Jan Laue Ground Improvement

Modèles Physiques en géotechnique

Test setup using the drum centrifuge with two strong boxes

Professorship for Geotechnics

Dr. Jan Laue Ground Improvement

Modèles Physiques en géotechnique

Modelling the inflight construction of sand compaction piles in the centrifuge PhD Thesis of Thomas Weber Reference to pictures: Weber, T. 2008: Modellierung der Baugrundverbesserung mit Schottersäulen, IGT Report 232, vdf publisher, ETH Zurich Weber, T.M., Plötze, M., Laue, J., Peschke, G. & Springman, S.M. (2010). Smear zone identification and soil properties around stone columns constructed in-flight in centrifuge model tests, Géotechnique, 60 (3), pp. 197-206

Partners: Swiss National Science Foundation EU Marie Curie Training Network (AMGISS) Federal Office of Transportation Research Fund

Professorship for Geotechnics

Dr. Jan Laue Ground Improvement

Modèles Physiques en géotechnique

filling with gravel

insertion

withdrawal

Installation of a sand compaction pile (vibro)

Professorship for Geotechnics Modèles Physiques en géotechnique

Installation of stone columns Preparation of soil models Development of a stone column installation tool Influence of the installation Testing of various grids under embankments

levelling Keller Grundbau

Dr. Jan Laue Ground Improvement

Professorship for Geotechnics

Dr. Jan Laue Ground Improvement

Modèles Physiques en géotechnique

Model making from clay slurry: in strong boxes (2D) & in drum channel (3D)

construction outside the centrifuge consolidation under the press

construction in the centrifuge consolidation in flight

Professorship for Geotechnics Modèles Physiques en géotechnique

Dr. Jan Laue Ground Improvement

Off topic: How to built a sand model in flight

Densities between D = 25 to 80 % can be reached by air pluviation

Pluviation of sand on a spinning disk

Densities as low as D = -20% can be reached by water pluviation

Professorship for Geotechnics

Dr. Jan Laue Ground Improvement

Modèles Physiques en géotechnique

Properties of materials

• Clay model: remoulded clay from Birmensdorf

• Stone columns: sieved quartz sand – grain size 0.5 mm < ∅ < 1.0 mm – semi rounded grains, slightly angular – friction angle ϕ': 37°

– classification: CH – clay content: ∅ < 2 µm = 42 % – plasticity: wL = 58 % wp = 19 % IP = 39 % – sensitivity: 1.3 - 2 – friction angle ϕ': 24.5° – cohesion c': 0 kPa

• Embankment: lead balls due to limited height in tub – ∅ = 2.0 mm – density ρ = 6.72 g/cm3

Professorship for Geotechnics

Dr. Jan Laue Ground Improvement

Modèles Physiques en géotechnique

Centrifuge test on clay model in the strong box preloaded at 100 kPa  test at 50 g

T-Bar-testing undrained shear strength su [kPa]

over consolidation ratio OCR [-] 5

10

15

20

25

30

0

0

20

20

40

40

-15 -10

-5

0

5

10

15

20

25

30

35

40

wt_v2

60

depth [mm]

depth [mm]

0

-20

T-bar with load cell F

80 100

wt_v3 wt_v4 calculated

60 80 100 120

120

d

140

L

160

su =

F Nb ⋅ d ⋅ L (Stewart & Randolph 1994)

140 160

su = a ⋅ OCRb ⋅ σ 'v

a = 0.24 b = 0.9

Professorship for Geotechnics

Dr. Jan Laue Ground Improvement

Modèles Physiques en géotechnique

Centrifuge test on clay model in the drum channel T-Bar-testing

constructed in flight at 60 g  test at 50 g

undrained shear strength su [kPa]

over consolidation ratio OCR [-] 0

5

10

15

20

25

-20

30

0

0

20

20

40

40

60

60

-15 -10

-5

0

5

10

15

20

25

30

35

40

wt_v5_e1 wt_v5_e2_3_1 wt_v5_e2_3_2 wt_v5_e4_1 wt_v5_e4_2

depth [mm]

depth [mm]

calculated

80 100

80 100

120

120

140

140

160

160

su = a ⋅ OCRb ⋅ σ 'v

Professorship for Geotechnics

a = 0.24 b = 0.9

Dr. Jan Laue Ground Improvement

Modèles Physiques en géotechnique

Stone column construction in the drum centrifuge ω pore pressure transducers

axes

flexible sand hose

θ

r

laser scanner

filling tube

lost tip

z r-z-working table

soil model tool table

drum channel

Professorship for Geotechnics Modèles Physiques en géotechnique

Dr. Jan Laue Ground Improvement

Stone column installation tool

Professorship for Geotechnics Modèles Physiques en géotechnique

Dr. Jan Laue Ground Improvement

Model preparation in tub (2D) and drum (3D): placing column grid

COMPARE: Unimproved (L) v. Improved (R)

area ratio of improvement - fs = 10%

area ratio of improvement - fs = 5% & 10 %

Professorship for Geotechnics

Dr. Jan Laue Ground Improvement

Modèles Physiques en géotechnique

34 mm

Columns without compaction

Densification

Dry density of column Relative density [%] [g/cm3]

nill

1.50 ± 0.02

48

15 / 10 [mm]

1.77 ± 0.07

165 ???? Clay fills pores in the column

Columns built with additional compaction, e.g. 15mm out – 10mm in

Professorship for Geotechnics

Dr. Jan Laue Ground Improvement

Modèles Physiques en géotechnique

ng

rotary coupling

34 mm driving area of working table 30x35 drum channel

α 120

70

35 65 tool table 30 30

10

15

35 70

dimension [cm]

Different lengths of columns occur because of different available lenght of the tube

Professorship for Geotechnics

Dr. Jan Laue Ground Improvement

Modèles Physiques en géotechnique

Building the embankment

34 mm

Professorship for Geotechnics

Dr. Jan Laue Ground Improvement

Modèles Physiques en géotechnique

Installation effects: Excess pore water pressure during column construction (2D) compaction excess pore water pressure [kPa]

40

3

PPT 25mm PPT 70mm PPT 120mm

4

30 25 20

1

15 10 5 0 29

penetration depth [mm]

2

35

30

31

insertion 32

33

34

35

36

37

38

39

40

time [min]

GL depth of PPT

0

25 mm

20 40 60

70 mm

80 100 120 29

120 mm 30

31

32

33

34

35

time [min]

36

37

38

39

40

20mm

Professorship for Geotechnics

Dr. Jan Laue Ground Improvement

Modèles Physiques en géotechnique

Installation effects: heave of clay surface

data points of drum model trend function of drum model container model

3

surface heave [mm]

2.5 2 1.5 1 0.5 0 0

1

2

3

4

5

6

7

8

9

10

11

12

area ratio of ground improvement As / Ag [%]

Professorship for Geotechnics

Dr. Jan Laue Ground Improvement

Modèles Physiques en géotechnique

Installation effects: on clay structure

6

2 2

[mm] Zone 1 – sand penetrates the clay, mixing of sand and clay - 2 mm thick Zone 2 – high shear strain due to pile installation - max. 2 mm thick Zone 3 – high confining stresses and densification after consolidation - 6 mm Zone 4 – moderate confining stresses and no measurable densification

Professorship for Geotechnics

Dr. Jan Laue Ground Improvement

Modèles Physiques en géotechnique

Installation effects

Zone 3

Zone 1 Zone 2

ESEM pictures – Environmental Scanning Electron Microscopy 50x 3.5 mm

Professorship for Geotechnics

Dr. Jan Laue Ground Improvement

Modèles Physiques en géotechnique

ESEM picture of zone 1 – clay between sand grains

50x

150 µm

800x randomly oriented structure of the clay

Professorship for Geotechnics

Dr. Jan Laue Ground Improvement

Modèles Physiques en géotechnique

ESEM picture of zone 2 – clay close to sand grains

50x

150 µm

800x orientation of clay particles due to high shear strain parallel to column axis

Professorship for Geotechnics

Dr. Jan Laue Ground Improvement

Modèles Physiques en géotechnique

ESEM picture of zone 3 and 4 – clay far away from sand grains

50x

150 µm

800x randomly oriented structure of the clay

Professorship for Geotechnics

Dr. Jan Laue Ground Improvement

Modèles Physiques en géotechnique

Results from mercury intrusion porosimetry analysis of clay 4

1.90

36 34

zone 1 2

1.88 3

dry bulk density [g/cm ]

38

porosity [%]

3

32 30

3

4

edge of pile

zone 1 2

edge of pile

40

1.86 1.84 1.82 1.80 1.78 1.76 1.74

28 1.72

26

1.70

0

5

10

15

20

25

30

35

0

5

10

distance to pile axis [mm]

15

20

25

30

35

distance to pile axis [mm]

hyperbolic trend function

Professorship for Geotechnics

Dr. Jan Laue Ground Improvement

Modèles Physiques en géotechnique

Section of soil model in the tub (2D)

34 mm

12 mm

s H

100 mm

Professorship for Geotechnics

Dr. Jan Laue Ground Improvement

Modèles Physiques en géotechnique

Pore water pressures after embankment construction (2D) GL

depth of PPT

pore water pressure [kPa]

140

improved not improved

120

1

25 mm

2

70 mm

3

120 mm

100 80 60

3

40

2

20

1 0 0

200

400

600

800

1000

1200

1400

time [min]

acceleration of consolidation by factor 4

10 % reinforcement

Professorship for Geotechnics

Dr. Jan Laue Ground Improvement

Modèles Physiques en géotechnique

Section of soil model in the drum

100 mm

31 mm

unimproved t90 = 401 min improved t90 = 99 min

12 mm

Professorship for Geotechnics

Dr. Jan Laue Ground Improvement

Modèles Physiques en géotechnique

Pore water pressures after embankment construction (3D) 110

110

sector 3 – 12%

100

25 mm

90 pore water pressure [kPa]

pore water pressure [kPa]

sector 1 – unimp.

100

90

depth of PPT

80 70 60 50 40 30

80

60 50

30 20

10

10 100

200

300 400 time [min]

500

600

75 mm

40

20

0 0 110

50 mm

70

0 0

700

100

sector 8 – 12%

100

200

300 400 time [min]

500

600

120 mm

700

pore water pressure [kPa]

90 80

Sector 3: t90 = 34 min  2 months (prototype) Sector 8: t90 = 33 min  2 months (prototype)

70 60 50 40

Sector 1: t90 = 330 min  19 months (prototype)

30 20 10 0 0

100

200

300 400 time [min]

500

600

700

acceleration of consolidation by factor 10

Professorship for Geotechnics

Dr. Jan Laue Ground Improvement

Modèles Physiques en géotechnique

TimeTime-settlement curves after embankment construction (2D) 0

1

1



2

settlement [mm]

2

3

improved

4

not improved

5



factor of settlement reduction, n = 1.75

6 7 8 0

② 200

400

600

800

time [min]

10 % area ratio of improvement

1000

1200

embankment height 35 mm lead balls ∆σ = 100 kPa Weber, 2007

Professorship for Geotechnics

Dr. Jan Laue Ground Improvement

Modèles Physiques en géotechnique

Ground Improvement of double porous material (AMGISS, Marie Curie EU program) -

Fresh landfill. (photograph M. Větrovský)

Reuse of oben cast deposits Centrifuge set Up

-

Use of the drum centrifuge to establish load settlement behaviour in comparison to a field test (PhD thesis Jan Najser, Charles University Prague) and different ground improvement measures (PhD thesis Emma Pooley, ETHZ)

Modelled clay lumps made from real material

Professorship for Geotechnics Modèles Physiques en géotechnique

Stone columns placed in double porosity soils (2D)

Dr. Jan Laue Ground Improvement

Professorship for Geotechnics

Dr. Jan Laue Ground Improvement

Modèles Physiques en géotechnique 56

30.54545455

Distance [mm]

43.27272727

17.81818182

0

13

25 Distance [mm]

38

51

400-480 320-400 5.090909091 240-320 160-240 80-160 0-80

Pressure distribution under the foundation: Test D (7 sand columns)

Professorship for Geotechnics

Dr. Jan Laue Ground Improvement

Modèles Physiques en géotechnique

Ground Improvement by Heavy Tamping

Axis θ

Drum wall Strongbox

r

Strongbox

17 cm

z

3.7 cm

Guiding tube Model „boulder“ micro concrete (steel)

17 cm

70 cm

Gallery construction

Magnet Actuator Cushion material Gallery

Tool platform

Cushion material Guiding tube Boulder with accelerometer cable

100 cm

Heavy Tamping tool is based on rockfall tool (Chikatamarla et al. 2005)

Professorship for Geotechnics

Dr. Jan Laue Ground Improvement

Modèles Physiques en géotechnique

Heavy Tamping tool is based on rockfall tool (Chikatamarla et al. 2005) Strongbox

17 cm

Rockfall on a layer of clay lumps

3.7 cm

17 cm

Gallery construction

Cushion material Guiding tube Boulder with accelerometer cable

Adaptions

Professorship for Geotechnics Modèles Physiques en géotechnique

Heavy Tamping tool in use

Dr. Jan Laue Ground Improvement

Professorship for Geotechnics

Dr. Jan Laue Ground Improvement

Modèles Physiques en géotechnique

Erste Ergebnisse

Energy reached in 4 tests (for comparison, 1t falling from 10m heigth equivalent to 100kJ) Net soil pressure vers settlement

Without improvement the foundation reached a net soil pressure of 60kPa at a reference settlement of 15mm

Footprint of foundation: 3.2 model A

3.2 Model B

Professorship for Geotechnics Modèles Physiques en géotechnique

Thank you very much for your attention

Dr. Jan Laue Ground Improvement