Positivity-preserving cell-centered Lagrangian schemes - Pages perso

Jul 21, 2014 - F. Vilar, P.-H. Maire and C.-W. Shu ..... then H is positive semi-definite (thanks to Gerschgorin theorem). Bc ≥ 0 ...... Cylindrical Noh problem. 0.
3MB taille 3 téléchargements 282 vues
CCLS

Descriptions

1st order

High-order

CCDG numerical results

Conclusion

Positivity-preserving cell-centered Lagrangian schemes F. Vilar, P.-H. Maire and C.-W. Shu Brown University, Division of Applied Mathematics 182 George Street, Providence, RI 02912

July 21st, 2014

July 21st, 2014

Franc¸ois Vilar

Positivity-preserving cell-centered scheme

1 / 58

CCLS

Descriptions

1st order

High-order

CCDG numerical results

1

Cell-Centered Lagrangian schemes

2

Lagrangian and Eulerian descriptions

3

Compatible first-order positivity-preserving discretization

4

High-order positivity-preserving extension

5

CCDG numerical results

6

Conclusion

July 21st, 2014

Franc¸ois Vilar

Positivity-preserving cell-centered scheme

Conclusion

1 / 58

CCLS

Descriptions

1st order

High-order

CCDG numerical results

1

Cell-Centered Lagrangian schemes

2

Lagrangian and Eulerian descriptions

3

Compatible first-order positivity-preserving discretization

4

High-order positivity-preserving extension

5

CCDG numerical results

6

Conclusion

July 21st, 2014

Franc¸ois Vilar

Positivity-preserving cell-centered scheme

Conclusion

1 / 58

CCLS

Descriptions

1st order

High-order

CCDG numerical results

Conclusion

Finite volume schemes on moving mesh J. K. Dukowicz: CAVEAT scheme, 1986 ´ GLACE scheme, 2005 B. Despres: P.-H. Maire: EUCCLHYD scheme, 2007 J. Cheng: High-order ENO conservative Lagrangian scheme, 2007 G. Kluth: Cell-centered Lagrangian scheme for the hyperelasticity, 2010 S. Del Pino: Curvilinear finite-volume Lagrangian scheme, 2010 P. Hoch: Finite volume method on unstructured conical meshes, 2011 A. J. Barlow: Dual grid high-order Godunov scheme, 2012 D. E. Burton: Godunov-like method for solid dynamics, 2013

DG scheme on initial mesh ` R. Loubere: DG scheme for Lagrangian hydrodynamics, 2004 Z. Jia: DG spectral finite element for Lagrangian hydrodynamics, 2010 F. Vilar: High-order DG scheme for Lagrangian hydrodynamics, 2012 July 21st, 2014

Franc¸ois Vilar

Positivity-preserving cell-centered scheme

2 / 58

CCLS

Descriptions

Flow transformation

1st order

High-order

CCDG numerical results

Governing equations

1

Cell-Centered Lagrangian schemes

2

Lagrangian and Eulerian descriptions

3

Compatible first-order positivity-preserving discretization

4

High-order positivity-preserving extension

5

CCDG numerical results

6

Conclusion

July 21st, 2014

Franc¸ois Vilar

Positivity-preserving cell-centered scheme

Conclusion Equation of state

2 / 58

CCLS

Descriptions

1st order

Flow transformation

High-order

CCDG numerical results

Governing equations

Conclusion Equation of state

Flow transformation of the fluid The fluid flow is described mathematically by the continuous transformation, Φ, so-called mapping such as Φ : X −→ x = Φ(X , t) n

N Φ x = Φ(X, t)

01

X

0011



∂ω

∂Ω

ω

Figure: Notation for the flow map.

where X is the Lagrangian (initial) coordinate, x the Eulerian (actual) coordinate, N the Lagrangian normal and n the Eulerian normal

Deformation Jacobian matrix: deformation gradient tensor F = ∇X Φ = July 21st, 2014

∂x ∂X

and

J = det F > 0

Franc¸ois Vilar

Positivity-preserving cell-centered scheme

3 / 58

CCLS

Descriptions

1st order

Flow transformation

High-order

CCDG numerical results

Governing equations

Conclusion Equation of state

Trajectory equation dx = U(x, t), dt

x(X , 0) = X

Material time derivative d ∂ f (x, t) = f (x, t) + U  ∇x f (x, t) dt ∂t

Transformation formulas FdX = dx

Change of shape of infinitesimal vectors

0

ρ = ρJ JdV = dv

Mass conservation Measure of the volume change

JF−t NdS = nds

Nanson formula

Differential operators transformations ∇x P = J1 ∇X  (P JF−t ) ∇x  U = July 21st, 2014

1 J ∇X

 (JF

−1

U)

Franc¸ois Vilar

Gradient operator Divergence operator Positivity-preserving cell-centered scheme

4 / 58

CCLS

Descriptions

1st order

Flow transformation

High-order

CCDG numerical results

Conclusion

Governing equations

Equation of state

Piola compatibility condition ∇x  (JF−t ) = 0

Z =⇒ Ω

∇x  (JF−t ) dV =

Z

JF−t N dS =

Z

∂Ω

n ds = 0 ∂ω

Deformation gradient tensor dF − ∇X U = 0 dt

Actual configuration d 1 ( ) − ∇x  U = 0 dt ρ dU ρ + ∇x P = 0 dt de ρ + ∇x  (PU) = 0 dt ρ

Initial configuration d 1 ( ) − ∇X  (JF−1 U) = 0 dt ρ dU ρ0 + ∇X  (P JF−t ) = 0 dt de ρ0 + ∇X  (JF−1 PU) = 0 dt ρ0

Specific internal energy ε = e − 12 U 2 July 21st, 2014

Franc¸ois Vilar

Positivity-preserving cell-centered scheme

5 / 58

CCLS

Descriptions

1st order

High-order

Flow transformation

CCDG numerical results

Governing equations

Conclusion Equation of state

Ideal EOS for the perfect gas P = ρ (γ − 1) ε If

ρ>0

then

where

a=

ε>0

q

γP ρ

a2 > 0

⇐⇒

(⇔ P > 0)

Stiffened EOS for water P = ρ (γ − 1) ε − γ P ? If

ρ>0

then

where

ρε > P ?

a=

⇐⇒

q

γ (P+P ? ) ρ

a2 > 0

(⇔ P > −P ? )

Jones-Wilkins-Lee (JWL) EOS for the detonation-products gas P = ρ (γ − 1) ε + f (ρ) If

ρ>0

July 21st, 2014

then

where

ε>0

Franc¸ois Vilar

=⇒

a=

q

γ P−f (ρ)+ρ f 0 (ρ) ρ

a2 > 0

(⇔ P > f (ρ) ≥ 0)

Positivity-preserving cell-centered scheme

6 / 58

CCLS

Descriptions

Schemes

1st order

High-order

Time step constraint

CCDG numerical results Positivity

1

Cell-Centered Lagrangian schemes

2

Lagrangian and Eulerian descriptions

3

Compatible first-order positivity-preserving discretization

4

High-order positivity-preserving extension

5

CCDG numerical results

6

Conclusion

July 21st, 2014

Franc¸ois Vilar

Positivity-preserving cell-centered scheme

Conclusion Stability

6 / 58

CCLS

Descriptions

Schemes

1st order

High-order

Time step constraint

CCDG numerical results Positivity

Conclusion Stability

Mass averaged values equations X 1 1 n n mc ( )n+1 = mc ( )nc + ∆t U np  lpc npc c ρ ρ p∈Q(∂ωc ) X mc U cn+1 = mc U nc − ∆t F npc p∈Q(∂ωc )

mc ecn+1

=

mc ecn

− ∆t

X

U np  F npc

p∈Q(∂ωc )

Definitions Z Z 1 1 ρ0 ψ dV = ρ ψ dv mc Ωc mc ωc = Pc lpc npc − Mpc (U p − U c )

ψc = F pc

mean value subcell forces

Momentum and total energy conservation X c∈C(p) July 21st, 2014

F pc = 0

=⇒

(

X

c∈C(p) Franc¸ois Vilar

Mpc )U p =

X

(Pc lpc npc + Mpc U c )

c∈C(p) Positivity-preserving cell-centered scheme

7 / 58

CCLS

Descriptions

Schemes

1st order

High-order

Time step constraint

Conclusion

Positivity

GLACE assumptions a) Q(∂ωc ) = P(ωc )

CCDG numerical results

Stability

p+

the node set

npp+ p

lpp+

lpcnpc

− − + + b) lpc npc = lpc npc + lpc npc = 12 lp− p np− p + 12 lpp+ npp+

c) Mpc = Zpc lpc npc ⊗ npc X X d) U p = ( Mpc )−1 (Pc lpc npc + Mpc U c ) c∈C(p)

ωc

l p− p

n p− p p−

c∈C(p)

EUCCLHYD assumptions Same assumptions a), b) and d) as GLACE − − − + + + + c) Mpc = Zpc lpc npc ⊗ n− pc + Zpc lpc npc ⊗ npc

July 21st, 2014

Franc¸ois Vilar

Positivity-preserving cell-centered scheme

8 / 58

CCLS

Descriptions

Schemes

High-order

CCDG numerical results

Conclusion

Positivity

Stability

p

p+

00 1100 11 1 11 0 00 11 00 00 11 1 0 11 00 00 11 1 0 1 0 1 0 1 0 00 11

1st order Time step constraint

1 0 0 1 00 11 00 11

ωc

1 0 0 1 00 11 11 00

ωc3

p−

00 11 00 11 00 11 0 1 0 1

ωR

ωc4

p+

p

ωc2

m

ωL

ωc5

p

ωc1

Node ell set

Middle point ell set

Cell-centered DG (CCDG) assumptions a) Q(∂ωc ) =

[

(Q(pp+ ) \ {p+ })

p∈P(ωc )

b) For q ∈ Q(pp+ ),

Z lq nq|pp+ =

1

λq (ζ) 0

X k∈Q(pp+ )

∂λk (x k × e z ) dζ ∂ζ

For p ∈ P(ωc ), lpc npc = lp np|p− p + lp np|pp+ For q ∈ Q(pp+ ) \ {p, p+ }, lqc nqc = lq nq|pp+ July 21st, 2014

Franc¸ois Vilar

Positivity-preserving cell-centered scheme

9 / 58

CCLS

Descriptions

1st order

Schemes

High-order

CCDG numerical results

Time step constraint

Positivity

Conclusion Stability

CCDG assumptions c) For p ∈ P(ωc ),

− − − + + + + Mpc = Zpc lpc npc ⊗ n− pc + Zpc lpc npc ⊗ npc

For q ∈ Q(pp+ ) \ {p, p+ }, d) For p ∈ P(ωc ), U p = (

X

Mpc = Zpc lpc npc ⊗ npc Mpc )−1

c∈C(p)

For q ∈ Q(pp+ ) \ {p, p+ },

July 21st, 2014

Franc¸ois Vilar

Up =

X

(Pc lpc npc + Mpc U c )

c∈C(p)

ZpL U L + ZpR U R PR − PL − npL ZpL + ZpR ZpL + ZpR

Positivity-preserving cell-centered scheme

10 / 58

CCLS

Descriptions

1st order

Schemes

High-order

CCDG numerical results

Time step constraint

Positivity

Conclusion Stability

CFL condition System eigenvalues:

−a, 0, a ∀c,

∆t ≤ Ce

vcn ac Lc

Volume control Relative volume variation: ∀c,

|vcn+1 − vcn | ≤ Cv vcn

∆t ≤ Cv

vcn |

X

p∈Q(∂ωc )

July 21st, 2014

Franc¸ois Vilar

n n U np  lpc npc |

Positivity-preserving cell-centered scheme

11 / 58

CCLS

Descriptions

1st order

Schemes

High-order

Time step constraint

CCDG numerical results

Conclusion

Positivity

Stability

Solution vector W = ( ρ1 , U, e)t

Admissible convex set G = {W, G = {W,

ρ > 0, ε = e − 12 U 2 > 0} 2

ρ > 0, ε = e − 12 U >

?

P ρ

for ideal and JWL EOS }

for stiffened EOS

First-order positivity-preserving scheme If Wnc = (( ρ1 )nc , U nc , ecn )t ∈ G, then under which constraint Wn+1 ∈G ? c

Positive density If ( ρ1 )nc > 0

then

Thus if Cv < 1 July 21st, 2014

( ρ1 )n+1 > 0 ⇐⇒ ( ρ1 )nc > − c

then

( ρ1 )nc =

Franc¸ois Vilar

vcn mc

∆t mc

X

n n U np  lpc npc

p∈Q(∂ωc )

> 0 =⇒ ( ρ1 )n+1 = c

vcn+1 mc

>0

Positivity-preserving cell-centered scheme

12 / 58

CCLS

Descriptions

Schemes

1st order

High-order

Time step constraint

CCDG numerical results Positivity

Conclusion Stability

Positive internal energy εc = ec − 12 (U c )2 εcn+1

∆t = εnc − mc

X

U np



p

F npc



X p

U nc



F npc

∆t X n 2 ( F ) + 2mc p pc

!

Properties F pc = Pc lpc npc − Mpc (U p − U c ) X X lpc npc = lpp+ npp+ = 0 p∈Q(∂ωc )

p∈P(ωc )

Definitions ∆t mc V p = U np − U nc λc =

July 21st, 2014

Franc¸ois Vilar

Positivity-preserving cell-centered scheme

13 / 58

CCLS

Descriptions

Schemes

1st order

High-order

Time step constraint

CCDG numerical results

Conclusion

Positivity

Stability

Definitions εcn+1 = Ac + λc Bc Pcn vcn+1 − vcn ρnc vcn X λc X Mpc V p )2 Bc = Mpc V p  V p − ( 2 p p Ac = εnc −

Ac > 0 for ideal and JWL EOS If Bc ≥ 0

then

Ac > 0 =⇒ εn+1 >0 c

Pn As ρnc > 0 and εnc > 0 then Ac > εnc − nc Cv ρc  1   for ideal gas   γ−1 ρnc εnc Thus Cv < = 1  Pcn  for JWL gas  n)  c γ − 1 + fρ(ρ n εn



Ac > 0

c c

July 21st, 2014

Franc¸ois Vilar

Positivity-preserving cell-centered scheme

14 / 58

CCLS

Descriptions

1st order

Schemes

Ac >

P? ρcn+1

CCDG numerical results

Conclusion

Positivity

Stability

for stiffened EOS

If Bc ≥ 0 then Ac > Ac = (εnc − Since εnc − Thus

High-order

Time step constraint

P? ρnc ) (1 P? ρnc

Cv
c

− (γ − 1)

>0

1 γ−1

P? ρn+1 c

vcn+1 − vcn P? ) + vcn ρn+1 c Ac > (εnc −

then =⇒

Ac >

P? ρn+1 c

P? ρnc ) (1

− (γ − 1)Cv ) +

P? ρcn+1

Discrete entropy inequality   λc Bc = εn+1 − Ac = εn+1 − εnc + Pcn ( ρ1 )n+1 − ( ρ1 )nc c c c

Entropy T dS = dε + Pd( ρ1 ) ≥ 0 July 21st, 2014

Franc¸ois Vilar

Gibbs identity + second law of thermodynamics Positivity-preserving cell-centered scheme

15 / 58

CCLS

Descriptions

1st order

Schemes

Bc ≥ 0 X

Bc =

High-order

Time step constraint

p∈Q(∂ωc )

Mpc V p  V p −

λc ( 2

CCDG numerical results

Conclusion

Positivity

X

Stability

Mpc V p )2

p∈Q(∂ωc )

Np

Mpc =

X n=1

X

Zpn lpn npn ⊗ npn

Mpc V p  V p =

Np X

X

Zpn lpn (V p  npn )2 =

p∈Q(∂ωc ) n=1

p∈Q(∂ωc )

Np

X

Re-numbering:

X

p∈Q(∂ωc ) n=1 Nc X

ψpn =

X

Np X

Zpn lpn Xp2n

p∈Q(∂ωc ) n=1 Nc X

ψi

i=1

Nc λc X Zi Zj li lj Xi Xj (ni  nj ) = HX  X , 2 i=1 i,j=1    Zi li (1 − λc Zi li ), if i = j, t 2 where X = (X1 , . . . , XNc ) and Hij = λ  − c Z Z l l (n  n ), if i 6= j.  i j i j i j 2

Bc =

July 21st, 2014

Zi li Xi2 −

Franc¸ois Vilar

Positivity-preserving cell-centered scheme

16 / 58

CCLS

Descriptions

1st order

Schemes

High-order

Time step constraint

CCDG numerical results Positivity

Conclusion Stability

Theorem If H is symmetric diagonally dominant with non-negative diagonal entries then H is positive semi-definite (thanks to Gerschgorin theorem)

Bc ≥ 0 If λc ≤

2 Zi li

If λc ≤ X j

Thus if

Hii ≥ 0

then 2

Zj lj |ni  nj |

|Hii | −

then

j

∆t ≤

July 21st, 2014

ac Lc

|Hij | ≥ 0

then

Bc ≥ 0

j

Acoustic impedance If

j6=i

mc X 1 Zj lj 2

2 λc ≤ X ⇐⇒ ∆t ≤ Zj lj

vcn

X

Zc = ρc ac

where Lc = Franc¸ois Vilar

1 2

P

j lj

then

Bc ≥ 0

Positivity-preserving cell-centered scheme

17 / 58

CCLS

Descriptions

Schemes

1st order

High-order

CCDG numerical results

Time step constraint

Conclusion

Positivity

Stability

Positivity-preserving property Finally, for the first-order finite volume cell-centered Lagrangian schemes, if 1

2

Wnc ∈ G ∆t ≤ Cv

|

X

p∈Q(∂ωc )

3

vn ∆t ≤ c , ac Lc

Then

Wn+1 ∈G c

July 21st, 2014



vcn n n U np  lpc npc |

with Lc =

,

              

with

Cv < min 1,

 1 n

c) γ − 1+ fρ(ρ n εn



c c

1 2

X

lpc ,

GLACE

p∈P(ωc ) 1 2

X

lpp+ ,

EUCCLHYD

p∈P(ωc ) 1 2

X

X

lq|pp+ . CCDG

p∈P(ωc ) q∈Q(pp+ )

  1 n 1 n+1 n n ) − ( ) and εn+1 − ε + P ( c c c ρ c ρ c ≥0 Franc¸ois Vilar

Positivity-preserving cell-centered scheme

18 / 58

CCLS

Descriptions

1st order

Schemes

High-order

Time step constraint

CCDG numerical results

Conclusion

Positivity

Stability

Norm definitions kψkL1 =

Z

ρ0 |ψ| dV =



Z kψkL2 =

0

2

Z ω

ρ |ψ| dv

 12

ρ ψ dV

Z =



2

 12

ρ ψ dv ω

Stability analysis For sake of simplicity periodic boundary conditions (PBC) are considered n ψhn is the piecewise constant numerical solution such as ψh| = ψcn ω c

We assume the initial solution vector W0c = (( ρ1 )0c , U 0c , ec0 )t on cell ωc is computed through Z 1 ρ0 (X ) W0 (X ) dV , W0c = mc Ωc where W0 = ( ρ10 , U 0 , e0 )t and ρ10 , U 0 , e0 respectively are the initial specific volume, velocity and total energy July 21st, 2014

Franc¸ois Vilar

Positivity-preserving cell-centered scheme

19 / 58

CCLS

Descriptions

Schemes

1st order

High-order

Time step constraint

CCDG numerical results

Conclusion

Positivity

Stability

Specific volume 1 1 |( )nc | = ( )nc ρ ρ X X X 1 1 mc ( )n−1 (since PBC + lpc npc = 0) Conservation mc ( )nc = c ρ ρ c c Positivity

c∈C(p)

X X 1 1 1 1 k( )nh kL1 = mc |( )nc | = mc |( )n−1 | = k( )n−1 kL1 c ρ ρ ρ ρ h c c

Total energy |ecn | = ecn (since εnc > 0 ⇐⇒ ecn > 12 (U nc )2 ≥ 0) X X X Conservation mc ecn = mc ecn−1 (since PBC + F pc = 0) Positivity

c

c

kehn kL1 = July 21st, 2014

X c

Franc¸ois Vilar

mc |ecn | =

c∈C(p)

X c

mc |ecn−1 | = kehn−1 kL1 Positivity-preserving cell-centered scheme

20 / 58

CCLS

Descriptions

1st order

Schemes

High-order

CCDG numerical results

Time step constraint

Positivity

Conclusion Stability

Kinetic energy and velocity K = 21 U 2 n 2 1 2 (U c )

specific kinetic energy

< ecn

=⇒

1 2

X

mc (U nc )2