Introduction to cell-centered Lagrangian schemes - François Vilar

First-order numerical scheme for the 2D gas dynamics. 8. High-order extension in the 2D case. 9. Numerical results in 2D. François Vilar (IMAG). Cell-centered ...
17MB taille 0 téléchargements 38 vues
Introduction to cell-centered Lagrangian schemes Franc¸ois Vilar ´ Institut Montpellierain Alexander Grothendieck Universite´ de Montpellier

15 Mai 2017

Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

1

Introduction

2

1D gas dynamics system of equations

3

First-order numerical scheme for the 1D gas dynamics

4

High-order extension in the 1D case

5

Numerical results in 1D

6

2D gas dynamics system of equations

7

First-order numerical scheme for the 2D gas dynamics

8

High-order extension in the 2D case

9

Numerical results in 2D Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

0 / 57

Introduction

Eulerian and Lagrangian formalisms

Eulerian formalism (spatial description) fixed referential attached to the observer fixed observation zone through the fluid flows

Lagrangian formalisme (material description) moving referential attached to the material observation zone moved and deformed as the fluid flows

Lagrangian formalism advantages adapted to problems undergoing large deformations naturally tracks interfaces in multi-material flows avoids the numerical diffusion of the convection terms

Lagrangian formalism drawbacks Robustness issue in the case of strong vorticity or shear flows =⇒ Franc¸ois Vilar (IMAG)

ALE method (Arbitrary Lagrangian-Eulerian) Cell-centered Lagrangian schemes

15 Mai 2017

1 / 57

Introduction

Cell-centered formulation 1 0 0 1

Staggered formulation 1 0 0 1

1 0 0 1

1 0 0 1 0 1

1 0 0 1

0 1 0 1 0 1 1111111111 0000000000 0 1 0000000000 1111111111 00 11 0000000000 1111111111 00 11 00 11 00 11 0000000000 1111111111 00 11 00 11 11 0000000000 1111111111 00 00 11 00 11 0000000000 1111111111 00 11 0000000000 1111111111 00 11 0000000000 1111111111 00 11 00 11 0000000000 1111111111 00 11 00 11 0000000000 1111111111 00 11 0011 11 00 11 0000000000 1111111111 00 0000000000 1111111111 00 11 0000000000 1111111111 0 1 0000000000 1111111111 0 1 c11 0000000000 1111111111 00 11 0000000000 1111111111 00 00 11 0000000000 1111111111 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11

ρ ε u Ω

11 00 00 11

Eulerian and Lagrangian formalisms

0 1 111111111 000000000 0 1 0 1 000000000 111111111 0 1 000000000 111111111 0 1 000000000 111111111 0000000000 1111111111 0 1 000000000 111111111 0000000000 1111111111 00 11 000000000 111111111 0000000000 1111111111 00 11 000000000 111111111 0000000000 1111111111 000000000 111111111 0000000000 1111111111 00 11 000000000 111111111 0000000000 1111111111 00 11 11 00 000000000 111111111 0000000000 1111111111 11 00 000000000 111111111 0000000000 1111111111 000000000 111111111 00 11 00 11 0000000000 1111111111 p 000000000 111111111 00 11 00 11 0000000000 1111111111 000000000 00 11 00111111111 11 0000000000 1111111111 000000000 111111111 0000000000 1111111111 000000000 111111111 0000000000 1111111111 000000000 111111111 0000000000 1111111111 c 0000000000 1111111111 00 11 0000000000 1111111111 0 1 00 11 00 11 0000000000 1111111111 0 1 00 11 00 11 00 11 00 11 0 1 0 1 1 0 0 1 0 1

1 0 0 1

Franc¸ois Vilar (IMAG)

1 0 0 1

u





11 00 00 11

Cell-centered Lagrangian schemes

ρ ε

1 0 0 1

15 Mai 2017

2 / 57

1D gas dynamics system of equations

1

Introduction

2

1D gas dynamics system of equations

3

First-order numerical scheme for the 1D gas dynamics

4

High-order extension in the 1D case

5

Numerical results in 1D

6

2D gas dynamics system of equations

7

First-order numerical scheme for the 2D gas dynamics

8

High-order extension in the 2D case

9

Numerical results in 2D Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

2 / 57

1D gas dynamics system of equations

Eulerian description

Definitions ρ the fluid density u the fluid velocity e the fluid specific total energy p the fluid pressure ε = e − 12 u 2 the fluid specific internal energy

Euler system ∂ ρ ∂ ρu + =0 ∂t ∂x ∂ ρu ∂ (ρ u 2 + p) + =0 ∂t ∂x ∂ ρ e ∂ (ρ u e + p u) + =0 ∂t ∂x

Continuity equation Momentum conservation Total energy conservation

Thermodynamical closure p = p(ρ, ε) Franc¸ois Vilar (IMAG)

Equation of state Cell-centered Lagrangian schemes

15 Mai 2017

3 / 57

1D gas dynamics system of equations

Lagrangian descriptions

Momentum conservation ∂ ρu ∂ (ρ u 2 + p) + =0 ∂t ∂x ∂u ∂u ∂ ρ ∂ ρu ∂p ρ( +u )+u( + )+ =0 ∂t ∂x ∂t ∂x ∂x | {z } =0

∂u ∂u ∂p ρ( +u )+ =0 ∂t ∂x ∂x

Total energy conservation ∂ ρ e ∂ (ρ u e + p u) + =0 ∂t ∂x ∂e ∂e ∂ ρ ∂ ρu ∂pu ρ( +u )+e( + )+ =0 ∂t ∂x ∂x |∂t {z ∂x } =0

∂e ∂e ∂pu ρ( +u )+ =0 ∂t ∂x ∂x Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

4 / 57

1D gas dynamics system of equations

Lagrangian descriptions

Definitions τ=

1 ρ

the specific volume

U = (τ, u, e)t

the solution vector

F(U) = (−u, p, p u)t

the flux vector

Continuity equation ∂ ρ ∂ ρu + =0 ∂t ∂x ∂ρ ∂ρ ∂u +u +ρ =0 ∂t ∂x ∂x ∂τ ∂τ ∂u ρ( +u )− =0 ∂t ∂x ∂x

Non-conservative form of the gas dynamics system ρ(

∂U ∂U ∂ F(U) +u )+ =0 ∂t ∂x ∂x

Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

5 / 57

1D gas dynamics system of equations

Lagrangian descriptions

Moving referential X

is the position of a point of the fluid in its initial configuration

x(X , t) is the actual position of this point, moved by the fluid flow

Trajectory equation ∂ x(X , t) = u(x(X , t), t) ∂t x(X , 0) = X

Material derivative f (x, t) is a smooth fluid variable df ∂ f (x(X , t), t) ∂f ∂f ≡ = +u dt ∂t ∂t ∂x

Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

6 / 57

1D gas dynamics system of equations

Lagrangian descriptions

Updated Lagrangian formulation ρ

d U ∂ F(U) + =0 dt ∂x

Moving configuration

Definitions ∂x ∂X

J= ρ

0

is the Jacobian associated the fluid flow

is the intial fluid density

Mass conservation

R ρ0 dX = ω(t) ρ dx R R ρ dx = ω(0) ρ J dX ω(t) R

ω(0)

ρ J = ρ0

Total Lagrangian formulation ρ0

d U ∂ F(U) + =0 dt ∂X

Franc¸ois Vilar (IMAG)

Fixed configuration Cell-centered Lagrangian schemes

15 Mai 2017

7 / 57

1D gas dynamics system of equations

Mass Lagrangian formulation

Definitions dm = ρ dx = ρ0 dX the mass varaiable ∂ F(U) A(U) = the Jacobian matrix of the system ∂U a = a(ρ, ε) the sound speed

Conservative formulation d U ∂ F(U) + =0 dt ∂m

Non-conservative formulation dU ∂U + A(U) =0 dt ∂m λ(U) = {−ρ a, 0, ρ a}

Franc¸ois Vilar (IMAG)

the eigenvalues of A(U)

Cell-centered Lagrangian schemes

15 Mai 2017

8 / 57

First-order numerical scheme for the 1D gas dynamics

1

Introduction

2

1D gas dynamics system of equations

3

First-order numerical scheme for the 1D gas dynamics

4

High-order extension in the 1D case

5

Numerical results in 1D

6

2D gas dynamics system of equations

7

First-order numerical scheme for the 2D gas dynamics

8

High-order extension in the 2D case

9

Numerical results in 2D Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

8 / 57

First-order numerical scheme for the 1D gas dynamics

Finite volumes scheme

´ Definitions 0 = t0 < t1 < · · · < tN = T

a partition of the temporal domain [0, T ]

∆t n = t n+1 − t n the n th time step S ω 0 = i=1,l ωi0 the partition of the initial domain ω 0 ωi0 = [Xi− 1 , Xi+ 1 ] a generic cell of size ∆Xi 2

2

n n ωin = [xi− ] 1,x i+ 1 2

the image of ωi0 at time t n through the fluid flow

2

mi = ρ0i ∆Xi = ρni ∆xin Uni

=

(τin ,

uin ,

ein )t

the constant mass of cell ωi

the discrete solution

First-order finite volumes scheme Uin+1 = Uni −

∆t n mi

n

n

Fi+ 21 − Fi− 12

n+1 n xi+ + ∆t n u ni+ 1 1 = x i+ 1 2

2

2



Numerical flux n

Fi+ 12 = (−u ni+ 1 , pni+ 1 , pni+ 1 u ni+ 1 )t 2

Franc¸ois Vilar (IMAG)

2

2

2

Cell-centered Lagrangian schemes

15 Mai 2017

9 / 57

First-order numerical scheme for the 1D gas dynamics

Two-states linearization ∂U dU + A(U) =0 dt ∂m

t

−e zL

 dU  f ∂U    dt + A(UL ) ∂m = 0

   fR ) ∂ U = 0  d U + A(U dt ∂m

si m-mi < 0 si m-mi > 0

Simple Riemann problem 0

U

=⇒

Approximate Riemann solver - two-states solver



U

UL

+

zeR

UR

U(m, 0) =



UL UR

 UL     − U U(m, 0) =  U+    UR

Relations mi

Riemann problem Franc¸ois Vilar (IMAG)

m

zeL = ρfaL > 0, −

+

u = u = u, Cell-centered Lagrangian schemes

if m-mi < 0 if m-mi > 0 if m-mi < -zeL t if -zeL t < m-mi < 0 if zeR t > m-mi > 0 if m-mi > zeR t

zeR = ρfaR > 0

p− = p+ = p

15 Mai 2017

10 / 57

First-order numerical scheme for the 1D gas dynamics

Approximate Riemann solver - two-states solver

Numerical fluxes u= p=

1 zeL uL + zeR uR − (pR − pL ) zeL + zeR zeL + zeR

zeL zeR zeR pL + zeL pR − (uR − uL ) e e e zL + zR zL + zeR

Intermediate states

u − uL et zeL p u − pL uL e− = eL − zeL τ − = τL +

Acoustic solver

zeL ≡ zL = ρL aL zeR ≡ zR = ρR aR Franc¸ois Vilar (IMAG)

u − uR zeR p u − pR uR e+ = eR + zeR

τ + = τR − et

Left acoustic impedance Right acoustic impedance Cell-centered Lagrangian schemes

15 Mai 2017

11 / 57

First-order numerical scheme for the 1D gas dynamics

Godunov-type scheme

Convex combination Uin+1 = Uni − Uin+1

= (1 −

n ∆t n 1 mi (Fi+ 2

λi )Uni

n

λ− i+ 12

− Ui+ 21

+

λ+ i− 12

+ Ui− 12

2

2

∆t n e− mi (zi+ 21

λ∓ = i± 1 2

2

∆t n e∓ mi zi± 12

λi = λ− + λ+ i+ 1 i− 1

− U i+ 21

+ U i− 12

+ n + zei− 1 )Ui

´ Definitions

− −e zi+ 1

+ zei− 1

t

+

n

n − Fi− 12 ) ± ∆t mi F(Ui ) ±

2

2

n



Ui± 12 = Uni ∓

∆tn

Fi± 12 − F(Uni ) ∓ zei± 1

2

U ni m

CFL condition: λi ≤ 1

mi

mi − e+ 1 zei+ 1 + z i− 2

Scheme illustration Franc¸ois Vilar (IMAG)

∆t n ≤

Cell-centered Lagrangian schemes

∆t n ≤

1 2

∆xin ain

2

∓ n if zei± 1 ≡ zi 2

15 Mai 2017

12 / 57

First-order numerical scheme for the 1D gas dynamics

Godunov-type scheme

Semi-discret first-order scheme mi

  d Ui = − F(Ui , Ui+1 ) − F(Ui−1 , Ui ) dt

Gibbs identity T dS = dε + p dτ = de − u du + p dτ

Semi-discret production of entropy d Si d ei d ui d τi = mi + ui mi + pi mi dt dt dt dt d Si − 2 e+ 1 (u i− 1 − ui )2 ≥ 0 mi Ti = zei+ 1 (u i+ 1 − ui ) + z i− 2 2 2 2 dt mi Ti

Positivity of the discrete scheme

F. V ILAR , C.-W. S HU AND P.-H. M AIRE, Positivity-preserving cell-centered Lagrangian schemes for multi-material compressible flows: Form first-order to high-orders. Part I: The 1D case. JCP, 2016. Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

13 / 57

High-order extension in the 1D case

1

Introduction

2

1D gas dynamics system of equations

3

First-order numerical scheme for the 1D gas dynamics

4

High-order extension in the 1D case

5

Numerical results in 1D

6

2D gas dynamics system of equations

7

First-order numerical scheme for the 2D gas dynamics

8

High-order extension in the 2D case

9

Numerical results in 2D Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

13 / 57

High-order extension in the 1D case

High-order finite-volumes-type schemes

High-order extension of the finite-volume scheme MUSCL, (W)ENO, DG, . . .

Equation on the mean values i ∆t n h − + + F(U− 1,U 1,U 1 ) − F(U 1) i+ 2 i− 2 i+ 2 i− 2 mi − and Ui+ 1 are the high-order values in ωi at points xi− 1 and xi+ 1

Uin+1 = Uni − U+ i− 1 2

2

2

2

Moving or total formulation ρ

d U ∂ F(U) + =0 dt ∂x

ρ0

ou

∂ U ∂ F(U) + =0 ∂t ∂X

Piecewise polynomial approximation Unh,i (x) the polynomial approximation of the solution on ωin Unh,i (X ) the polynomial approximation of the solution on ωi0 U∓ = Unh,i (xi± 1 ) (moving config.) i± 1 2

Franc¸ois Vilar (IMAG)

2

or

U∓ = Unh,i (Xi± 1 ) (fixed config.) i± 1

Cell-centered Lagrangian schemes

2

2

15 Mai 2017

14 / 57

Numerical results in 1D

1

Introduction

2

1D gas dynamics system of equations

3

First-order numerical scheme for the 1D gas dynamics

4

High-order extension in the 1D case

5

Numerical results in 1D

6

2D gas dynamics system of equations

7

First-order numerical scheme for the 2D gas dynamics

8

High-order extension in the 2D case

9

Numerical results in 2D Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

14 / 57

Numerical results in 1D

Smooth solution problem

Initial solution on X ∈ [0, 1]

ρ0 (X ) = 1 + 0.9999995 sin(2πX ),

u 0 (X ) = 0,

p0 (X ) = ρ0 (X )γ

Periodic boundary conditions 1.8

1.5 solution 1st order 3rd order

1.6

solution 1st order 3rd order 1

1.4

1.2

0.5

1 0 0.8

0.6

-0.5

0.4 -1 0.2

0

-1.5 -1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-1

-0.8

-0.6

(a) Density profiles

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b) Velocity profiles

Figure: Solutions at time t = 0.1 on 50 cells for a smooth problem

Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

15 / 57

Numerical results in 1D

Smooth solution problem

Convergence rates h 1 50 1 100 1 200 1 400 1 800

L1 ELh1 9.69E-5 1.19E-5 1.48E-6 1.85E-7 2.30E-8

qLh1 3.02 3.01 3.00 3.00 -

L2 ELh2 9.31E-5 1.16E-5 1.44E-6 1.80E-7 2.25E-8

qLh2 3.01 3.00 3.00 3.00 -

L∞ ELh∞ 2.75E-4 3.40E-5 4.923E-6 5.26E-7 6.56E-8

qLh∞ 3.01 3.01 3.00 3.00 -

Table: Convergence rates on the pressure for a 3rd order DG scheme

Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

16 / 57

Numerical results in 1D

Sod shock tube problem

Initial solution on X ∈ [0, 1] (ρ0 , u 0 , p0 ) =



(1, 0, 1), 0 < X < 0.5, (0.125, 0, 0.1), 0.5 < X < 1. 3.2

solution 1st order 3rd order

1

solution 1st order 3rd order

3 0.9

0.8

2.8

0.7

2.6

0.6

2.4

0.5 2.2 0.4 2 0.3 1.8

0.2

0.1

1.6 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) Density profiles

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Internal energy profiles

Figure: Solutions at time t = 0.2 on 100 cells for a Sod shock tube problem Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

17 / 57

Numerical results in 1D

Leblanc shock tube problem

Initial solution on X ∈ [0, 9] 0

0

0

(ρ , u , e ) =



(1, 0, 0.1), 0 < X < 3, (0.001, 0, 10−7 ), 3 < X < 9.

1

0.3

solution 1st order 3rd order

solution 1st order 3rd order 0.25

0.1

0.2

0.15

0.01

0.1

0.05

0.001

0

0

1

2

3

4

5

6

(a) Density profiles

7

8

9

0

1

2

3

4

5

6

7

8

9

(b) Internal energy profiles

Figure: Solutions at time t = 6 on 400 cells for a Leblanc shock tube problem

Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

18 / 57

Numerical results in 1D

Leblanc shock tube problem

Convergence 1

1 solution 200 cells 200 cells 400 cells 800 cells 1600 cells 3200 cells

solution 200 cells 200 cells 400 cells 800 cells 1600 cells 3200 cells

0.1

0.1

0.01

0.01

0.001

0.001 0

1

2

3

4

5

6

7

8

9

0

1

(a) 1st order

2

3

4

5

6

7

8

9

(b) 3rd order

Figure: Convergence at time t = 6 for a Leblanc shock tube problem

Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

19 / 57

Numerical results in 1D

123 problem - double rarefaction

Initial solution on X ∈ [−4, 4] 0

0

0

(ρ , u , p ) =



(1, −2, 0.4), (1, 2, 0.4),

−4 < X < 0, 0 < X < 4.

1

1.6 solution 1st order 3rd order

0.9

solution 1st order 3rd order 1.4

0.8 1.2

0.7

0.6 1 0.5 0.8 0.4

0.3

0.6

0.2 0.4 0.1

0

0.2 -6

-4

-2

0

2

(a) Density profiles

4

6

-6

-4

-2

0

2

4

6

(b) Internal energy profiles

Figure: Solutions at time t = 1 on 400 cells for a 123 problem

Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

20 / 57

Numerical results in 1D

Underwater TNT explosion

Initial solution on X ∈ [0, 1.4] 0

0

0

(ρ , u , p ) =



(1.63 × 10−3 , 0, 8.381 × 103 ), (1.025 × 10−3 , 0, 1),

0 < X < 0.16, 0.16 < X < 3.0.

On [0, 0.3], gaseous product of the explosion (JWL EOS) On [0.3, 1.4], water (stiffened gas EOS) 0.0014

4000

solution 1st order 3rd order

solution 1st order 3rd order 3500

0.0013

3000

0.0012 2500

0.0011 2000

0.001 1500

0.0009 1000

0.0008

500

0.0007

0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

0.2

(a) Density profiles

0.4

0.6

0.8

1

1.2

1.4

(b) Pressure profiles

Figure: Solutions at time t = 0.00025 on 400 cells for a underwater TNT explosion Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

21 / 57

Numerical results in 1D

Wilkins problem

Initial solution on X ∈ [0, 0.05] 0

ρ (X ) = 2785,

−6

0

p (X ) = 10

0

u (X ) =

,

Aluminium (Mie-Gruneisen EOS) ¨ 3000



800, 0,

0 < X < 0.005, 0.005 < X < 0.05.

7e+09 solution 1st order 3rd order

solution 1st order 3rd order 6e+09

2950 5e+09

4e+09 2900

3e+09

2850 2e+09

1e+09 2800 0

2750

-1e+09 0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0

0.005

(a) Density profiles

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(b) Pressure profiles

Figure: Solutions at time t = 5 × 10−6 on 100 cells for a flying plate impact Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

22 / 57

2D gas dynamics system of equations

1

Introduction

2

1D gas dynamics system of equations

3

First-order numerical scheme for the 1D gas dynamics

4

High-order extension in the 1D case

5

Numerical results in 1D

6

2D gas dynamics system of equations

7

First-order numerical scheme for the 2D gas dynamics

8

High-order extension in the 2D case

9

Numerical results in 2D Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

22 / 57

2D gas dynamics system of equations

Eulerian description

Euler equations ∂ρ + ∇x  ρ u = 0 ∂t ∂ ρu + ∇x  (ρ u ⊗ u + p Id ) = 0 ∂t ∂ ρe + ∇x  (ρ u e + p u) = 0 ∂t

Trajectory equation d x(X , t) = u(x(X , t), t), dt

x(X , 0) = X

Material derivative d f (x, t) ∂ f (x, t) = + u  ∇x f (x, t) dt ∂t

Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

23 / 57

2D gas dynamics system of equations

Lagrangian descriptions

Definitions U = (τ, u, e)t F(U) = (−u, 1(1) p, 1(2) p, p u)t

where

1(i) = (δi1 , δi2 )t

Updated Lagrangian formulation ρ

dU + ∇x  F(U) = 0 dt

Moving configuration

Deformation gradient tensor J = ∇X x

−t

∇X  |J|J



with =0

|J| = det J > 0

Piola compatibility condition

Mass conservation ρ |J| = ρ0

Total Lagrangian formulation ρ0

 dU + ∇X  |J|J−1 F(U) = 0 dt

Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

Fixed configuration 15 Mai 2017

24 / 57

First-order numerical scheme for the 2D gas dynamics

1

Introduction

2

1D gas dynamics system of equations

3

First-order numerical scheme for the 1D gas dynamics

4

High-order extension in the 1D case

5

Numerical results in 1D

6

2D gas dynamics system of equations

7

First-order numerical scheme for the 2D gas dynamics

8

High-order extension in the 2D case

9

Numerical results in 2D Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

24 / 57

First-order numerical scheme for the 2D gas dynamics

Finite volumes scheme

´ Definitions 0 = t 0 < t 1 < · · · < t N = T a partition of the time domain [0, T ] S ω 0 = c=1,l ωc0 a partition of the initial domain ω 0 ωcn

the image of ωc0 at time t n through the fluid flow

mc

the constant mass of cell ωc

Unc

= (τcn , ucn , ecn )t

the discrete solution m

p+

ωc

p p−

(a) Straight line edges

p+ ωc

p p−

(b) Conical edges

1100 00 11 1 11 0 00 11 00 00 11 1 0 11 00 + 11 00 0 1 0 0 1 0 1 −1 11 00 11 1 00 0 0 1 00 11 00 11 00 11 00 11 1 0 1 0 0 1 0 1 11 00 11 00

p

p

ωc

p

(c) Polynomial edges

Figure: Generic polygonal cell Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

25 / 57

First-order numerical scheme for the 2D gas dynamics

Finite volumes scheme

Integration

Z ∆t n F  n ds mc ∂ωc Integration of the cell boundary term (analytically, quadrature, . . . ) Ucn+1 = Unc −

General first-order finite volumes scheme Ucn+1 = Unc −

∆t n X Fqc  lqc nqc mc q∈Qc

Fqc = (−u q , 1(1) pqc , 1(2) pqc , pqc u q )t xqn+1

numarical flux at point q

= xqn + ∆t n u q

Definitions Qc

the chosen control point set of cell ωc

lqc nqc

some normals to be defined

Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

26 / 57

First-order numerical scheme for the 2D gas dynamics

Nodal solver

Remark Fqc

is local to the cell ωc

Only

u qc = u q

needs to be continuous, to advect the mesh

Loss of the scheme conservation?

ωR

ωc3 ωc4

p+

p

q

ωL

ωc2

ωc5

p

ωc1

(a) Face control point

(b) Grid node

Figure: Points neighboring cell sets

1D numerical fluxes pqc = pcn − zeqc (u q − ucn )  nqc

zeqc > 0

local approximation of the acoustic impedance

Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

27 / 57

First-order numerical scheme for the 2D gas dynamics

Conservation X

mc Un+1 = c

c

X

mc Unc + BC

Nodal solver

?

c

For sake of simplicity, we consider BC = 0 X X Necessary condition: pqc lqc nqc = 0 c

q∈Qc

Example of a solver: LCCDG schemes Conditions suffisantes X −  − − + + ∀p ∈ P(ω), ppc lpc npc + p+ pc lpc npc = 0 c∈Cp

=⇒

up =

X

c∈Cp

∀q ∈ Q(ω) \ P(ω), =⇒ Franc¸ois Vilar (IMAG)

Mpc

−1 X   Mpc ucn + pcn lpc npc c∈Cp

(pqL − pqR ) lqL nqL = 0 ⇐⇒ pqL = pqR   zeqL uLn + zeqR uRn pn − pLn uq = − R nqfpp+ zeqL + zeqR zeqL + zeqR Cell-centered Lagrangian schemes

15 Mai 2017

28 / 57

First-order numerical scheme for the 2D gas dynamics

Godunov-type scheme

Convex combinaison Ucn+1 = Unc −

Ucn+1

= (1 −

X ∆t n ∆t n X Fqc  lqc nqc + F(Unc )  lqc nqc mc mc q∈Qc q∈Qc | {z }

λc ) Unc

+

=0

X

λqc Uqc

q∈Qc

Definitions λqc =

∆t n e mc zqc lqc

Uqc = Unc −

CFL condition

Franc¸ois Vilar (IMAG)



F(Unc )

Fqc − zeqc

mc ∆t n ≤ X zeqc lqc q∈Qc

and



 = 

λc =  nqc

acn

|ωcn | X

P

q∈Qc

λqc

if lqc

q∈Qc Cell-centered Lagrangian schemes



 zeqc ≡ zcn = ρnc acn   15 Mai 2017

29 / 57

First-order numerical scheme for the 2D gas dynamics

Godunov-type scheme

Semi-discret first-order scheme mc

X d Uc =− Fqc  lqc nqc dt q∈Qc

Gibbs identity T dS = dε + p dτ = de − u  du + p dτ

Semi-discret production of entropy d Sc d ec d uc d τc = mc + u c  mc + pc mc dt dt dt dt X  2 d Sc mc T c = zeqc lqc (u q − uc )  nqc ≥ 0 dt mc T c

q∈Qc

Positivity of the discrete scheme

F. V ILAR , C.-W. S HU AND P.-H. M AIRE, Positivity-preserving cell-centered Lagrangian schemes for multi-material compressible flows: Form first-order to high-orders. Part II: The 2D case. JCP, 2016. Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

30 / 57

High-order extension in the 2D case

1

Introduction

2

1D gas dynamics system of equations

3

First-order numerical scheme for the 1D gas dynamics

4

High-order extension in the 1D case

5

Numerical results in 1D

6

2D gas dynamics system of equations

7

First-order numerical scheme for the 2D gas dynamics

8

High-order extension in the 2D case

9

Numerical results in 2D Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

30 / 57

High-order extension in the 2D case

High-order finite-volumes-type schemes

Mean values equation Ucn+1 = Unc −

∆t n X Fqc  lqc nqc mc q∈Qc

In Fqc , the mean values are substituted by the high-order values Uqc in ωc at points q

Updated or total Lagrangian formulation ρ

dU + ∇x  F(U) = 0 dt

ρ0

ou

 dU + ∇X  |J|J−1 F(U) = 0 dt

Piecewise polynomial approximation Unh,c (x) the polynomial approximation of the solution on ωcn Unh,c (X ) the polynomial approximation of the solution on ωc0 Uqc = Unh,c (xq ) (moving config.)

Franc¸ois Vilar (IMAG)

or

Uqc = Unh,c (Xq ) (fixed config.)

Cell-centered Lagrangian schemes

15 Mai 2017

31 / 57

Numerical results in 2D

2nd order scheme

1

Introduction

2

1D gas dynamics system of equations

3

First-order numerical scheme for the 1D gas dynamics

4

High-order extension in the 1D case

5

Numerical results in 1D

6

2D gas dynamics system of equations

7

First-order numerical scheme for the 2D gas dynamics

8

High-order extension in the 2D case

9

Numerical results in 2D Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

31 / 57

Numerical results in 2D

2nd order scheme

Sedov point blast problem 60

solution 2nd order

6 1

50

5

0.8

40

4

0.6

30

3

0.4

20

2

0.2

10

1

0 0 0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

(a) Pressure field

0.4

0.6

0.8

1

1.2

1.4

(b) Density profiles

Figure : Solution at time t = 1 for a Sedov problem on a 30 × 30 Cartesian mesh

Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

32 / 57

Numerical results in 2D

2nd order scheme

Sedov point blast problem 60

solution 2nd order

6 1

50

5

0.8

40

4

0.6

30

3

0.4

20

2

0.2

10

1

0 0 0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

(a) Pressure field

0.4

0.6

0.8

1

1.2

1.4

(b) Density profiles

Figure : Solution at time t = 1 for a Sedov problem on a 30 × 30 Cartesian mesh

Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

32 / 57

Numerical results in 2D

2nd order scheme

Sedov point blast problem

1

1

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2

0

0 0

0.2

0.4

0.6

0.8

1

(c) Triangular grid - 1110 cells

1.2

0

0.2

0.4

0.6

0.8

1

1.2

(d) Polygonal grid - 775 cells

Figure : Initial unstructured grids for Sedov point blast problem Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

33 / 57

Numerical results in 2D

2nd order scheme

Sedov point blast problem 5.5

solution 2nd order

6

5

1

4.5

5

4

0.8

4 3.5 3

0.6

3 2.5 0.4

2

2

1.5 0.2

1

1

0.5 0

0 0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

(e) Density field

0.4

0.6

0.8

1

1.2

1.4

(f) Density profiles

Figure : Solution at time t = 1 for a Sedov problem on a grid made of 1110 triangular cells

Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

34 / 57

Numerical results in 2D

2nd order scheme

Sedov point blast problem solution 2nd order

5

6 4.5 1 4

5

3.5

0.8

4 3 0.6

2.5

3

2 0.4

2 1.5 1

0.2

1

0.5 0

0 0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

(g) Density field

0.4

0.6

0.8

1

1.2

1.4

(h) Density profiles

Figure : Solution at time t = 1 for a Sedov problem on a grid made of 775 polygonal cells

Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

35 / 57

Numerical results in 2D

2nd order scheme

Underater TNT explosion 0.0013 solution 1st order 2nd order

−3

x 10

0.0012

1.6

0.8

0.0011

0.7 1.5

0.001

0.6 0.0009

1.4 0.5 0.0008

0.4

1.3

0.3

0.0007

0.0006

1.2 0.2

0.0005

1.1

0.1

0.0004

0.0003

0 0

0.2

0.4

0.6

0.8

1

1.2

0

(i) Density field - 2nd order

0.2

0.4

0.6

0.8

1

1.2

(j) Density profiles

Figure : Solution at time t = 2.5 × 10−4 for a underwater TNT explosion on a 120 × 9 polar mesh

Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

36 / 57

Numerical results in 2D

2nd order scheme

Underater TNT explosion 0.0013 solution 1st order 2nd order

−3

x 10

0.0012

1.6

0.8

0.0011

0.7 1.5

0.001

0.6 0.0009

1.4 0.5 0.0008

0.4

1.3

0.3

0.0007

0.0006

1.2 0.2

0.0005

1.1

0.1

0.0004

0.0003

0 0

0.2

0.4

0.6

0.8

1

1.2

0

(i) Density field - 2nd order

0.2

0.4

0.6

0.8

1

1.2

(j) Density profiles

Figure : Solution at time t = 2.5 × 10−4 for a underwater TNT explosion on a 120 × 9 polar mesh

Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

36 / 57

Numerical results in 2D

2nd order scheme

Aluminium projectile impact problem 1.5

2820

1

2800 2780

0.5 2760 0 0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(k) Density field

Figure : Solution at time t = 0.05 for a projectile impact problem on a 100 × 10 Cartesian mesh

Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

37 / 57

Numerical results in 2D

2nd order scheme

Aluminium projectile impact problem 1.5

2820

1

2800 2780

0.5 2760 0 0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(k) Density field

Figure : Solution at time t = 0.05 for a projectile impact problem on a 100 × 10 Cartesian mesh

Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

37 / 57

Numerical results in 2D

2nd order scheme

Taylor-Green vortex 1

1

0.9

0.9

0.8

0.8

0.7

0.7

0.6

0.6

0.5

0.5

0.4

0.4

0.3

0.3

0.2

0.2

0.1

0.1

0 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0

0.1

(l) 2nd order

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(m) Exact solution

Figure : Final deformed grids at time t = 0.75, on a 10 × 10 Cartesian mesh Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

38 / 57

Numerical results in 2D

2nd order scheme

Taylor-Green vortex 1

1

0.9

0.9

0.8

0.8

0.7

0.7

0.6

0.6

0.5

0.5

0.4

0.4

0.3

0.3

0.2

0.2

0.1

0.1

0 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0

0.1

(l) 2nd order

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(m) Exact solution

Figure : Final deformed grids at time t = 0.75, on a 10 × 10 Cartesian mesh Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

38 / 57

Numerical results in 2D

2nd order scheme

Convergence rates h 1 10 1 20 1 40 1 80 1 160

L1 ELh1 5.06E-3 1.32E-3 3.33E-4 8.35E-5 2.09E-5

qLh1 1.94 1.98 1.99 2.00 -

L2 ELh2 6.16E-3 1.62E-3 4.12E-4 1.04E-4 2.60E-5

qLh2 1.93 1.97 1.99 2.00 -

L∞ ELh∞ 2.20E-2 5.91E-3 1.53E-3 3.86E-4 9.69E-5

qLh∞ 1.84 1.95 1.98 1.99 -

Table: Convergence rates on the pressure for a 2nd order DG scheme

Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

39 / 57

Numerical results in 2D

3rd order scheme

Taylor-Green vortex 1

1

0.9

0.9

0.8

0.8

0.7

0.7

0.6

0.6

0.5

0.5

0.4

0.4

0.3

0.3

0.2

0.2

0.1

0.1

0 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0

0.1

(n) 3rd order

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(o) Exact solution

Figure : Final deformed grids at time t = 0.75, on a 10 × 10 Cartesian mesh Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

40 / 57

Numerical results in 2D

3rd order scheme

Taylor-Green vortex 1

1

0.9

0.9

0.8

0.8

0.7

0.7

0.6

0.6

0.5

0.5

0.4

0.4

0.3

0.3

0.2

0.2

0.1

0.1

0 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0

0.1

(n) 3rd order

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(o) Exact solution

Figure : Final deformed grids at time t = 0.75, on a 10 × 10 Cartesian mesh Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

40 / 57

Numerical results in 2D

3rd order scheme

Convergence rates h 1 10 1 20 1 40 1 80 1 160

L1 ELh1 2.67E-4 3.43E-5 4.37E-6 5.50E-7 6.91E-8

qLh1 2.96 2.97 2.99 2.99 -

L2 ELh2 3.36E-7 4.36E-5 5.59E-6 7.06E-7 8.87E-8

qLh2 2.94 2.96 2.98 2.99 -

L∞ ELh∞ 1.21E-3 1.66E-4 2.18E-5 2.80E-6 3.53E-7

qLh∞ 2.86 2.93 2.96 2.99 -

Table: Convergence rates on the pressure for a 3rd order DG scheme

Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

41 / 57

Numerical results in 2D

3rd order scheme

Polar meshes - symmetry preservation 1

1

0.9

0.9

0.8

0.8

0.7

0.7

0.6

0.6

0.5

0.5

0.4

0.4

0.3

0.3

0.2

0.2

0.1

0.1

0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0

0.1

(p) 100 × 3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(q) 100 × 1

Figure : Curvilinear grids defined in polar coordinates

Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

42 / 57

Numerical results in 2D

3rd order scheme

Sod shock tube problem - symmetry preservation 1

1

0.9

0.9

0.8

1

0.9 0.9 0.8

0.8 0.7

0.8 0.7

0.7 0.6

0.7 0.6

0.6 0.5

0.6 0.5

0.5 0.4 0.4

0.3

0.2

0.3

0.1

0

0.5

0.4

0.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4

0.3

0.2

0.3

0.1

0.2

0

0

0.1

0.2

(r) 1st order

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(s) 2nd order

Figure : Density fields with 1st and 2nd order schemes on a 3rd mesh

Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

43 / 57

Numerical results in 2D

3rd order scheme

Sod shock tube problem - symmetry preservation 1

1

0.9 0.9 1.1 solution 3rd order

0.8 0.8

1

0.7 0.7 0.6

0.9 0.8

0.6 0.5

0.7

0.5

0.4

0.3

0.4

0.2

0.3

0.1

0.2

0.6 0.5 0.4 0.3

0

0.2 0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

(t) Density field

0.2

0.4

0.6

0.8

1

(u) Density profiles

Figure : 3rd order solution for a Sod shock tube problem on a 100 × 3 polar grid

Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

44 / 57

Numerical results in 2D

3rd order scheme

Sod shock tube problem - symmetry preservation 1

1

0.9

0.9 1.1

0.8

solution 3rd order

0.8 1

0.7 0.7

0.9

0.6 0.8

0.6 0.5

0.7

0.5 0.4 0.4

0.3

0.6

0.5

0.4

0.2

0.3 0.3

0.1

0.2

0.2

0.1

0 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

(v) Density field

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(w) Density profiles

Figure : 3rd order solution for a Sod shock tube problem on a 100 × 1 polar grid

Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

45 / 57

Numerical results in 2D

3rd order scheme

Sod shock tube problem - symmetry preservation 1

1

0.9

0.9 1.1

0.8

solution 3rd order

0.8 1

0.7 0.7

0.9

0.6 0.8

0.6 0.5

0.7

0.5 0.4

0.3

0.4

0.2

0.3

0.6

0.5

0.4

0.3

0.1

0.2

0.2

0.1

0 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

(v) Density field

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(w) Density profiles

Figure : 3rd order solution for a Sod shock tube problem on a 100 × 1 polar grid

Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

45 / 57

Numerical results in 2D

3rd order scheme

Gresho-like vortex problem 0.5

0.5

0.4

0.4

0.3

0.3

0.2

0.2

0.1

0.1

0

0

−0.1

−0.1

−0.2

−0.2

−0.3

−0.3

−0.4

−0.4

−0.5 −0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.5 −0.5

−0.4

(a) 1st order

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(b) 2nd order

Figure : Final deformed grids at time t = 1, on a 20 × 18 polar mesh Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

46 / 57

Numerical results in 2D

3rd order scheme

Gresho-like vortex problem 0.5

0.5

0.4

0.4

0.3

0.3

0.2

0.2

0.1

0.1

0

0

−0.1

−0.1

−0.2

−0.2

−0.3

−0.3

−0.4

−0.4

−0.5 −0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.5 −0.5

−0.4

(a) 1st order

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(b) 2nd order

Figure : Final deformed grids at time t = 1, on a 20 × 18 polar mesh Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

46 / 57

Numerical results in 2D

3rd order scheme

Gresho-like vortex problem 0.5

0.5

0.4

0.4

0.3

0.3

0.2

0.2

0.1

0.1

0

0

−0.1

−0.1

−0.2

−0.2

−0.3

−0.3

−0.4

−0.4

−0.5 −0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.5 −0.5

−0.4

(c) 3rd order

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(d) Exact solution

Figure : Final deformed grids at time t = 1, on a 20 × 18 polar mesh Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

47 / 57

Numerical results in 2D

3rd order scheme

Gresho-like vortex problem 0.5

0.5

0.4

0.4

0.3

0.3

0.2

0.2

0.1

0.1

0

0

−0.1

−0.1

−0.2

−0.2

−0.3

−0.3

−0.4

−0.4

−0.5 −0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.5 −0.5

−0.4

(c) 3rd order

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(d) Exact solution

Figure : Final deformed grids at time t = 1, on a 20 × 18 polar mesh Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

47 / 57

Numerical results in 2D

3rd order scheme

Gresho-like vortex problem 1

5.6 solution 1st order 2nd order 3rd order

0.9

solution 1st order 2nd order 3rd order 5.5

0.8

0.7 5.4 0.6

0.5

5.3

0.4 5.2 0.3

0.2 5.1 0.1

0

5 0

0.2

0.4

0.6

0.8

1

0

(e) Velocity profiles

0.2

0.4

0.6

0.8

1

(f) Pressure profiles

Figure : Velocity and pressure profiles at time t = 1, on a 20 × 18 polar grid

Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

48 / 57

Numerical results in 2D

3rd order scheme

Gresho-like vortex problem 1.06 solution 1st order 2nd order 3rd order

1.05

1.04

1.03

1.02

1.01

1

0.99

0.98

0.97 0

0.2

0.4

0.6

0.8

1

Figure : Density profiles at time t = 1, on a 20 × 18 polar grid

Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

49 / 57

Numerical results in 2D

3rd order scheme

Kidder isentropic compression 1

1

0.9

0.9

0.8

0.8

0.7

0.7

0.6

0.6

0.5

0.5

0.4

0.4

0.3

0.3

0.2

0.2

0.1

0.1

0

0 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

(g) 1st order

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(h) 2nd order

Figure : Intial and final grids for a Kidder problem on a 10 × 5 polar mesh Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

50 / 57

Numerical results in 2D

3rd order scheme

Kidder isentropic compression Ri: exact solution Ri: 1st order Ri: 2nd order Re: exact solution Re: 1st order Re: 2nd order

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3 0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Figure : Interior and exterior shell radii evolution for a Kidder problem on a 10 × 5 polar mesh Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

51 / 57

Numerical results in 2D

3rd order scheme

Kidder isentropic compression 1

Ri: exact solution Ri: 3rd order Re: exact solution Re: 3rd order

1 0.9

0.8

0.9

0.7

0.8 0.6

0.5

0.7

0.4

0.6 0.3

0.2

0.5 0.1

0.4

0 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(i) Initial and final grids

0.9

1

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

(j) Shell radii evolution

Figure : 3rd order solution for a Kidder compression problem on a 10 × 3 polar grid

Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

52 / 57

Numerical results in 2D

3rd order scheme

Accuracy and computational time for a Taylor-Green vortex D.O.F 600 2400

N 24 × 25 48 × 50

ELh1 2.67E-2 1.36E-2

ELh2 3.31E-2 1.69E-2

ELh∞ 8.55E-2 4.37E-2

time (sec) 2.01 11.0

Table: 1st order scheme

D.O.F 630 2436

N 14 × 15 28 × 29

ELh1 2.76E-3 7.52E-4

ELh2 3.33E-3 9.02E-4

ELh∞ 1.07E-2 2.73E-3

time (sec) 2.77 11.3

Table: 2nd order scheme

D.O.F 600 2400

N 10 × 10 20 × 20

ELh1 2.67E-4 3.43E-5

ELh2 3.36E-4 4.36E-5

ELh∞ 1.21E-3 1.66E-4

time (sec) 4.00 30.6

Table: 3rd order scheme

Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

53 / 57

Numerical results in 2D

3rd order scheme

Sedov point blast problem - spurious deformations 5.5

solution 3rd order

6 5 1 4.5

5

4 0.8 3.5

4

3 0.6

3 2.5 2 0.4

2 1.5 1

0.2

1

0.5

0

0 0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

(k) Density field

0.4

0.6

0.8

1

1.2

1.4

(l) Density profiles

Figure : Third-order solution at time t = 1 for a Sedov problem on a 30 × 30 Cartesian mesh

Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

54 / 57

Numerical results in 2D

Even higher-order scheme

Taylor-Green vortex MESH FOR A TAYLOR-GREEN PROBLEM WITH A 5th ORDER SCHEME

MESH FOR A TAYLOR-GREEN PROBLEM WITH A 3rd ORDER SCHEME 1

1

0.9

0.9

0.8

0.8

0.7

0.7

0.6

0.6

0.5

0.5

0.4

0.4

0.3

0.3

0.2

0.2

0.1

0.1

0

0 0

0.2

0.4

0.6

0.8

1

0

(m) 3rd order

0.2

0.4

0.6

0.8

1

(n) 5th order

Figure : Final deformed grids at time t = 0.6, for 16 triangular cells meshes

Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

55 / 57

Numerical results in 2D

Even higher-order scheme

Taylor-Green vortex MESH FOR A TAYLOR-GREEN PROBLEM WITH A 3rd ORDER SCHEME

MESH FOR A TAYLOR-GREEN PROBLEM WITH A 5th ORDER SCHEME

1

1

0.9

0.9

0.8

0.8

0.7

0.7

0.6

0.6

0.5

0.5

0.4

0.4

0.3

0.3

0.2

0.2

0.1

0.1

0

0 0

0.2

0.4

0.6

0.8

1

0

(m) 3rd order

0.2

0.4

0.6

0.8

1

(n) 5th order

Figure : Final deformed grids at time t = 0.6, for 16 triangular cells meshes

Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

55 / 57

Numerical results in 2D

Even higher-order scheme

Sod shock tube problem - symmetry preservation DENSITY FOR A POLAR SOD PROBLEM WITH A 4th ORDER SCHEME

1.1

1

solution 4th order

1

1 0.9 0.9

0.9

0.8 0.8

0.8

0.7 0.7

0.7

0.6 0.6

0.5

0.6

0.5

0.5

0.3

0.4

0.4

0.2

0.3

0.4

0.3

0.2

0.1

0.2

0.1

0 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

(o) Density field

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(p) Density profiles

Figure : 4th order solution for a Sod shock tube problem on a polar grid made of 308 triangular cells

Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

56 / 57

Numerical results in 2D

Even higher-order scheme

F. V ILAR , P.-H. M AIRE AND R. A BGRALL, Cell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and for one-dimensional Lagrangian hydrodynamics. CAF, 2010. F. V ILAR, Cell-centered discontinuous Galerkin discretization for two-dimensional Lagrangian hydrodynamics. CAF, 2012. F. V ILAR , P.-H. M AIRE AND R. A BGRALL, A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total lagrangian formulation on general unstructured grids. JCP, 2014. F. V ILAR , C.-W. S HU AND P.-H. M AIRE, Positivity-preserving cell-centered Lagrangian schemes for multi-material compressible flows: Form first-order to high-orders. Part I: The 1D case. JCP, 2016. F. V ILAR , C.-W. S HU AND P.-H. M AIRE, Positivity-preserving cell-centered Lagrangian schemes for multi-material compressible flows: Form first-order to high-orders. Part II: The 2D case. JCP, 2016. Franc¸ois Vilar (IMAG)

Cell-centered Lagrangian schemes

15 Mai 2017

57 / 57