Untitled - CT GTTP

1.4.5 Calculated Reliability Indices and Selection of Target Value. 29. 1.4.6 Load ..... 11.5.5 Cast-in-Place Concrete Deck Design Example - Empirical Method 40.
788KB taille 1 téléchargements 323 vues
TABLE OF CONTENTS VOLUME I 1.1 OBJECTIVE OF THE LESSON 1.2 HISTORICAL DEVELOPMENT 1.2.1 Background 1.2.2 Organization of Project 1.2.2.1 RESEARCH TEAM 1.2.3 Project Schedule 1.2.4 Project Objectives

1 1 1 6 6 9 11

1.3 SUMMARY OF RELIABILITY CONSIDERATION 1.3.1 Overview of a Probability-Based Specification

14 14

1.4 OVERVIEW OF THE CALIBRATION PROCESS 1.4.1 Outline of the Calibration Process 1.4.2 Development of a Sample Bridge Database 1.4.3 Extraction of Load Effects 1.4.4 Development of the Simulated Bridge Set 1.4.5 Calculated Reliability Indices and Selection of Target Value 1.4.6 Load and Resistance Factors 1.4.6.1 LOAD FACTORS 1.4.6.2 RESISTANCE FACTORS 1.4.6.3 RECOMMENDED LOAD AND RESISTANCE FACTORS

24 24 24 28 29 29 30 30 32 33

REFERENCES

37

2.1 OBJECTIVE OF THE LESSON

1

2.2 LOCATION FEATURES

1

2.3 FOUNDATION INVESTIGATIONS

2

2.4 DESIGN OBJECTIVES 2.4.1 Safety 2.4.1.1 LIMIT STATES Service Limit States Fatigue and Fracture Limit States Strength Limit States Extreme Event Limit States Limit States Design Equation Ductility Redundancy Operational Importance 2.4.1.2 LOAD FACTORS AND LOAD COMBINATIONS 2.4.2 Serviceability 2.4.3 Constructibility 2.4.4 Bridge Aesthetics

2 3 3 3 3 3 3 4 4 6 7 7 11 13 13

TABLE OF CONTENTS (Continued) 2.4.5 Hydrology and Hydraulics 3.1 OBJECTIVE OF THE LESSON

13 1

3.2 DEVELOPMENT OF LRFD LIVE LOAD MODEL 3.2.1 Background 3.2.2 Selection of a Basis for Developing a Model 3.2.3 Candidate Notional Loads 3.2.4 Statistical Basis of Live Load Model 3.2.4.1 INTRODUCTION 3.2.4.2 TRUCK SURVEY DATA 3.2.4.3 MEAN MAXIMUM TRUCK MOMENTS AND SHEARS 3.2.4.4 ONE-LANE MOMENTS AND SHEARS 3.2.4.5 GIRDER DISTRIBUTION FACTORS 3.2.4.6 TWO-LANE MOMENTS AND SHEARS

1 1 3 11 22 22 23 23 32 39 42

3.3 LIVE LOADS 3.3.1 Notional Live Load Model 3.3.2 Multiple Presence of Live Load 3.3.3 Application of Design Vehicular Live Loads 3.3.4 Fatigue Requirements 3.3.5 Tire Pressure 3.3.6 Live Load Deflection Criteria 3.3.7 Dynamic Load Allowance 3.3.8 Miscellaneous Live Loads

43 43 44 45 46 46 47 47 54

QUIZ 1 WORK PERIOD #1: Live Loads on Multi-Span Bridges 4.1 OBJECTIVE OF THE LESSON

1

4.2 ICE LOADS 4.2.1 General 4.2.2 Design for Ice 4.2.3 Static Ice Loads on Piers 4.2.4 Hanging Dams and Ice Jams 4.2.5 Vertical Forces due to Ice Adhesion 4.2.6 Ice Accretion and Snow Loads on Superstructures

1 1 2 4 4 4 5

4.3 EARTH LOADS 4.3.1 General 4.3.2 Compaction 4.3.3 Earth Pressure 4.3.3.1 AT-REST PRESSURE COEFFICIENT, ko 4.3.3.2 ACTIVE PRESSURE COEFFICIENT, ka 4.3.3.3 EQUIVALENT FLUID PRESSURE 4.3.4 Presence of Water 4.3.5 Surcharge 4.3.6 Effect of Earthquake 4.3.7 Reduction due to Earth Pressure 4.3.8 Downdrag 4.3.9 Design of a Cantilever Retaining Wall Solution: Step 1: Calculate the Unfactored Loads with q = 1.0

6 6 12 14 15 16 22 23 24 26 29 30 30 31 31

TABLE OF CONTENTS (Continued) Step 2: Determine the Appropriate Load Factors Step 3: Calculate the Factored Loads

36 37

REFERENCES

39

5.1 OBJECTIVE OF THE LESSON

1

5.2 FORCE EFFECTS DUE TO SUPERIMPOSED DEFORMATIONS 5.2.1 Uniform Temperature 5.2.2 Temperature Gradient 5.2.3 Differential Shrinkage 5.2.4 Creep 5.2.5 Settlement

1 1 2 8 8 9

5.3 OTHER LIVE LOAD EFFECTS 5.3.1 General 5.3.2 Centrifugal Force 5.3.3 Braking Force 5.3.4 Vehicular Collision Forces

9 9 9 9 10

5.4 WATER LOADS

10

5.5 WIND LOADS 5.5.1 General Wind Provisions 5.5.2 Vertical Wind Pressure 5.5.3 Aeroelastic Stability

11 11 13 13

REFERENCES

19

6.1 OBJECTIVE OF THE LESSON

1

6.2 ACCEPTABLE METHODS OF STRUCTURAL ANALYSIS

1

6.3 PRINCIPLES OF MATHEMATICAL MODELING 6.3.1 Structural Material Behavior 6.3.2 Geometry 6.3.2.1 GENERAL 6.3.2.2 APPROXIMATE METHODS 6.3.2.3 REFINED METHODS 6.3.3 Modeling Boundary Conditions

2 2 3 3 4 5 5

6.4 STATIC ANALYSIS 6.4.1 The Influence of Plan Geometry 6.4.2 Approximate Methods for Load Distribution 6.4.2.1 DECK SLABS AND SLAB-TYPE BRIDGES 6.4.2.2 BEAM SLAB BRIDGES 6.4.2.2.1 General 6.4.2:2.2 Influence of Truck Configuration 6.4.2.2.3 Findings Level 3 Methods: Detailed Bridge Deck Analysis Level 2 Methods: Graphical and Simple ComputerBased Analysis Level 1 Methods: Simplified formulas 6.4.2.2.3a Simplified Formulas for Beam-and-Slab Bridges

6 6 7 7 7 7 11 12 12 12 13 13

TABLE OF CONTENTS (Continued) Moment Distribution to Interior Girders, Multi-Lane Loading Moment Distribution to Exterior Girders, Multi-Lane Loading Moment Distribution to Interior Girders, Single-Lane Loading Moment Distribution to Exterior Girders Shear Distribution Correction for Skew Effects 6.4.2.2.3b Simplified Formulas for Box Girder Bridges Moment Distribution to Interior Girders Moment Distribution to Exterior Girders Shear Distribution Correction for Skew Effects 6.4.2.2.3c Simplified Formulas for Slab Bridges Moment Distribution, Multi-Lane Loading Moment Distribution, Single-Lane Loading Correction for Skew Effects 6.4.2.2.3d Simplified Formulas for Multi-Beam Decks which are Sufficiently Interconnected to Act as a Unit Moment Distribution to Interior Girders, Mufti-Lane Loading Moment Distribution to Interior Girders, Single-Lane Loading Moment Distribution to Exterior Girders Shear Distribution Correction for Skew Effects 6.4.2.2.3e Simplified Formulas for Multi-Beam Decks which are not Sufficiently Interconnected to Act as a Unit 6.4.2.2.3f Simplified Formulas for Spread Box Beam Bridges Moment Distribution to Interior Beams, Multi-Lane Loading Moment Distribution to Interior Beams, Single-Lane Loading Moment Distribution to Exterior Girders Shear Distribution Correction for Skew Effects 6.4.2.2.3g Response of Continuous Bridges 6.4.2.3 TRUSS AND ARCH BRIDGES 6.4.2.3.1 General 6.5 REFINED 6.5.1 6.5.2 6.5.3 6.5.4 REFERENCES

METHODS Deck Slabs Beam Slab Bridges Example of Modeling Errors Other Types of Bridges

16 17 18 19 19 20 22 22 23 23 24 24 25 25 25 25 26 27 27 28 28 29 30 30 31 31 31 32 32 33 33 34 34 34 35 40 42

TABLE OF CONTENTS (Continued) 7.1 MULTI-GIRDER BRIDGE

1

7.2 LIVE LOAD DISTRIBUTION FACTOR FOR A TRUSS

12

8.1 OBJECTIVE OF THE LESSON

1

8.2 EFFECTIVE LENGTH FACTOR

1

8.3 EFFECTIVE FLANGE WIDTH

3

8.4 OVERVIEW OF EARTHQUAKE EFFECTS 8.4.1 Background Information on the Development of the Seismic Specifications 8.4.2 General Provisions 8.4.2.1 OBJECTIVE AND PRINCIPLES 8.4.2.2 APPLICABILITY 8.4.2.3 PRELIMINARY PLANNING AND DESIGN 8.4.2.4 FLOW CHART FOR SEISMIC DESIGN 8.4.3 Earthquake Design Loads (Article 3.10) 8.4.3.1 ELASTIC SEISMIC RESPONSE COEFFICIENT 8.4.3.2 FACTORS AFFECTING SEISMIC LOADS 8.4.3.2.1 Acceleration Coefficient 8.4.3.2.2 Seismic Performance Zones 8.4.3.2.3 Bridge Importance Categories 8.4.3.2.4 Site Effects 8.4.3.2.4a Site Coefficient 8.4.3.2.4b Soil Profile Types 8.4.3.3 RESPONSE MODIFICATION FACTORS 8.4.3.3.1 General 8.4.3.3.2 Values 8.4.3.3.3 Application 8.4.3.4 COMBINATION OF SEISMIC FORCE EFFECTS 8.4.3.5 CALCULATION OF DESIGN FORCES 8.4.3.5.1 General 8.4.3.5.2 Requirements for Seismic Zone 1 8.4.3.5.3 Seismic Zone 2 8.4.3.5.4 Seismic Zones 3 and 4 8.4.3.5.5 Longitudinal Restrainers 8.4.3.5.6 Hold-Down Devices 8.4.4 Analysis of Earthquake Loads (Specification Article 4.7.4) 8.4.4.1 MINIMUM ANALYSIS REQUIREMENTS 8.4.4.2 ANALYSIS METHODS FOR MULTI-SPAN BRIDGES 8.4.4.2.1 Single Mode Elastic Methods of Analysis 8.4.4.2.2 Multi-Mode Spectral Method 8.4.4.2.3 Time-History Method 8.4.4.3 MINIMUM DISPLACEMENT REQUIREMENTS

3 3 4 4 5 5 5 6 6 8 8 9 10 10 10 11 11 12 13 13 14 14 15 16 16 17 17 18 18 20 20 23 24 24

APPENDIX A Acceleration Coefficient Maps 9.1 OBJECTIVE

1

TABLE OF CONTENTS (Continued) 9.2 INTRODUCTION

1

9.3 LIMIT STATES 9.3.1 Service Limit State 9.3.2 Fatigue Limit State 9.3.3 Strength Limit State 9.3.4 Extreme Event Limit State

1 1 2 4 5

9.4 FLEXURE 9.4.1 Limits of Reinforcement 9.4.1.1 MAXIMUM REINFORCEMENT 9.4.1.2 MINIMUM REINFORCEMENT 9.4.2 Stress in Prestressing Steel at Nominal Flexural Resistance 9.4.2.1 COMPONENTS WITH BONDED TENDONS 9.4.2.2 COMPONENTS WITH UNBONDED TENDONS 9.4.3 Flexural Resistance 9.4.4 Crack Control

5 5 5 6 7 7 8 9 11

9.5 STRUT-AND-TIE MODEL 9.5.1 Structural Modeling 9.5.2 Proportioning Compressive Struts 9.5.2.1 STRENGTH OF STRUTS 9.5.2.2 EFFECTIVE CROSS-SECTIONAL AREA OF STRUTS 9.5.2.3 LIMITING COMPRESSIVE STRESS IN STRUTS 9.5.3 Proportioning Tension Ties 9.5.3.1 STRENGTH OF TIES 9.5.3.2 ANCHORAGE OF TIES 9.5.4 Proportioning Node Regions 9.5.5 Crack Control Reinforcement

11 11 12 12 12 13 14 14 15 15 16

9.6 PRESTRESSING 9.6.1 Introduction 9.6.2 Stress Limitations for Prestressing Tendons 9.6.3 Stress Limitations for Concrete 9.6.4 Loss of Prestress 9.6.4.1 GENERAL 9.6.4.2 INSTANTANEOUS LOSSES 9.6.4.2.1 Anchorage Set 9.6.4.2.2 Friction 9.6.4.2.3 Elastic Shortening 9.6.4.3 TIME-DEPENDENT LOSSES 9.6.4.3.1 Simplified Lump Sum Estimate 9.6.4.3.2 Refined Itemized Estimate 9.6.4.3.2a Shrinkage 9.6.4.3.2b Creep 9.6.4.3.2c Relaxation 9.6.4.3.3 Rigorous Analysis

16 16 17 19 19 19 21 21 21 24 25 25 26 26 27 28 29

9.7 SHEAR AND TORSION 9.7.1 Introduction 9.7.2 Sectional Model 9.7.2.1 MODIFIED COMPRESSION FIELD THEORY 9.7.2.2 NOMINAL SHEAR RESISTANCE

29 29 30 30 31

TABLE OF CONTENTS (Continued) 9.7.2.2.1 General 9.7.2.2.2 Simplified Procedure for Non-prestressed Sections 9.7.2.2.3 General Procedure 9.7.2.3 LONGITUDINAL REINFORCEMENT

31 32 33 37

9.8 DURABILITY

37

9.9 DESIGN EXAMPLE - PRESTRESS CONCRETE 12BEAM

38

10.1 OBJECTIVE 10.2 SPECIFIC PROVISIONS FOR VARIOUS TYPE OF STRUCTURES 10.2.1 Beams and Girders 10.2.2 Segmental Construction 10.2.3 Arches 10.2.4 Slab Superstructures 10.2.4.1 CAST-IN-PLACE SOLID SLAB SUPERSTRUCTURES 10.2.4.2 CAST-IN-PLACE VOIDED SLAB SUPERSTRUCTURE 10.2.4.3 PRECAST DECK BRIDGES 10.2.5 Culverts

1 1 1 7 21 23 24 24 27 29

10.3 SPECIFIC MEMBERS 10.3.1 Deep Members General Diaphragms Brackets and Corbels Beam Ledges 10.3.2 Footings 10.3.3 Piles 10.3.4 Provisions for Structure Types Beam and Girder Bridges

30 30 30 30 31 31 37 40 42 42

11.1 OBJECTIVE OF THE LESSON

1

11.2 GENERAL 11.2.1 11.2.2 11.2.3 11.2.4 11.2.5

1 1 2 2 2 3

DESIGN REQUIREMENTS Interface Action Deck Drainage Concrete Appurtenances Edge Supports Stay-in-Place Formwork for Overhangs

11.3 LIMIT STATES 11.3.1 Service Limit State 11.3.2 Fatigue and Fracture Limit State 11.3.3 Strength Limit States 11.3.4 Extreme Event Limit States

3 3 3 4 4

11.4 ANALYSIS 11.4.1 Approximate Methods of Analysis 11.4.2 Refined Methods of Analysis 11.4.3 Analysis of Cantilever Slabs

4 4 12 12

11.5 DESIGN OF CONCRETE DECK SLABS 11.5.1 General Design Requirements 11.5.2 Design of Stay-in-Place Formwork

13 13 14

TABLE OF CONTENTS (Continued) 11.5.3 Provisions for Precast Deck Slabs 11.5.4 Cast-In-Place Concrete Deck Design Example – Conventional Design 11.5.5 Cast-in-Place Concrete Deck Design Example - Empirical Method

16 16 40

11.6 OVERVIEW OF METAL DECKS 11.6.1 Metal Grid Decks 11.6.2 Orthotropic Steel Decks

41 41 43

11.7 OVERVIEW OF WOOD DECKS AND DECK SYSTEMS 11.7.1 Design requirements 11.7.2 Glued-Laminated Decks 11.7.3 Stress-Laminated Decks 11.7.4 Spike-Laminated Decks 11.7.5 Plank Decks 11.7.6 Wearing Surfaces for Wood Decks

44 44 45 46 48 50 50

VOLUME II 12.1 OBJECTIVE

1

12.2 NEW PROVISIONS IN LRFD SPECIFICATION NOT CONTAINED IN LFD SPECIFICATION 12.2.1 Deflection Limitations 12.2.2 Fatigue 12.2.2.1 GENERAL 12.2.2.2 FATIGUE LOAD 12.2.2.3 FATIGUE RESISTANCE 12.2.2.4 SPECIAL REQUIREMENTS FOR GIRDER WEBS 12.2.3 Resistance Factors 12.2.4 Diaphragm Spacing 12.2.5 Pins

1 1 2 2 3 6 7 9 10 10

12.3 TENSILE RESISTANCE

10

12.4 COMPRESSIVE RESISTANCE

14

12.5 NON-COMPOSITE COMPRESSION MEMBERS

15

12.6 COMPOSITE COMPRESSION MEMBERS

18

12.7 I-SECTIONS IN FLEXURE 12.7.1 General 12.7.2 Compact Composite Sections 12.7.3 Non-Compact Composite Sections Hybrid Factor Load Shedding Factors, Rb for Compression Flanges Lateral-Torsional Buckling 12.7.4 Compact Non-Composite Sections 12.7.5 Non-Compact Non-Composite Sections 12.7.6 Shear Resistance 12.7.6.1 GENERAL 12.7.6.2 UNSTIFFENED WEBS 12.7.6.3 STIFFENED WEBS 12.7.7 Stiffeners

18 18 22 29 31 34 36 38 39 41 41 42 43 48

TABLE OF CONTENTS (Continued) 12.7.7.1 TRANSVERSE INTERMEDIATE STIFFENERS 12.7.7.2 BEARING STIFFENERS 12.7.7.3 LONGITUDINAL STIFFENERS 12.7.8 Constructibility 12.7.9 Inelastic Analysis Procedures 12.7.10 Steel Plate Girder Design Example 12.7.10.1 BRIDGE DESCRIPTION 12.7.10.2 ASSUMPTIONS 12.7.10.3 LIVE LOAD VEHICLES 12.7.10.4 PLATE SIZES 12.7.10.5 SECTION PROPERTIES 12.7.10.6 DISTRIBUTION FACTORS 12.7.10.7 GENERAL LOAD FACTORS,' (Articles S1.3.3, 51.3.4, S1.3.5) 12.7.10.8 LOAD CALCULATIONS (Permanent and Live) 12.7.10.9 LIVE LOAD DEFLECTION (Article 52.5.2.6) 12.7.10.10 SPECIFICATION CHECKS 12.7.10.10.1 Specification Check: Flexure 12.7.10.10.2 Specification Check: Shear 12.7.10.10.3 Specification Check: Fatigue 12.7.10.10.4 Specification Check: Shear Connectors 12.7.10.10.5 Specification Check: Transverse Stiffener Details 12.7.10.10.6 Specification Check: Wind Loads REFERENCES

48 51 53 55 55 55 55 57 57 57 59 60 61 61 65 66 66 81 86 91 99 104 109

QUIZ 2 13.1 GENERAL

1

13.2 FACTORED RESISTANCE 13.2.1 General 13.2.2 Slip Resistance 13.2.3 Shear Resistance 13.2.4 Bearing Resistance 13.2.5 Tensile Resistance 13.2.6 Resistance to Combined Shear and Tension 13.3 BOLTED SPLICE DESIGN EXAMPLE

2 2 3 7 8 10 11 12

14.1 OBJECTIVE OF LESSON

1

14.2 SPREAD FOOTING FOUNDATION DESIGN 14.2.1 General Design Considerations 14.2.2 Design Procedure 14.2.3 Movement and Bearing Pressure at Service Limit State 14.2.3.1 ANALYSIS OF FOOTING MOVEMENTS 14.2.3.2 MOVEMENT CRITERIA 14.2.4 Bearing and Sliding Resistance at the Strength Limit State 14.2.4.1 RESISTANCE FACTORS 14.2.4.2 BEARING RESISTANCE

1 1 2 4 4 6 7 7 8

TABLE OF CONTENTS (Continued) 14.2.4.3 LOAD ECCENTRICITY 14.2.4.4 SLIDING RESISTANCE 14.3 DRIVEN PILE FOUNDATIONS DESIGN 14.3.1 General Design Considerations 14.3.2 Design Procedure 14.3.3 Movement at the Service Limit State 14.3.3.1 ANALYSIS OF PILE DISPLACEMENTS 14.3.3.2 TOLERABLE MOVEMENT CRITERIA 14.3.4 Resistance at the Strength Limit State 14.3.4.1 RESISTANCE FACTORS 14.3.4.2 AXIAL LOADING 14.3.4.3 LATERAL LOADING 14.3.4.4 BATTER PILES 14.3.4.5 GROUP BEHAVIOR 14.3.4.6 STRUCTURAL DESIGN REFERENCES 15.1 OBJECTIVE OF LESSON

16 18 20 20 20 22 22 25 25 25 26 30 31 31 33 35 1

15.2 CONVENTIONAL RETAINING WALL AND ABUTMENT DESIGN 15.2.1 General Design Considerations 15.2.2 Design Procedure 15.2.3 Movement at the Service Limit State 15.2.3.1 ANALYSIS OF WALL DISPLACEMENTS 15.2.3.2 TOLERABLE MOVEMENT CRITERIA 15.2.4 Resistance at the Strength Limit State 15.2.4.1 RESISTANCE FACTORS 15.2.4.2 LOAD FACTORS 15.2.4.3 OVERALL STABILITY 15.2.4.4 LOCATION OF RESULTANT FORCE 15.2.4.5 BEARING RESISTANCE 15.2.4.6 SLIDING RESISTANCE 15.2.4.7 CONTINUATION OF RETAINING WALL DESIGN EXAMPLE 15.2.4.8 STRUCTURAL DESIGN

1 1 1 3 3 3 3 4 5 6 6 7 7

15.3 ANCHORED RETAINING WALL DESIGN 15.3.1 General Design Considerations 15.3.2 Design Procedure 15.3.3 Movement at the Service Limit State 15.3.3.1 ANALYSIS OF WALL DISPLACEMENTS 15.3.3.2 TOLERABLE MOVEMENT CRITERIA 15.3.4 Resistance at the Strength Limit State 15.3.4.1 RESISTANCE FACTORS 15.3.4.2 ANCHOR PULLOUT 15.3.4.3 PASSIVE AND BEARING RESISTANCE 15.3.4.4 STRUCTURAL RESISTANCE OF VERTICAL WALL ELEMENTS 15.3.4.5 FACING ELEMENTS 15.3.4.6 OVERALL STABILITY

16 16 17 19 19 20 20 21 21 24

7 15

24 25 26

TABLE OF CONTENTS (Continued) 15.4 MECHANICALLY-STABILIZED EARTH RETAINING WALLS 15.4.1 General Design Considerations 15.4.2 Design Procedure 15.4.3 Movement at the Service Limit State 15.4.3.1 ANALYSIS OF WALL DISPLACEMENTS 15.4.3.2 TOLERABLE MOVEMENT CRITERIA 15.4.4 Resistance at the Strength Limit State 15.4.4.1 RESISTANCE FACTORS 15.4.4.2 SAFETY AGAINST SOIL FAILURE 15.4.4.3 INTERNAL STABILITY OF REINFORCEMENTS Inextensible Reinforcements Extensible Reinforcements 15.4.4.4 PULLOUT OF REINFORCING ELEMENTS 15.4.4.5 DESIGN LIFE 15.4.4.6 STRUCTURAL DESIGN OF FACE PANEL 15.4.5 Example Problem - Mechanically Stabilized Earth (MSE) Wall

26 26 28 30 30 30 31 31 32 34 34 36 37 39 41 42

REFERENCES

63

WORK PERIOD #2 - CONCRETE BOX CULVERTS 16.1 OBJECTIVE OF THE LESSON

1

16.2 OVERVIEW OF RAILING SYSTEMS 16.2.1 Traffic Railing 16.2.1.1 RAILING SYSTEMS REQUIREMENTS 16.2.1.2 PERFORMANCE LEVEL SELECTION CRITERIA 16.2.1.3 RAILING DESIGN 16.2.2 Pedestrian Railing 16.2.3 Bicycle Railings 16.2.4 Combination Railings 16.2.5 Curbs and Sidewalks 16.2.6 Deck Overhang Requirements Concrete Paraoets Post-Type Railings 16.2.7 Design Examples

1 1 1 2 3 17 18 18 19 20 20 22 26

16.3 OVERVIEW OF BRIDGE JOINTS 16.3.1 General 16.3.2 Selection 16.3.3 Design Requirements 16.3.4 Joint Types

43 43 45 46 47

16.4 OVERVIEW OF BEARINGS 16.4.1 Load and Movement Capabilities 16.4.2 Forces in the Structure Caused by Restraint of Movement 16.4.3 Overview of Special Design Provisions for Bearings 16.4.3.1 METAL ROCKER AND ROLLER BEARINGS 16.4.3.2 PTFE SLIDING SURFACES 16.4.3.3 BEARINGS WITH CURVED SLIDING SURFACES 16.4.3.4 POT BEARINGS 16.4.3.5 STEEL REINFORCED ELASTOMERIC BEARINGS 16.4.3.6 ELASTOMERIC PADS

48 48 50 50 50 51 53 53 54 61

TABLE OF CONTENTS (Continued) 16.4.3.7 BRONZE OR COPPER ALLOY SLIDING SURFACES 16.4.3.8 DISC BEARINGS 16.4.3.9 GUIDES AND RESTRAINTS 16.4.3.10 OTHER BEARING SYSTEMS

62 63 63 63

17A.1 OBJECTIVE OF THE LESSON

1

17A.2 STRESS-LAMINATED DECK EXAMPLE

1

17B.1 OVERVIEW OF VESSEL COLLISION PROVISIONS 178.1.1 Background Information on the Development of Vessel Collision Guidelines 17B.1.2 Background Information on the Main Factors Affecting the Vessel Collision Problem 17B.1.2.1 VESSEL CHARACTERISTICS 17B.1.2.1.1 Ships 17B.1.2.1.2 Barges 17B.1.2.2 WATERWAY CHARACTERISTICS 17B.1.2.3 BRIDGE CHARACTERISTICS 17B.1.3 Initial Planning 178.1.4 General Provisions 17B.1.4.1 OBJECTIVE OF SPECIFICATIONS 17B.1.4.2 FLOW CHART FOR THE DESIGN OF BRIDGE COMPONENTS FOR VESSEL COLLISION 17B.1.4.3 APPLICABILITY OF SPECIFICATIONS 17B.1.4.4 DATA COLLECTION 17B.1.5 Minimum Impact Requirements 17B.1.6 Design Vessel Selection 17B.1.6.1 ACCEPTABLE ANNUAL FREQUENCY OF BRIDGE ELEMENT COLLAPSE 17B.1.6.2 ANNUAL FREQUENCIES OF BRIDGE ELEMENT COLLAPSE 17B.1.6.2.1 General Remarks 1713.1.6.2.2 Vessel Traffic Distribution, N 17B.1.6.2.3 Probability of Aberrancy, PA 17B.1.6.2.4 Geometric Probability, PG 178.1.6.2.5 Probability of Collapse, PC 17B.1.7 Vessel Collision Loads 17B.1.7.1 DESIGN VESSEL VELOCITY 17B.1.7.2 VESSEL COLLISION ENERGY 17B.1.7.3 SHIP COLLISION FORCE ON PIER 17B.1.7.4 SHIP BOW DAMAGE LENGTH 1713.1.7.5 SHIP COLLISION FORCE ON SUPERSTRUCTURE 17B.1.7.6 BARGE COLLISION FORCE ON PIER 178.1.7.7 APPLICATION OF IMPACT FORCES 17B.1.8 Bridge Protection

1

9 10 10 11 15 17 17 17 18 18 19 19 20 22 25

17B.2 EXAMPLE BRIDGE DESCRIPTION

25

APPENDIX A Typical Ship Characteristics APPENDIX B Typical Barge Characteristics

1 2 2 2 3 4 4 4 5 5 5 6 7 8 8 9