Properties of films are given for Mylar® Type A (DuPont

Glass Transition Temperature* (0C) ... Effect of diethylene glycol (DEG) content on melting point. .... From second moment (NMR) measurements on fibers.
341KB taille 66 téléchargements 62 vues
P h y s i c a l

C o n s t a n t s

o f

P o l y ( o x y e t h y l e n e - o x y t e r e p h t h a l o y l ) ( P o l y ( e t h y l e n e

t e r e p h t h a l a t e ) )

M a r k Rule 1 Coca Cola Plaza N W , TEC 147, Atlanta, GA, USA

Properties of films are given for Mylar® Type A (DuPont) biaxially oriented and crystalline films. Properties of filaments are given for various products. Property

Value

1

Draw Ratio 0.040 0.092 0.167 0.193 2

Bursting Strength (g/cm ) 1 mil film, 23°C Brillouin Light Scattering

46 x 102

2,3

See Ref. 4

Coefficient of Friction (film) Kinetic, film to film 0.45 film to steel 0.14 Coefficient of Thermal Conductivity (film) (W/m/s/K) (See also Thermal Conductivity) 1000C 37.5 XlO" 3 Coefficient of Thermal Expansion (film) (K"1) 20°C-50°C 1.7 XlO" 5 Melt 6.55 x 10 " 4

2,3 6 2,3 2,3 5

Coefficient of Volume Expansion (K"1) Crystalline, below Tg 1.7 x 10 ~4 Crystalline, above Tg Compressibility (melt) (MPa) ( x 106)

3.94 x 10 ~4 6.99

5

Conductivity for Direct Current See Fig. 1 overleaf Crystallographic Data See Unit cell Density (Mg/m3) = (g/cm3) 0% Crystalline 1.333 100% Crystalline 1.455 Amorphous, non-oriented 1.335 * Value sensitive to semicrystalline morphology.

Partly cryst, non-oriented Partly cryst., oriented Highly cryst., non-oriented Calculated, crystal

Refs.

Birefringence of Filaments (sodium light) *

2.0 3.0 4.0 5.0

Property

1.385 1.390 1.420 1.515 (1.501)

Dielectric Strength (film) (V/cm) 23°C, 60Hz 1500C, 60Hz

2.95 xlO 6 2.75 xlO 6

Dielectric Constant (film) 23°C, 60Hz 23°C, 1 kHz 23°C, 1 MHz 23°C, 1 GHz 1500C, 60Hz

3.30 3.25 3.0 2.8 3.7

Dissipation Factor (film) 23°C, 60Hz 23°C, 1 kHz 23°C, 1 MHz 23°C, 1 GHz 1500C, 60Hz

0.0025 0.0050 0.016 0.003 0.00040

Entropy of Fusion (J/mol/K)

Refs. 9 9 10 11 12 2,3

2,3

2,3

Elastic Constants (filaments) (Pa"1) Oriented Sn transverse 16 x 10" 10 S 33 longitudinal 0.71 x 10" 10 7 S 44 torsional 14 x 10 " 10 512 -5.8 xl0~10 51 3 -0.3IxIO-10 Unoriented Sn or S 33 extensional 4.4 x 10~10 S 44 torsional 11 x IO" 10 Enthalpy of Fusion (kJ/mol)

81 82 9

Value

13

2.69 48.6

Folding Endurance (film) (cycles) 23°C 300 000

10 10

2,3

Amorphous

DEG (mol. %)

Crystalline Oriented & Crystalline

DEG (wt.%)

a (ohms/cm)

Melting point (0C)

Melting point (0C) Figure 2. Effect of diethylene glycol (DEG) content on melting point. Melting point (0C) = 271-273 (2,29).

T

j x io 3 (k"1)

Figure 1. Direct current conductivity at various temperatures and degrees of orientation and crystallinity (8).

Property

Value

Glass Transition Temperature* (0C) Amorphous 67 Crystalline 81 Crystalline and oriented 125

Refs. 7,14 14 15

Heat capacity See Specific heat Heat of Combustion (kJ/kg)

- 2.16 x 104

16

Heat of Sorption (film) (kJ/kg/mol) Carbon dioxide Methane

-3.IxIO4 -2.3xlO4

17

Solubility of Carbon Dioxide 25-1150C, 0-20 atm

83

Hygroscopic Coefficient of Expansion (film) (cm/cm%/RH) 20-92% RH, 1.1 x 10 ~5

2,3

Impact Strength (film) (J/m) 23°C

2,3

2.4 x 102

Infrared Spectra See Refs. 18-25 Insulation Resistance (film) (Mohm mfds) 100°C 5000 1300C 400 150°C 100 * Value sensitive to semicrystalline morphology.

Property Melting Point (0C) Equilibrium Commercial PET (metastable crystallites) Effect of diethylene glycol content

Refs.

280(310) 250-265

11(12) 2,3

See Fig. 2

29

Melt Viscosity vs. Intrinsic Viscosity Melt viscosity (Pa s) at 280°Ca

Intrinsic viscosity (ml/g), 300C in s-tetrachloroethane/ phenol (40/60)

0.45 4.5 25.0 95.0 115.0 145.0 800.0 1180.0 20000.0 a

26,27,28

Value

10 20 30 40 50 60 70 80 90

Taken from Fig. 14 of Ref. 2.

Moisture Absorption (%.)

Immersion in water at 25°C for 1 w

0.8

Nuclear Magnetic Resonance Spectrum See Refs. 13,30,31

27,28

Oligomers - acyclic Property Structure H(GA)1OH* H(GA)2OH H(GA)3OH H(GA)i-G-H H(GA) 2 -G-H H(GA) 3 -G-H H(GA) 4 -G-H H(GA) 5 -G-H HO-A-(GA) iOH HO-A-(GA) 2 OH HO-A-(GA) 3 OH HO-A-(GA) 4 OH HO-A-(GA) 5 OH

Molecular weight

Melting point (0C)

210.2 402.4 594.6

Refs.

178 200-205 219-223 179-183 186 109-110 173-174 200-205 213-216 218-220 >360 280-281 268-270 252-255 233-236

254.2 446.4 638.6 830.8 1023.0 358.3 550.5 742.7 934.9 1127.1

32 32 32 33 34 32 32 32 32 32 32 32 32 32 32

Value

Refractive Index (film), (Na Light) Amorphous, 25°C Crystalline and biaxially oriented, 23°C 80,90,1000C

Refs. 2

1.5760 1.64 85

Refractive Index Increment (specific) (cm3/g) (in hexafluoroisopropanol solution) 0.257 ± 0.004 Resistivity Surface (ohm/cm2) 23°C, 30% RH 23°C, 80% RH Volume (ohm cm) 23°C 150°C

47 2,3

2 xlO 1 5 2 xlO 1 1 1018 1014

Rheological Spectrum See Refs. 48,49

"G =

Service Temperature (0C) Property

Value

Shrinkage (film) (%) 1500C, 30min.

Oligomers - cyclic CYCLIC DIMER Melting point (0C) Unit cell (nm)

2,3 - 6 0 t o + 150

Refs.

175, 224 229 a = 0.858 b= 1.275 c -0.801 /3 = 90.7°

33 35 35

2-3

3

Solubility Constants (film) (cmVSTP cm3/Pa) ( x 107) 3 mil, 25°C Nitrogen 4.3 Oxygen 7.5 Methane 19.7 Argon 0.8

17

Solvents See chapter "Solvents-Nonsolvents" in this Handbook CYCLIC TRIMER (B-TYPE CRYSTAL) Melting point (0C) 319 317-320 321 Crystalline transition (0C) 199 (A-type -> B-type) 195 CYCLIC TETRAMER Melting point (0C)

33 36 37 37 38

326

33

256

33

CYCLIC PENTAMER Melting point (0C)

Solvent-Nonsolvent for Fractionation Solvent

Nonsolvent

o-Chlorophenol Phenol/tetrachloroethane (1:1) Phenol/chlorobenzene (1:1) Phenol/dichlorobenzene (2:3) Phenol Phenol

Hexane Gasoline Gasoline Benzene Cyclohexane Ethanol

50 51 52 53 54 55

Oligomers - Isolation See Ref. 39 Optical Haze* (ASTM D1003-61) See Ref. Permeability (film) See corresponding chapter in this Handbook. Water (cm2/s) (2.11-9.97) x 10"9

40

Sonic Velocity (filaments) (m/s) lOkHzunoriented Highly oriented

56 1400 5900

84

Photoacoustic Spectroscopy See Ref. 41 Poisson's Ratio (Oriented filament) Extensional Transverse

Specific Heat (kJ/kg/K) C p - 4.184 (A + (B x T)) 0.44 0.37

Raman Spectra

Frequency (cm" 1 )

13 Condition

21,42-46 1730 1618 1096 857 632 278

* Value sensitive to semicrystalline morphology.

of polymer Molten polymer Flake Yarn (undrawn) Yarn (drawn) Yarn (drawn + annealed)

A

B (x 104)

0.3243 0.2502 0.2469 0.2482 0.2431 0.2502

5.65 9.40 10.07 9.89 9.23 9.31

57 Effective temperature

T(0C)

270 to 290 - 2 0 to 60 - 5 to 60 - 1 0 to 55 - 10 to 80 100 to 200

References page V/117

Property

Value

1.2-40 K Below 1K

SeeRef. See Ref. 0

Stick Point Temperature ( C)

Refs.

230-240

58 59 4

Property

Value

Refs.

Transition Temperatures (0C) From second moment (NMR) measurements on fibers Unoriented 120 ± 5 Oriented 140 ± 10

13,31

Unit Cell (nm) Stress-Strain Curves for Filaments See Refs.

66,11,12

60,61 Previously accepted (Ref. 66)

Corrected (Ref. 11)

Corrected (Ref. 12)

Surface Tension (mN/m) = (dyn/cm) Solid/liquids, 250C Molten, 290°C

39.5 42.1 27 ± 3

62 63 64

Tear Strength (film (g/m) Initial, 23°C Propagating, 23°C

23.6 x 106 0.59 x 106

2,3

Tensile Strength (film) (Mpa) = (N/mm 2 ) 230C, 172

2,3

Thermal Conductivity (film) (W/m/K) 33°C 0.147 1.2-40 K SeeRef. Below 1 K See Ref.

65 58 59

Thermal Diffusivity (film) (cm 2 s) 33°C

65

9.29 x l O " 4

Torsional Modulus (MPa) = (N/mm2) Oriented filament 720

13

X-RAY DIFFRACTION (291 K) a 0.456 b 0.594 c 1.075 a 98.5° /3 118° 7 112°

0.448 0.585 1.075 99.5° 118.4° 111.2°

0.450 0.590 1.076 100.3° 118.6° 110.8°

ELECTRON DIFFRACTION (Ref. 67) a 0.452 b 0.598 c 1.077 a 101° (3 118° 7 111°

67

Viscocity-Molecular Weight Relationship See Sections I, II Young's Modulus (MPa) = (N/mm2) Oriented Filament - extensional - transverse Zero Strength Temperature (film) (0C)

1.4IxIO 4 0.063 x 104

13

248

68

Intrinsic Viscosity - Molecular Weight Relationships (Unfractionated)

Solvent

T (0C)

^(xl( )

a

Molecular weight range ( x 10 ~3)

Trifluoroacetic acid Tetrachloroethane/phenol (5:3) o-Chlorophenol tf-Chlorophenol Tetrachloroethane/phenol (1:1) Tetrachloroethane/phenol (1:1) Tetrachloroethane/phenol (1:1) Phenol/2,4,6-trichlorophenol (10:7) o-Chlorophenol

30 30 25 25 25 20 20 29.8 25

4.33 2.29 6.56 3.0 2.1 1.27 7.55 2.10 6.31

0.68 0.73 0.73 0.77 0.82 0.86 0.685 0.80 0.658

26-118 26-118 12-25 13-28 5-25 5-21 3-30 1-8 6-70

Phenol/Tetrachloroethane (3:2) Hexafluoroisopropanol Pentafluorophenol Hexafluoroisopropanol/pentafluorophenol (1:1) Methylene chloride/hexafluoroisopropanol (7:3)

25 25 25 25 -

7.44 5.20 3.85 4.50 4.03

0.648 0.695 0.723 0.705 0.691

6-70 6-70 6-70 6-70 -

o-Chlorophenol/chloroform (1:3)

25

1.49

0.56

9-100

a

(r]) = K x Ma.

Method Light scattering Light scattering Osmometry End group End group End group End group End group Size exclusion chromatography Light scattering Light scattering Light scattering Light scattering Light scattering Size exclusion chromatography Chromatography

Refs. 69 69 70 71 72 73 54 74

75 75 75 75 75 76 77

Intrinsic Viscosity - Molecular Weight Relationships (Fractionated)" Solvent o-Chlorophenol Dichloroacetic acid Trifluoroacetic acid Phenol/tetrachloroethane (2:3) o-Chlorophenol Tetrachloroethane/phenol (1:1) Phenol/dichloroethane (2:3) 0-Chlorophenol/chloroform (1:9)

T(0C) 25 25 25 25 25 20 20 25

K (x 104) 1.9 67 14 14 4.25 0.9 0.92 0.584

a

Molecular weight range ( x 10 3)

0.81 0.47 0.64 0.64 0.69 0.87 0.85 0.91

15-38 15-38 15-38 15-38 20-200 5-21 8-30 4-30

Method End group End group End group End group Sedimentation diffusion End group End group Size exclusion chromatography

Refs. 78 78 78 78 79 73 53 80

a

(r]) = KxMa.

REFERENCES 1. G. Farrow, J. Bagley, Textile Res. J., 32, 587 (1962). 2. C. J. Heffelfinger, K. L. Knox, in: O. J. Sweeting (Ed.), "Polyester Films", "The Science and Technology of Polymer Films", vol. 11, Wiley-Interscience, New York, 1971, p. 587. 3. J. M. Hawthorne, C. J. Heffelfinger, K. L. Knox, in: H. F. Mark and N. G. Gaylord (Eds.), "Polyester Films", in Encyclopedia of Polymer Science, vol. 11, Interscience, New York, 1969, p. 42. 4. D. B. Cavanaugh and C. H. Wang, J. Polym. ScL, Polym. Phys. Ed., 19, 1911 (1981). 5. H. W. Starkweather Jr., Paul Zoller, G. A. Jones, J. Polym. ScL, Polym. Phys. Ed., 21, 295 (1983). 6. Y. Yamada, K. Tanaka, Proc. ACS Div. Polym. Mater. Sci. Eng., 50, 462 (1984). 7. H. J. KoIb, E. F. Izard, J. Appl. Phys., 20, 564 (1949). 8. L. E. Amborski, J. Polym. Sci., 62, 331 (1962). 9. A. B. Thompson, D. W. Woods, Nature, 176, 78 (1955). 10. A. Mehta, U. Gaur, B. Wunderlich, J. Polym. Sci., Polym. Phys. Ed., 16, 289 (1978). 11. S. Fakirov, E. W. Fisher, G. H. Schmidt, Makromol. Chem., 176, 2459 (1975). 12. Y. Kinoshita, R. Nakamura, Y Kitano, T. Ashida, Polymer Preprints, 20, 454 (1979). 13. I. M. Ward, J. Macromol. Sci. B, 1, 667 (1967). 14. O. B. Edgar, R. Hill, J. Polym. Sci., 8, 1 (1952). 15. D. W. Woods, Nature, 174, 753 (1954). 16. R. B. LeBlanc, J. Am. Assoc. Textile Chem. Color., 2, 123 (1970). 17. W. R. Vieth, H. H. Alcalay, A. J. Frabetti, J. Appl. Polym. Sci., 8, 2125 (1964). 18. S. Krimm, Fortschr. Hochpolymer Forsch., 2, 51 (1960). 19. J. L. Koenig, M. J. Hannon, J. Macromol. Sci. B, 1, 119 (1967). 20. T. R. Manley, D. A. Williams, J. Polym. Sci., C, 22, 1009 (1969). 21. F. J. Boerio, S. K. Bahl, G. E. McGraw, J. Polym. Sci., Polym. Phys. Ed., 14, 1029 (1976). 22. W. Frank, H. Fiedler, W. Strohmeier, J. Appl. Polym. Sci., Appl. Polym. Symp., 34, 75 (1978). 23. F. J. Boerio, J. L. Koenig, J. Polym. Sci. A-2, 7, 1517 (1971).

24. J. L. Koenig, D. Kormos, in: M. Shen (Ed.), "Fourier Transform Infrared Spectroscopy of the Polymeric Amorphous Phase", Contemporary Topics in Polymer Science, vol. 3, Plenum, New York, 1979. 25. W. F. X. Frank, W. Strohmeier, M. L. Hallensleben, Polymer, 22, 615 (1981). 26. DuPont Technical Bulletin No. 1-2-53. 27. DuPont Technical Bulletin No. M-IA. 28. D. D. Lanning, Prod. Eng., July, 1987 (1956). 29. R. Jannssen, H. Ruysschaert, R. Vroom, Makromol. Chem., 77, 153 (1964). 30. D. L. Vanderhart, G. G. A. Bohm, V. D. Mochel, Polym. Preprints, 22, 261 (1981). 31. S. Nohara, Chem. High Polym. (Japan), 14, 318 (1957). 32. H. Zahn, G. B. Gleitsmann, Angew. Chem., 75, 772 (1963). 33. L. H. Peebles Jr., M. W. Huffman, C. T. Ablett, J. Polym. ScL A-I, 7, 479 (1969). 34. H. Binder, US. Pat. 2,855,432. 35. H. Repin,E. Papanikolau, J. Polym. Sci. A-1,7,3426(1969). 36. F. L. Hamb, L. C. Trent, J. Polym. Sci. B, 5, 1057 (1967). 37. E. Ito, S. Okajima, J. Polym. Sci. B, 7, 583 (1966). 38. G. L. Binns, Polymer, 7, 583 (1966). 39. W. R. Hudgins, K. Theurer, T. Mariani, J. Appl. Polym. Sci.: Appl. Polym. Symposium, 34, 145 (1978). 40. S. A. Jabarin, Polym. Engineer. Sci., 22, 815 (1982). 41. E. Balizer, H. Talaat, J. Phys., 44, C6 (1983). 42. A. J. Melveger, J. Polym. Sci. A-2, 10, 317 (1972). 43. G. E. McGraw, Polym. Preprints, 11, 1122 (1970). 44. F. J. Beblase, M. L. McKenlvy, M. Lewin, B. J. Bulkin, J. Polym. Sci.: Polym. Lett. Ed., 23, 109 (1985). 45. J. Purvis, D. I. Bower, J. Polym. Sci.: Polym. Phys. Ed., 14, 1461 (1976). 46. J. Derouault, R J. Hendra, M. E. A. Cudby, G. Fraser, J. Walker, H. A. W. Willis, in: J. P. Mathieu (Ed.), Proceeding Third International Conference on Raman Spectroscopy, vol. I, Heydensons, 1973, p. 277. 47. S. A. Berkowitz, J. Liquid Chromatog., 6, 1359 (1983). 48. Y H. Park, M. S. Rhim, J. Korean Soc. Textile Eng. Chem., 35 (1983). 49. D. R. Gregory, J. Appl. Polym. Sci., 16, 1479 (1972). 50. W. R. Moore, R. P. Sheldon, J. Textile Inst, 50, T294 (1959).

51. A. Gordienko, Faserforsch. Textiltechn., 4, 199 (1953). 52. A. A. Geller, A. A. Konkin, V.A. Myagkov, Khim. Volokna, 3, 10 (1960). 53. Ye. V. Kuznetsova, A. O. Vizel, I. M. Shermergorn, S. S. Tyulenev, Vysokomolekul. Soedin., 2, 205 (1960). 54. M. M. Koepp, H. Werner, Makromol. Chem., 32, 79 (1959). 55. E. Turska-Kusmierz, T. Skwarski, Prace Inst. Wlokiennictwa, 2, 49 (1953). 56. W. W. Moseley, Jr., J. Appl. Polym. Sci., 3, 266 (1960). 57. C. W. Smith, M. Dole, J. Polym. Sci., 20, 37 (1956). 58. A. Assfalg, J. Phys. Chem. Solids, 36, 1389 (1975). 59. D. Grieg, M. S. Sahota, J Phys. C: Solid State Phys., 16, L1051 (1983). 60. A. B. Thompson, J. Polym. Sci., 34, 741 (1959). 61. Ludewig, "Polyester Fibers, Chemistry and Technology", Wiley-Interscience, New York 1964. 62. D. H. Kaelble, J. Adhesion, 2, 66 (1970). 63. S. Wu, Polym. Preprints, 11, 1291 (1970). 64. H. T. Patterson, K. H. Hu, T. H. Grindstaff, Polym. Preprints, 11, 1299 (1970). 65. R. C. Steere, J. Appl. Phys., 37, 3338 (1966). 66. R. De P. Daubeny, C. W. Bunn, C. J. Brown, Proc. Roy. Soc. (London) A, 226, 531 (1954). 67. Y. Y. Tomashpol'skii, G. S. Morkova, Polym. Sci. USSR, 6, 316 (1964). 68. B. V. Petukhov, "The Technology of Polyester Fibers", Macmillan, New York, 1963, p. 388.

69. 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85.

M. L. Wallach, Makromol. Chem., 103, 19 (1967). J. Marshall, A. Todd, Trans. Faraday Soc, 49, 67 (1953). I. M. Ward, Nature, 180, 141 (1957). A. Conix, Makromol. Chem., 26, 226 (1958). W. Griehl, S. Neve, Faserforsch. Textiletechn., 5, 423 (1954). N. G. Gaylord, S. Rosenbaum, J. Polym. Sci., 39, 545 (1959). S. Berkowitz, J. Appl. Polym. Sci., 29, 4353 (1984). J. R. Overton, H. L. Browning, Org. Coatings Appl. Polym. Sci. Proc, 48, 940 (1983). S. A. Jabarin, D. C. Balduff, J. Liquid Chromatogr., 5, 1825 (1982). W. R. Moore, D. Sanderson, Polymer, 9, 153 (1968). Von G. Meyerhoff, S. Shimotsuma, Makromol. Chem., 135, 195 (1970). M. Sang, N. Jin, J. Liquid Chromatogr., 5, 1665 (1982). C W . Bunn, R. R Daubeny, Proc. Roy. Soc, 226, 531 (1954). E. W. Fischer, S. Fakirov, J. Mater. Soc, 11, 104 (1976). W. J. Koros, D. R. Paul, J. Polym. Sci., Polym. Phys. Ed., 16, 147 (1978). M. J. Kloppers, F. Bellucci, R. M. Latanision, J. E. Breuuan, J. Appl. Polym. Sci., 48(12), 2197 (1993). M. Cakmak, J. L. White, J. E. Spruiell Polym. Sci. Eng., 29(21), 1534(1989).