Olivier BERTRAND Interfaces Cerveau-Machine

(interrupteur souris clavier capteurs de mouvement orientation. (interrupteur ..... U821. Lyon. • Auto-regulation d'une composante de l'activité cérébrale (EEG).
4MB taille 1 téléchargements 328 vues
Université Lyon 1

Centre de Recherche en Neurosciences de Lyon

Olivier BERTRAND Dynamique Cérébrale et Cognition

DHSS - Ecole Polytechnique Cerveau et Cognition 25 novembre 2010

Interfaces Cerveau-Machine

Inserm U821 Lyon

Les Interfaces Homme-Machine (IHM) : Interactions indirectes entre le cerveau et la machine via une commande motrice. (interrupteur, souris, (interrupteur souris clavier, clavier capteurs de mouvement, mouvement orientation du regard, parole, …)

Les Interfaces Cerveau-Machine (ICM) : Interactions directes entre le cerveau et la machine, sans commande motrice. Mesure la plus utilisée : ll’activité activité électrique cérébrale Æ électrophysiologie en temps-réel

Inserm U821 Lyon

Real-time electrophysiology

To measure in real-time electrophysiological components (spike, LFP, EEG, MEG) specific to a particular mental process or state, state with multiple applications : Brain-Machine Interface (BMI) to control external devices • to restore communication in patients with strong motor disabilities

NeuroFeedback Training (NFT) and Rehabilitation • self-regulation of specific brain activities • domains : attention disorders, motor rehab., depression, epilepsy, pain, …

Basic Neuroscience • to better understand the « neural code » and brain plasticity y • dynamic manipulation of an experimental protocole according to brain state

Video games Video-games • enriched game-play or « serious games »

Inserm U821 Lyon

Publications

Brain-Computer Interface & Neurofeedback papers 150 125 100 75 50

3 25 0 1998

1999

2000

2001

2002

2003

2004

2005

2006

20 years ago : 3-4 groups world-wide years ago g : 6-8 g groups p 10 y 2009 : ~ 100 groups

2007

2008

Brain-Machine Interface – BMI (BCI)

Inserm U821 Lyon

feedback

closed-loop p BCI signal acquisition

translation to commands

real-time signal processing i

(feature extraction, classification)

Inserm U821 Lyon

Une convergence de disciplines Neurosciences fondamentales

Applications cliniques

Progrès technologiques

Inserm U821 Lyon

Electrophysiological signal recordings

Unit

Multi-U

Waldert, 2009

Inserm U821 Lyon

Electrophysiological signal recordings ElectroCorticoGram

Intracranial EEG

Spike, LFP

EEG

MEG

Inserm U821 Lyon

Brain-Machine Interface (BMI) • BMI as a communication aid without movement.

• Clinical goals Ö to restore communication and control to people with severe motor disorders: - amyotrophic lateral sclerosis (ALS) - spinal cord injury - muscular distrophies - brainstem stroke, locked-in syndrome. • Invasive or non-invasive BMIs • to learn how to associate a mental state to a desired action (appropriate mental processes and good markers ?) ¾ endogeneous processes: e.g., motor imagery ¾ exogenous processes: e.g., selective attention

Non-invasive BMIs (motor imagery)

Inserm U821 Lyon

Sensorimotor rhythms: mu (~10 Hz) and beta (15-25 Hz) Event-Related Desynchro. Mu rhythm desynchronization C3

100 uV

motion onset Pfurtscheller

Non-invasive BMIs (motor imagery)

Inserm U821 Lyon

Sensorimotor rhythms: motor execution mu (~10 Hz) and beta (15-25 Hz) ERD

motor imagination

Pfurtscheller

Non-invasive BMIs (motor imagery)

Inserm U821 Lyon

Pfurtscheller et al. (2006) Brain Res. Wolpaw and McFarland (2004) PNAS

Mental imagery of hand motion

EEG

Voluntary modulation of 15 H Hz (m (mu)) sensorimotor rhythm

EEG

Cursor control on a video-display ideo displa

This approach requires extensive training

ICM non-invasive (imagerie motrice)

Inserm U821 Lyon

• Phase de calibration (off-line) ƒ Instructions au sujet (imagerie main droite, droite main gauche) ƒ choix de la fréquence et des électrodes du rythme mu ƒ calcul du gain, ex : déplacement curseur/puissance du mu • Phase d’utilisation (on-line) ƒ estimation du mu en temps-réel (fenêtre ~ 0.5 à 1 s) ƒ transformation en temps-réel temps réel : puissance mu Æ déplacement du curseur • Problèmes d’adaptation p ƒ variabilité interindividuelle importante ƒ apprentissage difficile, recalibrations régulières

Non-invasive BMIs (motor imagery)

Inserm U821 Lyon

10-15 Hz mu rhythm y analysis y MEG rest

real right hand movement real left hand movement real movement

Non-invasive BMIs (motor imagery)

Inserm U821 Lyon

10-15 Hz mu rhythm y analysis y MEG rest imagination of right hand movement imagination of left hand movement imagination of movement

Non-invasive BMIs (motor imagery)

Inserm U821 Lyon

On-line measure of 15Hz mu : execution vs imagery

MEG

Non-invasive BMIs (motor imagery)

Foot vs hand movement (go/stop) in virtual reality environement after extensive BMI training

Inserm U821 Lyon

Galan et al 2008

Pfurtscheller et al 2006

Inserm U821 Lyon

Invasive BMI

Codage de la direction du mouvement

Inserm U821 Lyon

tuning curve broad direction tuning direction du mouvement

un neurone du cortex moteur primaire ((faible a b e sé sélectivité ec é à la ad direction ec o du mouvement) ou e e )

Georgopoulos et al., 1986

Codage de la direction du mouvement

Inserm U821 Lyon

« population vector »

une ligne noire = 1 neurone

direction du mouvement

Georgopoulos et al., 1986

prédiction possible de la direction du mouvement à partir d’une population de neurones

3D movement prediction from electrodes in p premotor,, primary p y motor,, and posterior p parietal cortical areas

Nature, 2000

Equipe Nicolelis, USA – Wessberg et al, Nature, 2000

3D BCI control of a prosthetic arm

Inserm U821 Lyon

Robotic arm control and grasping (5 degrees of freedom) with a micro-electrode array in the motor cortex

Velliste et al., 2008

Inserm U821 Lyon

Invasive BMIs in human

Cortical implant in complete tetraplegia

• Motor cortex implant, p g activity y • Records spiking from 100 neurones, • Intention-driven neuronal activity • Computes a linear model after training session • Cursor control • Short training period

Donoghue’s Team– Hochberg et al., Nature, 2006

Non-invasive BMIs

Inserm U821 Lyon

• Other BMIs for restoring communication stimulus-driven driven activity (exogenous processes): • stimulus Voluntary orientation of attention on a given stimuli S Specific f modulation off some evoked components ƒ P300, ƒ steady-state responses

Inserm U821 Lyon

P300 Speller BMIs Selective attention on the letter to select Ö P300 Task : to count the selected letter when it flashes (10 to 15) S i l : flashing Stimulus fl hi by b lines li or columns (period ~150 ms)

EEG P300 to target letter

non target t t Mattout et al., 2008 Maby et al., 2010

P300 Speller BMIs

Inserm U821 Lyon

Inserm U821 Lyon

P300 Speller BMIs Selective attention on the letter to select Ö P300 T d ff b Trade-off between t robustness and speed

~ 5 lletters tt /minute / i t

Current improvements : - Optimal spatial-filtering - Adaptive classification to optimize bit-rate - Word selection instead of spelling letter by letter (word prediction algorithm coming from mobile phone world)

Visual Steady-State response

Inserm U821 Lyon

Frequency tagging of visual stimuli and selective attention Un stimulus périodique engendre une réponse cortical périodique (même fréquence)

14 Hz

+ 17 Hz

14 Hz

17 Hz alpha

Kelly et al, 2005

Inserm U821 Lyon

Auditory Steady-State response Frequency tagging of auditory streams and selective selecti e attention

Auditory SSR - MEG

V. Attina, E. Maby, N. Weisz, J. Mattout, O. Bertrand

21 Hz SSR

29 Hz SSR

Low pitch

High pitch

29 Hz AM

21 Hz AM

29 Hz 21 Hz

Time-frequency plot of averaged SSR

Auditory SSR - MEG Orientation of attention Low pitch

High pitch

29 Hz AM

21 Hz AM

21 Hz Steady-State

29 Hz Steady-State 21 Hz

29 Hz

Auditory SSR - MEG Orientation of attention Low pitch

High pitch

29 Hz AM

21 Hz AM

21 Hz Steady-State

29 Hz Steady-State 21 Hz

29 Hz

Auditory SSR - MEG

LDA classification on 2-sec moving time-windows based on spectral power at f and 2f over temporal regions

L ft attention Left tt ti Right attention 30 sec

Auditory SSR as a possible marker f real-time for l ti attention tt ti monitoring/control it i / t l

Remarques sur les différentes BMI

Inserm U821 Lyon

• Imagerie mentale motrice ƒ non-invasif (EEG, (EEG MEG) : • difficultés d’apprentissage, concentration nécessaire • variabilité interinter et intra-individuelle intra individuelle • ~60% des sujets sont capables de faire la tâche ƒ invasif (micro-electrode (micro electrode array) : • apprentissage plus rapide • moins sensible aux autres activités mentales • Attention sélective (visuelle, auditive) ƒ non-invasif (EEG, MEG) : • peu d’apprentissage, plus naturel • débit lent, fatigue

Inserm U821 Lyon

Non-invasive BMIs • Other BMIs for restoring communication • endogeneous processus: other types of imagery

To consider various types of mental tasks (verbal, visual, spatial) t benefit to b fit from f better b tt contrasts t t due d to t hemispheric h i h i specialization i li ti To include source reconstruction and coherence/synchrony measures to improve selection of the most discriminant features.

e.g., visuo-spatial i ti l navigation imagery task

M. Besserve, PhD 2007

Magnetoencephalography and BMI ?

Inserm U821 Lyon

• MEG is obviously not an appropriate device for an operational ti l BMI dedicated d di t d to t communication i ti and d control t l in disabled (size, price, complexity, …) • MEG could certainly help to identify new markers for BMI, during an exploratory phase, that could then be adapted d t d to t EEG recordings. di MEG • MEG could be useful to efficiently train subjects to learn a BMI (good compromise between temporal and spatial resolution, and functional specificity). specificity) • MEG is quick to install, and non-invasive

Neurofeedback Training (NFT)

Inserm U821 Lyon

• Auto-regulation d’une composante de l’activité cérébrale (EEG) non-invasive invasive • Même technologie que les ICM non • Exemple de pathologies potentiellement concernées 9 déficits défi it attentionnels, tt ti l hyperactivité h ti ité 9 stress post-traumatrique 9 douleurs chroniques 9 épilepsie

• études controlées ? • marqueurs ? • mécanismes é i ?

fMRI Neurofeedback Training Control over brain activation and pain learned by using real-time functional MRI deCharms et al. PNAS, 2005 Delay of ~8s for the feedback Anterior cingulate (ACC)

• voluntary control over activation in a specific brain region (ACC), • leads to control over pain perception, • Impact on severe, chronic clinical pain.

Inserm U821 Lyon

Inserm U821 Lyon

MEG Neurofeedback Training Motor deficits after stroke MEG recordings

Task : Self-modulation of sensorimotor rhythm (mental imagery) Feedback by up-down motion of the cursor on the screen +

Feedback byy proportional p p motion of the orthosis on the p paralysed y hand

Æ Sensory input related to motor control Birbaumer, 2007

Inserm U821 Lyon

MEG Neurofeedback Training Motor deficits after stroke

Task : Self-modulation of sensorimotor rhythm (mental imagery) Feedback by up-down motion of the cursor on the screen +

Feedback byy proportional p p motion of the orthosis on the p paralysed y hand

Æ Sensory input related to motor control Æ Speed-up rehabilitation Birbaumer, 2007

Neurofeedback challenges Need to target:

Inserm U821 Lyon

specific brain activities, i specific in ifi brain b i regions, i related to specific brain processes.

Requires to better understand the mechanisms of pathologies g in terms of dysfunctioning y g regions, g , certain p networks and interactions. Requires R i t understand to d t d the th potential t ti l mechanisms h i off neural plasticity and cortical reorganization related to those pathologies. pathologies

Inserm U821 Lyon

Other applications of real-time electrophysiology

Real-Time Oscillatory Brain Mapping (Epilepsy) Real-time quantification of alpha,beta and gamma activity

BRAIN TV

Visual Display

Spectral Analysis

Lachaux et al. PLoS One, 2007

Intracranial EEG Data Acquisition

Collaboration Ph. Kahane, CHU Grenoble

Real-Time Oscillatory Brain Mapping BRAIN TV

Lachaux et al. PLoS One, 2007

« Each E h time you play l music, gamma goes up ! »

« If I sing, almost nothing …. »

No gamma when we speak

gamma for loud noises Little g

Video-Games applications

Inserm U821 Lyon

A growing field : real-time EEG for video-games (Nintendo, Sony, …., + several Silicon Valley companies ….) A opportunity An i for f the h development d l off new technologies. h l i

Video-Games applications

Inserm U821 Lyon

A growing field : real-time EEG for video-games (Nintendo, Sony, …., + several small companies ….) A opportunity An i for f the h development d l off new technologies. h l i

Inserm U821 Lyon

Multidisciplinary challenges new mental tasks new feedback

new signals (EEG, MEG (EEG MEG, iEEG LFP, spikes, others )

(neurostimulation)

BCI exemplesfs

new electrophysiological markers

new signal processing methods (noise reduction, source localization, adaptive methods, co co-adaptation) adaptation)

High-speed P300 speller

J. Mattout, E. Maby

Inserm U821 Lyon

Inserm U821 Lyon

Multidisciplinary challenges new mental tasks new feedback

new signals (EEG, MEG (EEG MEG, iEEG LFP, spikes, others )

(neurostimulation)

BCI exemplesfs

new electrophysiological markers Acceptability & Ethics

The ultimate goal

new signal processing methods (noise reduction, source localization, adaptive methods, co co-adaptation) adaptation)

Inserm U821 Lyon

Brain Dynamics and Cognition J. Mattout

E. Maby

P-E. Aguera

O Bertrand O.

F. Lecaignard

G Sanchez G.

C. Delpuech P. Bouchet

M. Perrin K. Jerbi

J-P. Lachaux

Inserm U821 Lyon