Material aspects in power technologies – from failure ... - eufanet

automotive and industrial applications ... Power pulses and area shrinks of power semiconductor devices ... operated into a fault condition for car applications.
6MB taille 0 téléchargements 34 vues
Material aspects in power technologies – from failure analysis to material testing M. Nelhiebel Kompetenzzentrum für Automobil und Industrieelektronik (KAI) Automotive Division / Quality Management, Infineon Technologies Villach, Austria

EUFANET Dresden, 17.10.2012

Motivation and purpose  Growing segment of the power semiconductor market for automotive and industrial applications  Area shrinks imply increasing transient peak junction temperatures (>400°C in the silicon!)  Technology solutions target metallization-stack and interconnect  Thus, technology development partially turns into mechanical material engineering …  … and physical analysis, as an essential development support, must adapt accordingly

Nelhiebel, EUFANET 17.10.2012

Copyright © Infineon Technologies 2010. All rights reserved.

Page 2

outline  Power pulses and area shrinks of power semiconductor devices  corresponding temperatures, and how to survive  Failure vs degradation, destructive vs non-destructive analysis  Defects in thick metallization layers ¬ Relevance and detectability

 Material parameters of metals and dielectrics  Microstructure of metal layers ¬ Grains, phases, contaminands

 Measuring mechanical parameters ¬ Metals, dielectrics

 New materials, new approaches  decapsulation revisited

 conclusion Nelhiebel, EUFANET 17.10.2012

Copyright © Infineon Technologies 2010. All rights reserved.

Page 3

Example for active power pulses: Smart power switch operated into a fault condition for car applications Load (e.g. flash lights)

Fault ! ~4A

e.g. short circuit  Cable resistances & inductances

~ 70 A

8.65 mm 4 mm

~80 mV ~0.3 W

high

low

high

low

t

t

Nelhiebel, EMPA 18.11.2011

~40 V ~1-3 kW ~10-100 µs

Copyright © Infineon Technologies 2010. All rights reserved.

Page 4

Subsequent power-device shrinks in the last ~12 years – for same application

8.65 x 6.0 mm2 12.8 x 10.3 mm2

6.4 x 10.3 mm2 3.652x2.140mm2

3.902x3.402mm2

2x 30m 2x12.2 mm2

2x 20 m

3.904x3.145mm2

7.8 mm2

2x 25 m 13.3 mm2

1997 Nelhiebel, EMPA 18.11.2011

2003 Copyright © Infineon Technologies 2010. All rights reserved.

2010 Page 5

Realistic power pulse and corresponding temperatures of a smart power switch

surface of the sun: 63 W/mm2

… continuous!

Nelhiebel, EMPA 18.11.2011

Copyright © Infineon Technologies 2010. All rights reserved.

Page 6

Little information by failure spot analysis of end-of-life tested samples Smart Power Technology, 3 metal layers (AlCu), Planar PowerMOS

metal 3

Smart Power Technology, 2 metal layers (AlCu), Trench PowerMOS

metal 2 metal 1 silicon conclusion: it was too hot…

Nelhiebel, EUFANET 17.10.2012

Copyright © Infineon Technologies 2010. All rights reserved.

Page 7

Schematic of active cycling degradation Increasing peak-temperature by cumulated damage - systematic effect with intrinsic statistical scatter, driven by thermo-mechanical stress DMOS temperature > 550°C

T_limit leading to immediate destruction of the DMOS-device by thermal runaway in the product- and load-specific pulse Shape

insufficient robustness of technology

< 400°C

worst case T_peak specified lifetime

worst case T_peak 1st event

worst case T_ambient

+85°C

Specified lifetime Nelhiebel, EMPA 18.11.2011

Copyright © Infineon Technologies 2010. All rights reserved.

log stress (#pulses) Page 8

degradation phenomena due to power pulses

Cracks in Cu power metal

Severe plastic deformation (voiding) of AlCu power metal Al-based PowerMetal, 3M pulses

Nelhiebel, EUFANET 17.10.2012

Copyright © Infineon Technologies 2010. All rights reserved.

Page 9

development: the power metal as heat buffer

 Thick power metals reduce the peak temperature and enable area shrinks Nelhiebel, EUFANET 17.10.2012

Copyright © Infineon Technologies 2010. All rights reserved.

Page 10

thick power metal for thermal management = relevance of metal cracks and voids Cracks in Cu power metal air gap

 Blocked heat transfer to copper  increasing Si temperature  thermal runaway

+50 K in Si

 Thick metals gain importance when shrinking power MOSFETs for automotive and industrial applications  Voids and cracks in thick metal layer stacks (including dielectrics and interconnect) are the relevant degradation phenomena  Non-destructive analysis methods for such defects are required! Nelhiebel, EUFANET 17.10.2012

Copyright © Infineon Technologies 2010. All rights reserved.

Page 11

Non-destructive ways to find degradation induced metal voids and cracks? Example SAM intact power metal

Flip device, remove lead frame Scanning transducer – emitted wave melt-up

Reflected waves as a function of local power metal aspect

degraded power metal

Nelhiebel et al, ESREF 2011

defects in power metal Nelhiebel, EUFANET 17.10.2012

Copyright © Infineon Technologies 2010. All rights reserved.

Poschgan et al, ESREF 2012 Page 12

outline  Power pulses and area shrinks of power semiconductor devices  corresponding temperatures, and how to survive  Failure vs degradation, destructive vs non-destructive analysis  Defects in thick metallization layers ¬ Relevance and detectability

 Material parameters of metals and dielectrics  Microstructure of metal layers ¬ Grains, phases, contaminands

 Measuring mechanical parameters ¬ Metals, dielectrics

 New materials, new approaches  decapsulation revisited

 conclusion Nelhiebel, EUFANET 17.10.2012

Copyright © Infineon Technologies 2010. All rights reserved.

Page 13

Effect of power cycles on copper grain microstructure (~100k pulses) initial

Poly-heater test structure Thinning from backside, Large area FIB cuts through thick Cu

stressed Nelhiebel, EUFANET 17.10.2012

Copyright © Infineon Technologies 2010. All rights reserved.

Page 14

Passive temperature cycles of Al layers on silicon

(PhD thesis W. Heinz, KAI/Erich Schmid Institut Leoben, Prof. G. Dehm) 600nm polycrystalline Al 0 cycles

1.000 cycles

W. Heinz, R. Pippan, G. Dehm, Materials Science and Engineering A 527 (2010) 7757

600nm epitaxial Al 0 cycles

1.000 cycles

Film stress at 25°C

10.000 cycles

10.000 cycles

Benefit of epitaxial metal proven by SEM + EBSD

Nelhiebel, EUFANET 17.10.2012

Copyright © Infineon Technologies 2010. All rights reserved.

Page 15

mechanical characterisation of copper

(PhD thesis M. Smolka, KAI/Erich Schmid Institut Leoben, Prof. G. Dehm) Presented @ EMRS 2011, Nice, France M. Smolka, C. Motz, T. Detzel, W. Robl, T. Griesser, A. Wimmer, er and G. Dehm (2012). Novel temperature dependent tensile test of freestanding copper thin film structures. Review of Scientific Instruments. 83 (6), 064702.

Temperature dependent yield stress of a thin copper layer measured by micro-tensile tests

RT 200°C 400°C

150 Stress (MPa)

Stress (MPa)

150

100

50

Ultimate tensile strength Yield stress

100

50

0

0 0

10

20

30

Strain (%) Nelhiebel, EMPA 18.11.2011

40

50

0

100

200

300

400

Temperature (°C) Copyright © Infineon Technologies 2010. All rights reserved.

Page 16

mechanical characterisation of copper

(PhD thesis M. Smolka, KAI/Erich Schmid Institut Leoben, Prof. G. Dehm) 50 µm

100 µm

Tensile direction

Nelhiebel, EMPA 18.11.2011

Force measurement

Heating 1 for samples + thermocouple

Heating 2 for gripper + thermocouple

Copyright © Infineon Technologies 2010. All rights reserved.

Page 17

Micro tensile testing

grain with „bad“ orientation fail first

E. Schmid, W. Boas, Plasticity of crstals, with special reference to metals (1935)

Nelhiebel, EUFANET 17.10.2012

Copyright © Infineon Technologies 2010. All rights reserved.

Page 18

mechanical characterisation of dielectrics

(PhD thesis K. Matoy, KAI/Erich Schmid Institut Leoben, Prof. G. Dehm)

K. Matoy, H. Schönherr, T. Detzel and G. Dehm (2010). Micron-sized fracture experiments on amorphous SiOx films and SiOx/SiNx multi-layers. Thin Solid Films. 518 (20), 5796-5801. K. Matoy, T. Detzel, M. Müller, C. Motz and G. Dehm (2010). Interface fracture properties of thin films studied by using the micro-cantilever fraction technique. Surface and Coatings Technology. 204 (6-7), 878-881.

Metal/dielectric adhesion measured by micro-cantilever tests Nelhiebel, EUFANET 17.10.2012

Copyright © Infineon Technologies 2010. All rights reserved.

Page 19

metallization stacks for thermomechanical robustness = relevance of material parameters Cracks in Cu power metal air gap

 crack and void initiation by thermomechanical stress  as a function of material parameters of metals and dielectrics

+50 K in Si

 Complex multilayer structures for power metallization and interconnect, exposed to violent thermal rises imply high thermomechanical stress  Microstructure, „contaminands“ and (possibly) intermetallic phases define material parameters and thus robustness  Material parameters may change under stress

 methods for microstructure analysis and mechanical parameters are required Nelhiebel, EUFANET 17.10.2012 Copyright © Infineon Technologies 2010. All rights reserved.

Page 20

Semiconductor suitable methods for material parameter measurement? Example nanoindenter

Laser heating for Temperature up to 500°C

• Localized measurement of mechanical properties • Temperature dependent mechanical properties • Compression / Tension / Bending test possible • Adhesion Nelhiebel, EUFANET 17.10.2012

Copyright © Infineon Technologies 2010. All rights reserved.

Page 21

outline  Power pulses and area shrinks of power semiconductor devices  corresponding temperatures, and how to survive  Failure vs degradation, destructive vs non-destructive analysis  Defects in thick metallization layers ¬ Relevance and detectability

 Material parameters of metals and dielectrics  Microstructure of metal layers ¬ Grains, phases, contaminands

 Measuring mechanical parameters ¬ Metals, dielectrics

 New materials, new approaches  decapsulation revisited

 conclusion Nelhiebel, EUFANET 17.10.2012

Copyright © Infineon Technologies 2010. All rights reserved.

Page 22

Review: difficulties in decapsulation of copper-devices motivate „inverse“ SAM

Nelhiebel, EUFANET 17.10.2012

Copyright © Infineon Technologies 2010. All rights reserved.

Page 23

Advanced decapsulation procedures for copper based power metal stacks (J. Maynollo, IFAT QM FA)  Copper metallization & copper bonds  Organic solvant vs acidic decapsulation 

Anilin/ Indolin/ Aceton/Brij®35

Nelhiebel, EUFANET 17.10.2012



Optimierte Säuredekapsulierung

Copyright © Infineon Technologies 2010. All rights reserved.

Page 24

conclusion  Trend in automotive and industrial power semiconductors  Power semiconductor devices get smaller and hotter  Power metallization and interconnect stacks become thicker and more

complex, involving new materials

 degradation modes are cracks and voids in the

metallization/interconnect stack, blocking the heat transfer

 Mechanical robustness is achieved by material parameter engineering

 Requirements to FA  Degradation analysis instead of failure analysis  Nondestructive methods for the characterisation of voids, cracks and

delaminations inside the metal/dielectric layers

 Mechanical material parameters of metals and dielectrics must be

measured during development and production

 new analysis methods for new materials Nelhiebel, EUFANET 17.10.2012

Copyright © Infineon Technologies 2010. All rights reserved.

Page 25

Thank you for your attention

Nelhiebel, EUFANET 17.10.2012

Copyright © Infineon Technologies 2010. All rights reserved.

Page 26