Introduction to FA challenges for Future Technologies - eufanet

2. Extract of ITRS up to Edition 2007. SOI. PD. 8 (1.0). 3.5. 45. 2004. Beyond ... 2. Poly. Pocket /. Halo. Implants. Bulk Si. 12 (2.5). 2.2. 120. 1998. Interconn. Gate.
501KB taille 15 téléchargements 286 vues
Introduction to FA challenges for Future Technologies: Nanoprobing Key Role Christian Boit TUB Berlin University of Technology, Germany EUFANET Workshop 2008 Maastricht NL Oct 2, 2008 1

Extract of ITRS up to Edition 2007 Approxim. Min phys. Year of Feature Introduction Size [nm] 1998

120

Perform. Clock On Chip [GHz]

Inv. Delay (NMOS intrinsic) [ps]

2.2

12 (2.5)

Materials Device Concepts

Bulk Si 2000

90

2.5

10 (1.8)

Active

Gate

Pocket / Halo Implants

SiO2 Cu Poly

2002

65

3.0

9 (1.3)

2004

45

3.5

8 (1.0)

2006

32

4.2

7 (0.8)

2008

23

5.0

5 (0.6)

2010

18

5.8

4 (0.4)

2012

14

6.8

3.5 (0.3)

Strain SiGe SOI PD

Interconn.

Low k

Raised S/D Ge S/D

Ultra Thin Body FD

Ge / III-V Channels

Dual Gates FIN FETs

More of above

High k Diel. Metal Gates

Ultra low k

Air? 2014

11

7.9

3 (0.2)

Beyond CMOS 2

Optical Backside Circuit Analysis • GHz regime managed by most dynamic techniques • Feature Size Resolution: 2 levels of analysis – Level 1: IR + SIL to identify critical area – Level 2: Nanoprobing to verify critical node – prep circuit destructive increasing need for a high feature resolution probing tool set

Laser

Detector Photon Emission

LVP

Laser Stimulated Electrical Signal 3

Nanoprobing (AFP) of Identified Node se r La

Probe Tip

Tip

AFM Feedback

Piezo

Additonal Signals

AFP needles tungsten contacts IMD PW

bulk-Si

● Resolution < 50nm ● Parallel lapping down to contact layer ● Isolated devices ● Low ohmic contact ● Destructive to circuit

Detector

W NW bulk Silicon 4

Backside OptiFIB Circuit Edit

NW p+

STI p-Poly CoSi

IMD

W M1

FIB deposited Pt

Contacts to Silicon levels – low risk of charging & of size limitation PW n+ n-Poly

5

FIB Backside Trench Procedure ● localized FIB trench ca. 200x200µm2 Coaxial IR Column: planarity check of trench bottom to chip levels (fringes) - stopping on n-wells - stopping on STI < 400nm remaining Si up to 200x200µm2 STI

ΔZ≈130nm 6

frontside

AFP

backside ● FIB backside process

● parallel lapping down to contact layer ● isolated devices ● low ohmic contact

● devices not isolated ● creation of new circuit nodes ● Circuit fully functional

● Destructive to circuit AFP needles tungsten contacts IMD bulk-Si

PW

FIB Pt W

D

S

G

NW bulk Silicon 7

UltraThin Si - Ideal Platform for NanoAnalysis Ultra Thin Backside Technique

IR Technique

Visible or UV Laser Stimulation Nanoprobing, C-AFM E-Beam Techniques: - Voltage probing - E Beam induced photocurrent

Dyn. LS

e-

Light

STI

LVP, TRE Dyn. LS

Nano Probes

n-well ≈350nm

M1 M2 8

Nanoscale Potential Technique

Resolution

Potential

Comment

Optical through bulk Si (IR) Nanoprobing

500nm 50nm

150nm (SIL) 10nm

E Beam

100nm

20nm

Limited resolution Limited dynamics Material degradation?

Optical through ultra thin Silicon UV through ultra thin silicon

300nm

< 100nm (SIL) < 50nm

150nm

Realization complex Material degradation?

9

10

Silicon On Insulator not to scale

etc M2

M2 M1

Cu W FuSi

ILD STI STI

n+ ≅0,1µm Ge/III-V Ge/III-V BOX = Buried Oxide Layer≅0,3µm ⇒ Silicon On Insulator SOI

SiGe p+

≥ 100µm

≅1,5µm

SX SX 11

Architecture Trends

see e.g. T.Skotnicki, short course VLSI 2004 or ITRS roadmap 2003 SOI BOX SON GP DG

Silicon On Insulator, PD Partially Depleted, FD Fully Depleted Buried Oxide Silicon On Nothing Ground Plane Double Gate

3D ?

12

Ultra Thin Body UTB SOI: Partially depleted = PD

VGS = 0

Poly DepleGate ted Si

Fully Depleted FD

BOX Si

|VGS| > |VT|

Conductive Channel

Subthreshold Slope ≅ 60mV / dec FD active layer ∼ 20nm => UTB 13

Interaction Dimensions • 20nm Gate length Technology • Ultra Thin Silicon UTS (SOI PD) • Ultra thin body UTB (SOI FD / Dual Gate etc)

100nm

20nm

100nm

40nm

nm 0 2

m n 50

40nm

m n 20

m n 50 14