Low Power Dual Operational Amplifiers

ground. □ Differential input voltage range equal to the power supply voltage. □ Large output voltage swing 0V to (Vcc - 1.5V). Description. These circuits consist ...
272KB taille 1 téléchargements 381 vues
LM158-LM258-LM358 LM158A-LM258A-LM358A Low Power Dual Operational Amplifiers ■

Internally frequency compensated



Large DC voltage gain: 100dB



Wide bandwidth (unity gain): 1.1mHz (temperature compensated)



Very low supply current/op (500µA) essentially independent of supply voltage



Low input bias current: 20nA (temperature compensated)



Low input offset voltage: 2mV



Low input offset current: 2nA



Input common-mode voltage range includes ground



Differential input voltage range equal to the power supply voltage



Large output voltage swing 0V to (Vcc - 1.5V)

Description These circuits consist of two independent, highgain, internally frequency-compensated which were designed specifically to operate from a single power supply over a wide range of voltages. The low power supply drain is independent of the magnitude of the power supply voltage. Application areas include transducer amplifiers, DC gain blocks and all the conventional op-amp circuits which now can be more easily implemented in single power supply systems. For example, these circuits can be directly supplied with the standard +5V which is used in logic systems and will easily provide the required interface electronics without requiring any additional power supply. In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage.

July 2005

N DIP-8 (Plastic Package)

D&S SO-8 & miniSO-8 (Plastic Micropackage)

P TSSOP8 (Thin Shrink Small Outline Package)

Pin Connections (top view) 1

8

2

-

3

+

4

7 -

6

+

5

1 - Output 1 2 - Inverting input 3 - Non-inverting input 4 - VCC 5 - Non-inverting input 2 6 - Inverting input 2 7 - Output 2 8 - VCC +

Rev 3 1/16 www.st.com

16

LM158-LM258-LM358-LM158A-LM258A-LM358A

Order Codes Part Number LM158N LM158D LM158DT LM258AN LM258AD LM258ADT

Temperature Range -55°C, +125°C

LM258APT LM258AST LM258N LM258D LM258DT

-40°C, +105°C

LM258PT LM358N LM358AN LM358D LM358DT LM358AD LM358ADT LM358PT LM358APT LM358ST LM358AST

2/16

Package

Packaging

Marking

DIP-8

Tube

LM158N

SO-8

Tube or Tape & Reel

158

DIP-8

Tube

LM258A

SO-8

Tube or Tape & Reel

258A

Tape & Reel

258A

Tape & Reel Tube

K408 LM258N

SO-8

Tube or Tape & Reel

258

TSSOP-8 (Thin Shrink Outline Package)

Tape & Reel

258

DIP-8

Tube

LM358N LM358AN

SO-8

Tube or Tape & Reel

TSSOP-8 (Thin Shrink Outline Package) miniSO-8 DIP-8

358 358A

0°C, +70°C TSSOP-8 (Thin Shrink Outline Package)

Tape & Reel

miniSO-8

Tape & Reel

358 358A K405 K404

LM158-LM258-LM358-LM158A-LM258A-LM358A

1

Absolute Maximum Ratings

Absolute Maximum Ratings Table 1.

Key parameters and their absolute maximum ratings

Symbol VCC

Parameter

LM158,A

LM258,A

LM358,A

Unit

Supply voltage

+/-16 or 32

V

Vi

Input Voltage

-0.3 to +32

V

Vid

Differential Input Voltage

+32

V

Ptot

Power Dissipation (1)

500

mW

Output Short-circuit Duration (2) Iin

Input Current (3)

Toper

Operating Free-air Temperature Range

Tstg

Storage Temperature Range

Tj Rthja

ESD

Infinite 50 -55 to +125 -40 to +105

mA 0 to +70

°C

-65 to +150

°C

Maximum Junction Temperature

150

°C

Thermal Resistance Junction to Ambient(4) SO8 TSSOP8 DIP8 miniSO8

125 120 85 190

°C/W

HBM: Human Body Model(5)

300

V

MM: Machine Model(6)

200

V

CDM: Charged Device Model

1.5

kV

1. Power dissipation must be considered to ensure maximum junction temperature (Tj) is not exceeded. 2. Short-circuits from the output to VCC can cause excessive heating if VCC > 15V. The maximum output current is approximately 40mA independent of the magnitude of VCC. Destructive dissipation can result from simultaneous short-circuit on all amplifiers. 3. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diodes clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. this transistor action can cause the output voltages of the Op-amps to go to the VCC voltage level (or to ground for a large overdrive) for the time duration than an input is driven negative. This is not destructive and normal output will set up again for input voltage higher than -0.3V. 4. Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short-circuit on all amplifiers 5. Human body model, 100pF discharged through a 1.5kΩ resistor into pin of device. 6. Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC with no external series resistor (internal resistor < 5Ω), into pin to pin of device.

3/16

Typical Application Schematic

2

LM158-LM258-LM358-LM158A-LM258A-LM358A

Typical Application Schematic Figure 1.

Schematic diagram (1/2 LM158) V CC

6µA

4µA

100µA

Q5 Q6

CC Inverting input

Q2

Q3

Q1

Q7

Q4

R SC Q11

Non-inverting input

Output Q13 Q10 Q8

Q12

Q9 50µA GND

4/16

LM158-LM258-LM358-LM158A-LM258A-LM358A

3

Electrical Characteristics

Electrical Characteristics

Table 2.

Symbol

Electrical characteristics for VCC + = +5V, VCC -= Ground, Vo = 1.4V, Tamb = +25°C (unless otherwise specified)

Parameter

LM158A-LM258A LM358A Min.

Vio

Input Offset Voltage - note (1) Tamb = +25°C LM158, LM258 LM158A Tmin ≤ T amb ≤ T max LM158, LM258

Typ.

Max.

1

3

LM158-LM258 LM358 Min.

Typ.

Max.

2

7 5

2 4

Unit

mV

9 7

Iio

Input Offset Current Tamb = +25°C Tmin ≤ T amb ≤ T max

2

10 30

2

30 40

nA

Iib

Input Bias Current - note (2) Tamb = +25°C Tmin ≤ T amb ≤ T max

20

50 100

20

150 200

nA

Large Signal Voltage Gain Avd

VCC = +15V, RL = 2kΩ, Vo = 1.4V to 11.4V Tamb = +25°C Tmin ≤ T amb ≤ T max

50 25

100

50 25

100

65 65

100

65 65

100

V/mV

Supply Voltage Rejection Ratio (Rs ≤ 10kΩ) SVR

ICC

VCC+ = 5V to 30V Tamb = +25°C Tmin ≤ T amb ≤ T max Supply Current, all Amp, no load Tmin ≤ T amb ≤ T max VCC = +5V Tmin ≤ T amb ≤ T max V CC = +30V

0.7

1.2 2

0.7

dB

1.2 2

mA

VCC+ 1.5

V

Input Common Mode Voltage Range VCC = +30V - note (3) Tamb = +25°C Tmin ≤ T amb ≤ T max

0 0

CMR

Common Mode Rejection Ratio (Rs ≤ 10kΩ) Tamb = +25°C Tmin ≤ Tamb ≤ Tmax

70 60

85

Isource

Output Current Source VCC = +15V, Vo = +2V, V id = +1V

20

40

Output Sink Current (Vid = -1V) VCC = +15V, Vo = +2V VCC = +15V, Vo = +0.2V

10 12

20 50

Vicm

Isink

VCC+ 1.5 VCC+ -2

60

0 0

VCC+ -2

70 60

85

20

40

10 12

20 50

dB

60

mA

mA µA

5/16

Electrical Characteristics Table 2.

Symbol

LM158-LM258-LM358-LM158A-LM258A-LM358A

Electrical characteristics for VCC + = +5V, VCC -= Ground, Vo = 1.4V, Tamb = +25°C (unless otherwise specified)

Parameter

LM158A-LM258A LM358A Min.

VOPP

VOH

Output Voltage Swing (RL = 2kΩ) Tamb = +25°C Tmin ≤ Tamb ≤ Tmax

0 0

High Level Output Voltage (VCC+ = 30V) Tamb = +25°CRL = 2kΩ Tmin ≤ T amb ≤ T max Tamb = +25°CRL = 10kΩ Tmin ≤ T amb ≤ T max

26 26 27 27

Typ.

Max. VCC+ 1.5 VCC+ -2

27

LM158-LM258 LM358 Min.

VCC+ -2

27

Low Level Output Voltage (RL = 10kΩ) Tamb = +25°C Tmin ≤ T amb ≤ T max

SR

Slew Rate VCC = 15V, V i = 0.5 to 3V, RL = 2kΩ, CL = 100pF, unity Gain

0.3

0.6

0.3

0.6

Gain Bandwidth Product VCC = 30V, f =100kHz,V in = 10mV, R L = 2kΩ, CL = 100pF

0.7

1.1

0.7

1.1

GBP

THD

Total Harmonic Distortion f = 1kHz, Av = 20dB, R L = 2kΩ, Vo = 2V pp, CL = 100pF, VO = 2Vpp

20 20

V

28

VOL

5

Max. VCC+ 1.5

0 0

26 26 27 27

28

Typ.

Unit

5

20 20

mV

V/µs

MHz

%

0.02

0.02

Equivalent Input Noise Voltage f = 1kHz, R s = 100Ω, VCC = 30V

55

55

DV io

Input Offset Voltage Drift

7

15

7

30

µV/ °C

DIIio

Input Offset Current Drift

10

200

10

300

pA/ °C

Channel Separation - note (4) 1kHz ≤ f ≤ 20kHZ

120

en

Vo1 /Vo2

nV -----------Hz

120

dB

1. Vo = 1.4V, Rs = 0Ω, 5V < VCC+ < 30V, 0 < Vic < VCC+ - 1.5V 2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines. 3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is VCC+ - 1.5V, but either or both inputs can go to +32V without damage. 4. Due to the proximity of external components insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequencies.

6/16

LM158-LM258-LM358-LM158A-LM258A-LM358A Figure 2.

Open loop frequency response

OPEN LOOP FREQUENCY RESPONSE (NOTE 3) 140

Figure 3.

Large signal frequency response

LARGE SIGNAL FREQUENCY RESPONSE 20

100

VCC

-

VI

VCC/2

80

VO

+

VCC = 30V & -55°C Tamb

60

100k W

10M W

0.1mF

OUTPUT SWING (Vpp)

120

VOLTAGE GAIN (dB)

Electrical Characteristics

+125°C

40 20

VCC = +10 to + 15V & -55°C Tamb +125°C

0

1k W

15

10

100

1k

10k

100k

1M

10

5

10M

1k

10k

Voltage follower pulse response

Figure 5.

OUTPUT VOLTAGE (mV)

OUTPUT VOLTAGE (V)

2 1 0

INPUT VOLTAGE (V)

Voltage follower pulse response

500

RL 2 k W VCC = +15V

3 2

+

450

eO el

-

50pF

400 Input 350 Output 300 Tamb = +25°C VCC = 30 V

1 0

10

20

30

250

40

0

1

2

TIME (ms)

Figure 7.

OUTPUT VOLTAGE (V)

VI = 0 V VCC = +30 V

50

VCC = +15 V

40 30

VCC = +5 V

20

-55 -35

5

25

45

65

7

8

1

v cc /2

85 105

TEMPERATURE (°C)

125

v cc -

0.1

IO VO

+

Tamb = +25°C

0.01 -15

6

VCC = +5V VCC = +15V VCC = +30V

10 0

5

OUTPUT CHARACTERISTICS 10

60

4

Output characteristics

INPUT CURRENT (Note 1) 90

70

3

TIME (ms)

Input current

80

1M

VOLTAGE FOLLOWER PULSSE RESPONSE (SMALL SIGNAL)

4 3

100k

FREQUENCY (Hz)

VOLAGE FOLLOWER PULSE RESPONSE

INPUT CURRENT (mA)

2k W

+

+7V

FREQUENCY (Hz)

Figure 6.

VO

VI

0 1.0

Figure 4.

+15V

-

0,001

0,01

0,1

1

10

100

OUTPUT SINK CURRENT (mA)

7/16

Electrical Characteristics Output characteristics

Figure 9.

Current limiting CURRENT LIMITING (Note 1)

OUTPUT CHARACTERISTICS 8

90

OUTPUT CURRENT (mA)

V CC

7 6

TO VCC+ (V)

OUTPUT VOLTAGE REFERENCED

Figure 8.

LM158-LM258-LM358-LM158A-LM258A-LM358A

+

V CC /2

5

VO IO

-

4 3 2

Independent of V CC T amb = +25°C

-

80

60

+

50 40 30 20 10

1

0

0,001 0,01

0,1

IO

70

1

10

-55 -35

100

OUTPUT SOURCE CURRENT (mA)

Figure 10. Input voltage range

-15

5

25

45

160 VOLTAGE GAIN (dB)

INPUT VOLTAGE (V)

Négative

Positive

0

5

10

R L = 20k W 120 R L = 2k W

80 40

0

15

10

Figure 12. Input voltage range

30

40

Figure 13. Supply current

160

SUPPLY CURRENT 4

R L = 20k W

VCC

120

SUPPLY CURRENT (mA)

VOLTAGE GAIN (dB)

20

POSITIVE SUPPLY VOLTAGE (V)

POWER SUPPLY VOLTAGE (±V)

R L = 2k W

80 40

0

10

20

30

POSITIVE SUPPLY VOLTAGE (V)

8/16

125

Figure 11. Positive supply voltage

INPUT VOLTAGE RANGE

5

85 105

TEMPERATURE (°C)

15

10

65

ID

mA

3

-

2

+

Tamb = 0°C to +125°C

1

Tamb = -55°C 0

10

20

POSITIVE SUPPLY VOLTAGE (V)

30

LM158-LM258-LM358-LM158A-LM258A-LM358A

INPUT CURRENT (nA)

100 75 50 25

Tamb= +25°C

0 10 20 30 POSITIVE SUPPLY VOLTAGE (V)

POWER SUPPLY REJECTION RATIO (dB)

Figure 16. Power supply rejection ratio

115 110 SVR 105 100 95 90 85 80 75 70 65 60-55-35-15 5 25 45 65 85 105 125 TEMPERATURE (°C)

GAIN BANDWIDTH PRODUCT (MHz)

Figure 15. Gain bandwidth product 1.5 1.35 1.2 1.05 0.9 0.75 0.6

VCC =

15V

0.45 0.3 0.15 0 -55-35-15 5 25 45 65 85 105 125 TEMPERATURE (°C)

Figure 17. Common mode rejection ratio COMMON MODE REJECTION RATIO (dB)

Figure 14. Input current

Electrical Characteristics

115 110 105 100 95 90 85 80 75 70 65 60-55-35-15 5 25 45 65 85 105 125 TEMPERATURE (°C)

9/16

Typical Applications

4

LM158-LM258-LM358-LM158A-LM258A-LM358A

Typical Applications (single supply voltage) Vcc = +5Vdc

Figure 18. AC coupled inverting amplifier Rf 100k W R1 10kW

10k W

2VPP

0

eo

RB 6.2kW R3 100kW

eO

1/2 LM158

Co

1/2 LM158

eI ~ R2 VCC 100k W

A V = 1 + R2 R1 (As shown A V = 101)

Rf

R1 (as shown A V = -10)

+5V

RL 10k W

R2 1M W

e

O

R1 10k W

(V)

CI

AV= -

Figure 19. Non-inverting DC amplifier

C1 10mF

0

Figure 20. AC coupled non-inverting amplifier R1 100kW

Co

1/2 LM158

100kW

eI ~

2VPP

0

eo

e2

100k W

RL 10k W

e3

100kW

RB 6.2kW R3 1M W

1/2 LM158

eO

100kW

R4 100kW e4

VCC C2 10mF

100kW

A = 1 + R2 V R1 (as shown A V = 11)

C1 0.1mF

CI

Figure 21. DC summing amplifier e1

R2 1MW

e I (mV)

R5 100kW

100kW

eo = e1 + e 2 - e3 - e 4 where (e1 + e 2) ≥ (e3 + e 4) to keep eo ≥ 0V

Figure 22. High input Z, DC differential amplifier Figure 23. High input Z adjustable gain DC instrumentation amplifier R1 100k W

R4 100kW

R2 100kW

1/2 LM158

e1

R1 100kW 1/2 LM158

R3 100kW

+V1 +V2

R2 2k W

1/2 LM158

R5 100k W

Vo e2

R2

if R1 = R5 and R3 = R4 = R6 = R7 e o = [ 1 + 2R1 ----------- ] ( (e2 + e 1) R2

As shown eo = 101 (e2 + e 1) As shown eo = 101 (e2 + e1)

10/16

R4 100k W

1/2 LM158

Gain adjust

1/2 LM158

if R1 = R5 and R3 = R4 = R6 = R7 eo = [1 + 2R1 ----------- ] ( (e 2 + e1)

R3 100k W

R6 100k W

R7 100k W

eO

LM158-LM258-LM358-LM158A-LM258A-LM358A Figure 24. Using symmetrical amplifiers to reduce input current

I eI

IB

I

IB

1/2 LM158

Typical Applications

Figure 25. Low drift peak detector

IB

eo

2N 929

IB

1mF ZI

IB 3MW

C

eI

0.001mF IB

IB

1/2 LM158

Input current compensation

1.5MW

R 1MW

eo Zo

2I B

2N 929 2IB

1/2 LM158

1/2 LM158

0.001mF IB 3R 3MW IB

1/2 LM158

Input current compensation

Figure 26. Active band-pass filter

R1 100kW C1 330pF R2 100kW +V1

1/2 LM158

R5 470kW

R4 10MW

1/2 LM158

C2 R3 100kW

330 pF

R6 470kW Vo

1/2 LM158

R7 100kW VCC R8 100kW

C3 10mF

11/16

Package Mechanical Data

5

LM158-LM258-LM358-LM158A-LM258A-LM358A

Package Mechanical Data In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com..

5.1

DIP8 Package

Plastic DIP-8 MECHANICAL DATA mm.

inch

DIM. MIN. A

TYP

MAX.

MIN.

3.3 0.7

B

1.39

1.65

0.055

B1

0.91

1.04

0.036

b1

MAX.

0.130

a1

b

TYP.

0.028

0.5 0.38

0.041 0.020

0.5

D

0.065

0.015

0.020

9.8

0.386

E

8.8

0.346

e

2.54

0.100

e3

7.62

0.300

e4

7.62

0.300

F

7.1

0.280

I

4.8

0.189

L Z

3.3 0.44

0.130 1.6

0.017

0.063

P001F

12/16

LM158-LM258-LM358-LM158A-LM258A-LM358A

5.2

Package Mechanical Data

SO-8 Package

SO-8 MECHANICAL DATA DIM.

mm. MIN.

MAX.

MIN.

A

1.35

1.75

0.053

0.069

A1

0.10

0.25

0.04

0.010

A2

1.10

1.65

0.043

0.065

B

0.33

0.51

0.013

0.020

C

0.19

0.25

0.007

0.010

D

4.80

5.00

0.189

0.197

E

3.80

4.00

0.150

e

TYP

inch

1.27

TYP.

MAX.

0.157 0.050

H

5.80

6.20

0.228

0.244

h

0.25

0.50

0.010

0.020

L

0.40

1.27

0.016

0.050

k ddd

8˚ (max.) 0.1

0.04

0016023/C

13/16

Package Mechanical Data

5.3

14/16

MiniSO-8 Package

LM158-LM258-LM358-LM158A-LM258A-LM358A

LM158-LM258-LM358-LM158A-LM258A-LM358A

5.4

Package Mechanical Data

TSSOP8 Package

TSSOP8 MECHANICAL DATA mm.

inch

DIM. MIN.

TYP

A

MAX.

MIN.

TYP.

1.2

A1

0.05

A2

0.80

b

MAX. 0.047

0.15

0.002

1.05

0.031

0.19

0.30

0.007

0.012

c

0.09

0.20

0.004

0.008

D

2.90

3.00

3.10

0.114

0.118

0.122

E

6.20

6.40

6.60

0.244

0.252

0.260

E1

4.30

4.40

4.50

0.169

0.173

0.177

e

0.65

K



L

0.45

L1

1.00

0.60 1

0.006 0.039

0.041

0.0256 8˚



0.75

0.018

8˚ 0.024

0.030

0.039

0079397/D

15/16

LM158-LM258-LM358-LM158A-LM258A-LM358A

R e v is io n H is to r y

6

Revision History Date

Revision

Changes

July 2003

1

First Release

Jan. 2005

2

Rthja and Tj parameters added in AMR Table 1 on page 3

July 2005

3

ESD protection inserted in Table 1 on page 3

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

16/16