Quad Operational Amplifiers

4.0. , INPUT COMMON MODE VOLTAGE RANGE (V). V. 600. 500. 400. 300. 200. 100. 0 ..... CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND ...
277KB taille 3 téléchargements 341 vues
MC33078, MC33079 Low Noise Dual/Quad Operational Amplifiers The MC33078/9 series is a family of high quality monolithic amplifiers employing Bipolar technology with innovative high performance concepts for quality audio and data signal processing applications. This family incorporates the use of high frequency PNP input transistors to produce amplifiers exhibiting low input voltage noise with high gain bandwidth product and slew rate. The all NPN output stage exhibits no deadband crossover distortion, large output voltage swing, excellent phase and gain margins, low open loop high frequency output impedance and symmetrical source and sink AC frequency performance. The MC33078/9 family offers both dual and quad amplifier versions and is available in the plastic DIP and SOIC packages (P and D suffixes).

http://onsemi.com MARKING DIAGRAMS DUAL

MC33078P AWL YYWWG

PDIP−8 P SUFFIX CASE 626

8

1

1

Features

• • • • • • • • • • • •

8

Dual Supply Operation: $5.0 V to $18 V

8

Low Voltage Noise: 4.5 nV/ ǸHz Low Input Offset Voltage: 0.15 mV Low T.C. of Input Offset Voltage: 2.0 mV/°C Low Total Harmonic Distortion: 0.002% High Gain Bandwidth Product: 16 MHz High Slew Rate: 7.0 V/ms High Open Loop AC Gain: 800 @ 20 kHz Excellent Frequency Stability Large Output Voltage Swing: +14.1 V/ −14.6 V ESD Diodes Provided on the Inputs Pb−Free Packages are Available

8 1

14 PDIP−14 P SUFFIX CASE 646

14 1

14

R2 Q9

Q5

Neg

Pos

J1 Amplifier Biasing

D3

Q11

R7

C2 Q8

Q3 D4

Z1

Q1

R1

D2

C1

R3

R4 Q7

R6

MC33079DG AWLYWW 1

A WL, L YY, Y WW, W G or G

= Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package

C3 R9

Q6 Q2

SOIC−14 D SUFFIX CASE 751A

VCC

Q4

MC33079P AWLYYWWG

1

1

Q3

1

33078 ALYW G

QUAD

14

D1

SOIC−8 D SUFFIX CASE 751

Q10

Q12

Vout

ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

R5 VEE

Figure 1. Representative Schematic Diagram (Each Amplifier)

© Semiconductor Components Industries, LLC, 2006

October, 2006 − Rev. 7

1

Publication Order Number: MC33078/D

MC33078, MC33079 PIN CONNECTIONS

Output 1

DUAL

QUAD

CASE 626/751

CASE 646/751A

1

8 VCC − 1 +

2 Inputs 1

VEE

3

7 Output 2 − 2 +

4

Output 1 Inputs 1

6

VCC

Inputs 2 5

Inputs 2

(Dual, Top View)

Output 2

1

14

2

13

*

1 3 )

* ) 12

4

4

11

5

) 10 3 * 9

)2 6 *

Output 4

7

8

Inputs 4 VEE Inputs 3 Output 3

(Quad, Top View)

MAXIMUM RATINGS Rating

Symbol

Value

Unit

VS

+36

V

VIDR

Note 1

V

Input Voltage Range

VIR

Note 1

V

Output Short Circuit Duration (Note 2)

tSC

Indefinite

sec

Supply Voltage (VCC to VEE) Input Differential Voltage Range

Maximum Junction Temperature

TJ

+150

°C

Storage Temperature

Tstg

− 60 to +150

°C

ESD Protection at any Pin MC33078 MC33079

− Human Body Model − Machine Model − Human Body Model − Machine Model

Vesd

600 200 550 150

V

Maximum Power Dissipation

PD

Note 2

mW

Operating Temperature Range

TA

−40 to +85

°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Either or both input voltages must not exceed the magnitude of VCC or VEE. 2. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded (see Figure 2).

http://onsemi.com 2

MC33078, MC33079 DC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = −15 V, TA = 25°C, unless otherwise noted.) Characteristics

Symbol |VIO|

Input Offset Voltage (RS = 10 W, VCM = 0 V, VO = 0 V) (MC33078) TA = +25°C TA = −40° to +85°C (MC33079) TA = +25°C TA = −40° to +85°C Average Temperature Coefficient of Input Offset Voltage RS = 10 W, VCM = 0 V, VO = 0 V, TA = Tlow to Thigh

DVIO/DT

Input Bias Current (VCM = 0 V, VO = 0 V) TA = +25°C TA = −40° to +85°C

IIB

Input Offset Current (VCM = 0 V, VO = 0 V) TA = +25°C TA = −40° to +85°C

IIO

Common Mode Input Voltage Range (DVIO = 5.0 mV, VO = 0 V)

VICR

Large Signal Voltage Gain (VO = $10 V, RL = 2.0 kW) TA = +25°C TA = −40° to +85°C

AVOL

Min

Typ

Max

− − − −

0.15 − 0.15 −

2.0 3.0 2.5 3.5



2.0



− −

300 −

750 800

− −

25 −

150 175

±13

±14



90 85

110 −

− −

Unit mV

mV/°C nA

nA

V dB

Output Voltage Swing (VID = $1.0V) RL = 600 W RL = 600 W RL = 2.0 kW RL = 2.0 kW RL = 10 kW RL = 10 kW

VO + VO − VO + VO − VO + VO −

− − +13.2 − +13.5 −

+10.7 −11.9 +13.8 −13.7 +14.1 −14.6

− − − −13.2 − −14

V

Common Mode Rejection (Vin = ±13V)

CMR

80

100



dB

Power Supply Rejection (Note 3) VCC/VEE = +15 V/ −15 V to +5.0 V/ −5.0 V

PSR

80

105



dB

+15 −20

+29 −37

− −

− − − −

4.1 − 8.4 −

5.0 5.5 10 11

Output Short Circuit Current (VID = 1.0 V, Output to Ground) Source Sink

ISC

Power Supply Current (VO = 0 V, All Amplifiers) (MC33078) TA = +25°C (MC33078) TA = −40° to +85°C (MC33079) TA = +25°C (MC33079) TA = −40° to +85°C

ID

3. Measured with VCC and VEE differentially varied simultaneously.

http://onsemi.com 3

mA

mA

MC33078, MC33079 AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = −15 V, TA = 25°C, unless otherwise noted.) Characteristics

Symbol

Min

Typ

Max

Unit

SR

5.0

7.0



V/ms

GBW

10

16



MHz

Unity Gain Bandwidth (Open Loop)

BW



9.0



MHz

Gain Margin (RL = 2.0 kW) CL = 0 pF CL = 100 pF

Am

− −

−11 − 6.0

− −

Phase Margin (RL = 2.0 kW) CL = 0 pF CL = 100 pF

fm

− −

55 40

− −

Slew Rate (Vin = −10 V to +10 V, RL = 2.0 kW, CL = 100 pF AV = +1.0) Gain Bandwidth Product (f = 100 kHz)

Deg

CS



−120



dB

Power Bandwidth (VO = 27 Vpp, RL = 2.0 kW, THD $ 1.0%)

BWp



120



kHz

Total Harmonic Distortion (RL = 2.0 kW, f = 20 Hz to 20 kHz, VO = 3.0 Vrms, AV = +1.0)

THD



0.002



%

Open Loop Output Impedance (VO = 0 V, f = 9.0 MHz)

|ZO|



37



W

Differential Input Resistance (VCM = 0 V)

Rin



175



kW

Differential Input Capacitance (VCM = 0 V)

Cin



12



pF

Equivalent Input Noise Voltage (RS = 100 W, f = 1.0 kHz)

en



4.5



nV/ √ Hz

Equivalent Input Noise Current (f = 1.0 kHz)

in



0.5



P, D MAXIMUM POWER DISSIPATION (mW)

Channel Separation (f = 20 Hz to 20 kHz)

dB

2400 I, IB INPUT BIAS CURRENT (nA)

800

2000

MC33078P & MC33079P

1600 MC33079D

1200 800 MC33078D

400 0 −55 −40 −20

VCM = 0 V TA = 25°C 600

400

200

0

0 20 40 60 80 100 120 140 160 TA, AMBIENT TEMPERATURE (°C)

0

Figure 2. Maximum Power Dissipation versus Temperature

5.0

10 15 VCC, | VEE |, SUPPLY VOLTAGE (V)

20

Figure 3. Input Bias Current versus Supply Voltage

1000

2.0 VCC = +15 V VEE = −15 V VCM = 0 V

800

V, IO INPUT OFFSET VOLTAGE (mV)

I, IB INPUT BIAS CURRENT (nA)

Hz√pA/

600 400

200 0 −55

−25

0 25 50 75 TA, AMBIENT TEMPERATURE (°C)

100

VCC = +15 V VEE = −15 V RS = 10 W 1.0 VCM = 0 V AV = +1

Unit 2 0

Figure 4. Input Bias Current versus Temperature

Unit 3

−1.0

−2.0 −55

125

Unit 1

−25

0 25 50 75 TA, AMBIENT TEMPERATURE (°C)

100

125

Figure 5. Input Offset Voltage versus Temperature

http://onsemi.com 4

I, IB INPUT BIAS CURRENT (nA)

600 VCC = +15 V VEE = −15 V TA = 25°C

500 400 300 200 100 0 −15

−10

−5.0

0

5.0

10

15

VCM, COMMON MODE VOLTAGE (V)

V ICR , INPUT COMMON MODE VOLTAGE RANGE (V)

MC33078, MC33079 VCC −0 VCC −0.5

VCC −1.5 Voltage Range VEE +1.5 VEE +1.0

VEE +0 −55

VCC −5.0

125°C 125°C 25°C

VEE +5.0 VEE +3.0 VEE +1.0

−55°C 0

1.0

2.0

3.0

I, CC SUPPLY CURRENT (mA)

75

100

4.0

VCC = +15 V VEE = −15 V RL < 100 W VID = 1.0 V

Sink 40 Source

30

20

10 −55

Figure 9. Output Short Circuit Current versus Temperature

±15 V

VCM = 0 V RL = ∞ VO = 0 V

±10 V

±5.0 V

7.0 6.0

MC33079

5.0

±15 V

4.0

±10 V

MC33078

±5.0 V ±4.0 V

−25

Supply Voltages

0 25 50 75 TA, AMBIENT TEMPERATURE (°C)

100

125

50

Figure 8. Output Saturation Voltage versus Load Resistance to Ground

8.0

0 −55

50

0 25 50 75 TA, AMBIENT TEMPERATURE (°C)

9.0

2.0 1.0

25

RL, LOAD RESISTANCE TO GROUND (kW)

10

3.0

0

Figure 7. Input Common Mode Voltage Range versus Temperature

VCC = +15 V VEE = −15 V

25°C

−25

TA, AMBIENT TEMPERATURE (°C)

| I|, SC OUTPUT SHORT CIRCUIT CURRENT (mA)

VCC −3.0

−VCM

VEE +0.5

CMR, COMMON MODE REJECTION (dB)

Vsat , OUTPUT SATURATION VOLTAGE (V)

−55°C

VCC = +3.0 V to +15 V VEE = −3.0 V to −15 V DVIO = 5.0 mV VO = 0 V

VCC −1.0

Figure 6. Input Bias Current versus Common Mode Voltage

VCC −1.0

+VCM

100

D VCM

140 120

CMR = 20Log

100 80 60 40

Figure 10. Supply Current versus Temperature

− ADM + D VCM D VO

D VO × ADM

VCC = +15 V VEE = −15 V VCM = 0 V DVCM = ±1.5 V TA = 25°C 1.0 k

10 k 100 k f, FREQUENCY (Hz)

1.0 M

Figure 11. Common Mode Rejection versus Frequency

http://onsemi.com 5

125

160

20 100

125

−25

10 M

140

DVO/ADM

+PSR = 20Log

120

DVCC

DVO/ADM

−PSR = 20Log

DVCC DVCC

+PSR

100

GWB, GAIN BANDWIDTH PRODUCT (MHz)

PSR, POWER SUPPLY REJECTION (dB)

MC33078, MC33079



ADM

DVO

+

80

−PSR

VEE

60 40 VCC = +15 V VEE = −15 V TA = 25°C

20

0 100

1.0 k

10 k 100 k f, FREQUENCY (Hz)

30

20

10

0

10 M

1.0 M

RL = 10 kW CL = 0 pF f = 100 kHz TA = 25°C

0

20

20

20 TA = 25°C

15 VO , OUTPUT VOLTAGE (Vp)

GWB, GAIN BANDWIDTH PRODUCT (MHz)

15

Figure 13. Gain Bandwidth Product versus Supply Voltage

15

10 VCC = +15 V VEE = −15 V f = 100 kHz RL = 10 kW CL = 0 pF

5.0

0 −55

−25

0 25 50 75 TA, AMBIENT TEMPERATURE (°C)

RL = 10 kW RL = 2.0 kW

5.0 0 −5.0

RL = 2.0 kW

−10 RL = 10 kW

−15 100

−20

125

VO − 0

A, VOL OPEN LOOP VOLTAGE GAIN (dB)

30 25 20 VCC = +15 V VCC = −15 V RL = 2.0 kW AV = +1.0 THD ≤ 1.0% TA = 25°C

10 5.0 10

100

1.0 k 10 k 100 k f, FREQUENCY (Hz)

1.0 M

5.0 10 15 VCC |VEE| , SUPPLY VOLTAGE (V)

20

Figure 15. Maximum Output Voltage versus Supply Voltage

35

15

VO +

10

Figure 14. Gain Bandwidth Product versus Temperature

VO , OUTPUT VOLTAGE (Vpp )

10

VCC |VEE| , SUPPLY VOLTAGE (V)

Figure 12. Power Supply Rejection versus Frequency

0

5.0

110

100

90

80

10 M

RL = 2.0 kW f ≤ 10 Hz DVO = 2/3 (VCC −VEE) TA = 25°C

0

Figure 16. Output Voltage versus Frequency

5.0 10 15 VCC |VEE| , SUPPLY VOLTAGE (V)

Figure 17. Open Loop Voltage Gain versus Supply Voltage

http://onsemi.com 6

20

110

50

105

| Z|, Ω O OUTPUT IMPEDANCE ()

VCC = +15 V VEE = −15 V RL = 2.0 kW f ≤ 10 Hz DVO = −10 V to +10 V

100

95

90 −55

−25

0

25

50

75

CS, CHANNEL SEPARATION (dB)

20 10

AV = 1000

125

AV = 10

100 k

Figure 19. Output Impedance versus Frequency

Drive Channel VCC = +15 V VEE = −15 V RL = 2.0 KW DVOD = 20 Vpp TA = 25°C

150 140

MC33079 100 W

10 kW −

120

VOM

+ 100 W

DVOA

CS = 20 Log

DVOM

100 10

100

1.0 k f, FREQUENCY (Hz)

10 k

VCC = +15 V VEE = −15 V VO = 1.0 Vrms TA = 25°C

0.1

VO

+

2.0 kW

0.001

100 k

10

100

1.0 k f, FREQUENCY (Hz)

10 k

100 k

Figure 21. Total Harmonic Distortion versus Frequency

10

SR, SLEW RATE (V/μ s)

AV = 100 RA

0.05

Vin

Vin = 2/3 (VCC −VEE) TA = 25°C

9.0

AV = 1000

0.1

− +

10 kW VO 2.0 kW

AV = 10 AV = 1.0

0.005



0.01

1.0

0.01

10 M

1.0

Figure 20. Channel Separation versus Frequency

VCC = +15 V VEE = −15 V 0.5 f = 2.0 kHz TA = 25°C

AV = 1.0

1.0 M

Figure 18. Open Loop Voltage Gain versus Temperature

Measurement Channel

THD, TOTAL HARMONIC DISTORTION (%)

10 k

AV = 100

f, FREQUENCY (Hz)

MC33078

110

30

TA, AMBIENT TEMPERATURE (°C)

160

130

100

VCC = +15 V VEE = −15 V VO = 0 V TA = 25°C

40

0 1.0 k

THD, TOTAL HARMONIC DISTORTION (%)

A, VOL OPEN LOOP VOLTAGE GAIN (dB)

MC33078, MC33079

Falling

8.0 7.0

Rising

6.0 5.0 4.0



3.0

DVin

2.0

+

VO 2.0 kW

1.0 0.001

0

1.0

2.0

3.0 4.0 5.0 6.0 7.0 VO, OUTPUT VOLTAGE (Vrms)

8.0

0

9.0

4

Figure 22. Total Harmonic Distortion versus Output Voltage

6

8 10 12 14 16 VCC |VEE| , SUPPLY VOLTAGE (V)

18

Figure 23. Slew Rate versus Supply Voltage

http://onsemi.com 7

20

VCC = +15 V VEE = −15 V DVin = 20 V

8.0

Falling Rising 6.0 − DVin

4.0

2.0 −55

−25

VO

+

2.0 kW

0 25 50 75 TA, AMBIENT TEMPERATURE (°C)

100

120 100 80

40 135 20

Phase

25°C

20

−55°C

8.0

30 125°C

125°C

6.0

40

4.0

50 VCC = +15 V VEE = −15 V VO = 0 V

0

e, nV/ √ Hz n INPUT REFERRED NOISE VOLTAGE ()

1

25°C

−55°C

60

1.0 M

10

DVin

125°C VO

+

25°C

CL

−55 °C

60 40 VCC = +15 V VEE = −15 V DVin = 100 mV

0 10

70 1000

100

100

1.0 k

10 k

CL, OUTPUT LOAD CAPACITANCE (pF)

CL, OUTPUT LOAD CAPACITANCE (pF)

Figure 26. Open Loop Gain Margin and Phase Margin versus Load Capacitance

Figure 27. Overshoot versus Output Load Capacitance

10 VCC = +15 V VEE = −15 V TA = 25°C

50 30 20

10 8.0 5.0

Voltage

3.0 2.0

Current

1.0 100

180 10 M

Gain

100 80

10

1.0 k 10 k 100 k f, FREQUENCY (Hz)

20

1.0 k

10 k

0.1 100 k

Vn, REFERRED NOISE VOLTAGE nV/ ( √ Hz)

2.0

100



80 os, OVERSHOOT (%)

CL

10

10

φ m, PHASE MARGIN (DEGREES)

VO

+ 2.0 kW

10

100

in, INPUT REFERRED NOISE CURRENT ( pA/ √ Hz )

A, m OPEN LOOP GAIN MARGIN (dB)

12 Vin

90

Figure 25. Voltage Gain and Phase versus Frequency

0 −

Phase Gain

Figure 24. Slew Rate versus Temperature

14

45

60

0 1.0

125

0 VCC = +15 V VEE = −15 V RL = 2.0 kW TA = 25°C

φ, EXCESS PHASE (DEGREES)

SR, SLEW RATE (V/s) μ

10

A, VOL OPEN LOOP VOLTAGE GAIN (dB)

MC33078, MC33079

1000

100

VCC = +15 V VEE = −15 V f = 1.0 kHz TA = 25°C Vn(total) = Ǹ(inRs)2 ) en2 ) 4KTRS

10

1.0 10

100

1.0 k

10 k

100 k

1.0 M

f, FREQUENCY (Hz)

RS, SOURCE RESISTANCE (W)

Figure 28. Input Referred Noise Voltage and Current versus Frequency

Figure 29. Total Input Referred Noise Voltage versus Source Resistance

http://onsemi.com 8

MC33078, MC33079 14

Am, GAIN MARGIN (dB)

12 R1

8.0 6.0 4.0 2.0 0

60

Gain

10

R2

50

Phase − +

φ m , PHASE MARGIN (DEGREES)

70

40

VO

30

VCC = +15 V VEE = −15 V RT = R1 +R2 AV = +100 VO = 0 V TA = 25°C

20 10 10

100

1.0 k

10 k

0 100 k

RT, DIFFERENTIAL SOURCE RESISTANCE (W)

V, O OUTPUT VOLTAGE (5.0 V/DIV)

V, O OUTPUT VOLTAGE (5.0 V/DIV)

Figure 30. Phase Margin and Gain Margin versus Differential Source Resistance

VCC = +15 V VEE = −15 V AV = −1.0 RL = 2.0 kW CL = 100 pF TA = 25°C

t, TIME (2.0 ms/DIV)

t, TIME (2.0 ms/DIV)

Figure 32. Non−inverting Amplifier Slew Rate

e, n INPUT NOISE VOLTAGE (100 nV/DIV)

Figure 31. Inverting Amplifier Slew Rate

V, O OUTPUT VOLTAGE (5.0 V/DIV)

VCC = +15 V VEE = −15 V AV = +1.0 RL = 2.0 kW CL = 100 pF TA = 25°C

VCC = +15 V VEE = −15 V RL = 2.0 kW CL = 100 pF AV = +1.0 TA = 25°C

t, TIME (200 ms/DIV)

VCC = +15 V VEE = −15 V BW = 0.1 Hz to 10 Hz TA = 25°C

t, TIME (1.0 sec/DIV)

Figure 33. Non−inverting Amplifier Overshoot

Figure 34. Low Frequency Noise Voltage versus Time

http://onsemi.com 9

MC33078, MC33079 0.1 mF

10 W

100 kW − 2.0 kW

+

D.U.T. +

1/2

4.7 mF

4.3 kW

MC33078 − 100 kW

Voltage Gain = 50,000

22 mF Scope ×1 Rin = 1.0 MW

2.2 mF 110 kW

24.3 kW 0.1 mF

Note: All capacitors are non−polarized.

Figure 35. Voltage Noise Test Circuit (0.1 Hz to 10 Hzp−p)

ORDERING INFORMATION Device MC33078D

Package SOIC−8

MC33078DG

SOIC−8 (Pb−Free)

MC33078DR2

SOIC−8

MC33078DR2G MC33078P

Shipping †

SOIC−8 (Pb−Free)

98 Units / Rail

2500 / Tape & Reel

PDIP−8

MC33078PG

PDIP−8 (Pb−Free)

MC33079D

SOIC−14

MC33079DG

SOIC−14 (Pb−Free)

MC33079DR2

SOIC−14

MC33079DR2G

SOIC−14 (Pb−Free)

MC33079P

PDIP−14

MC33079PG

PDIP−14 (Pb−Free)

50 Units / Rail

55 Units / Rail

2500 / Tape & Reel

25 Units / Rail

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

http://onsemi.com 10

MC33078, MC33079 PACKAGE DIMENSIONS PDIP−8 P SUFFIX CASE 626−05 ISSUE L

8

NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

5

−B− 1

4

F −A−

NOTE 2

L

C J

−T−

N

SEATING PLANE

D H

M

K

G 0.13 (0.005)

M

T A

M

B

M

http://onsemi.com 11

DIM A B C D F G H J K L M N

MILLIMETERS MIN MAX 9.40 10.16 6.10 6.60 3.94 4.45 0.38 0.51 1.02 1.78 2.54 BSC 0.76 1.27 0.20 0.30 2.92 3.43 7.62 BSC −−− 10_ 0.76 1.01

INCHES MIN MAX 0.370 0.400 0.240 0.260 0.155 0.175 0.015 0.020 0.040 0.070 0.100 BSC 0.030 0.050 0.008 0.012 0.115 0.135 0.300 BSC −−− 10_ 0.030 0.040

MC33078, MC33079 PACKAGE DIMENSIONS SOIC−8 NB CASE 751−07 ISSUE AH

−X−

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751−01 THRU 751−06 ARE OBSOLETE. NEW STANDARD IS 751−07.

A 8

5

S

B 1

0.25 (0.010)

M

Y

M

4

−Y−

K

G C

N

DIM A B C D G H J K M N S

X 45 _

SEATING PLANE

−Z−

0.10 (0.004) H

D 0.25 (0.010)

M

Z Y

S

X

M

J

S

SOLDERING FOOTPRINT*

1.52 0.060

7.0 0.275

4.0 0.155

0.6 0.024

1.270 0.050 SCALE 6:1

mm Ǔ ǒinches

*For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

http://onsemi.com 12

MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0_ 8 _ 0.25 0.50 5.80 6.20

INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0 _ 8 _ 0.010 0.020 0.228 0.244

MC33078, MC33079 PACKAGE DIMENSIONS PDIP−14 CASE 646−06 ISSUE P

14

8

1

7

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL.

B

A F

L

N

C

−T− SEATING PLANE

H

G

D 14 PL

J

K

0.13 (0.005)

M M

http://onsemi.com 13

DIM A B C D F G H J K L M N

INCHES MIN MAX 0.715 0.770 0.240 0.260 0.145 0.185 0.015 0.021 0.040 0.070 0.100 BSC 0.052 0.095 0.008 0.015 0.115 0.135 0.290 0.310 −−− 10 _ 0.015 0.039

MILLIMETERS MIN MAX 18.16 19.56 6.10 6.60 3.69 4.69 0.38 0.53 1.02 1.78 2.54 BSC 1.32 2.41 0.20 0.38 2.92 3.43 7.37 7.87 −−− 10 _ 0.38 1.01

MC33078, MC33079 SOIC−14 CASE 751A−03 ISSUE H

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

−A− 14

8

−B−

P 7 PL 0.25 (0.010)

M

7

1

G

−T− D 14 PL 0.25 (0.010)

T B

S

A

DIM A B C D F G J K M P R

J

M

K M

F

R X 45 _

C

SEATING PLANE

B

M

S

MILLIMETERS MIN MAX 8.55 8.75 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0_ 7_ 5.80 6.20 0.25 0.50

INCHES MIN MAX 0.337 0.344 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0_ 7_ 0.228 0.244 0.010 0.019

SOLDERING FOOTPRINT* 7X

7.04

14X

1.52 1 14X

0.58

1.27 PITCH

DIMENSIONS: MILLIMETERS

*For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected]

N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5773−3850

http://onsemi.com 14

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative

MC33078/D