

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

Tree Approach for Scalable Many-to-many

One is ACK tree oper- ation overhead such as timers for loss detection, feedback ful packet delivery to a receiver and 0 indicates a packet loss. For example repeats a similar procedure Kp times and for each core, selects RTT value for a.

 Télécharger le PDF

 238KB taille
 6 téléchargements
 342 vues

 commentaire

 Report

A Combined Group/Tree Approach for Scalable Many-to-many Reliable Multicast Wonyong Yoonyz

Dongman Leez

y Samsung Advanced Institute of Technology

Hee Yong Younx

San 14-1 Kiheung-eup, Yongin-shi, Kyungki-do, South Korea x Sungkyunkwan University 300 Chunchun-dong, Suwon-shi, Kyungki-do, South Korea

Abstract—In this paper we present the design, implementation, and performance analysis of Group-Aided Multicast (GAM), a scalable many-tomany reliable multicast transport protocol. GAM achieves high quality ACK trees while keeping the tree maintenance overhead reasonably low in the presence of dynamic group membership and route changes. It is supported by a group configuration mechanism organizing the members in a multicast session into multiple small groups and a tree configuration mechanism maintaining logical trees according to the underlying multicast routing trees. With the two mechanisms, GAM builds a two-layer hierarchy of multi-level logical trees from which high-quality per-source ACK trees are generated. Simulation results show that the GAM protocol is more scalable than a NACK suppression protocol in terms of processing time for request/repair messages and recovery latency. Keywords—Reliable multicast, many-to-many session, ACK tree, logical tree.

S

I. I NTRODUCTION

CALABILITY is a primary issue in reliable multicast [6] [26]. As the number of members in a multicast session increases, the processing time in a sender becomes extremely larger than that in a receiver (the well-known implosion problem). Thus, scalability requires to alleviate the sender processing time and distribute the burden to the receivers [5][19][24]. The tree-based protocols organize a sender and receivers into a hierarchical ACK tree in which the parent nodes are responsible for reliable delivery of data to their children nodes [3][12][20][25][28]. These protocols are proven most scalable in terms of maximum throughput and end-point bandwidth since they can ensure that the sender processing time is bounded by the number of the sender’s children, which remains constant in their tree hierarchy regardless of the number of receivers [13][18]. A limitation of the tree-based reliable multicast protocols is that their best performance can be achieved when the ACK tree is close to its corresponding multicast routing tree. In such a high-quality ACK tree, the underlying network-layer correlation in terms of packet loss and delay is preserved between a parent and children nodes at transport layer. For this, tree-based protocols should allow ACK trees close to the corresponding routing trees in the presence of dynamic group membership and route changes. This issue for one-to-many session has been well addressed in the previous works [8][14][22]. However, when a tree-based protocol supports a many-tomany reliable multicast session, the ACK tree maintenance overhead required for high quality is likely to be considerably large. For example, RMTP supports a many-to-many session by setting up a separate ACK tree for each sender [20] so that the

Seungik Leez

Seok Joo Koh{

z Information and Communications University 58-4 Hwaam-dong, Daejon, South Korea

{ Electronics and Telecommunications Research Institute 161 Gajung-dong, Daejon, South Korea best performance can be achieved. However, the tree maintenance overhead, which increases linearly with the number of senders, would not be acceptable. In order to eliminate the need to maintain an ACK tree for each source, Lorax constructs and maintains a single ACK tree for a many-to-many group [12]. An ACK tree can be optimized if it is built based on a shared multicast routing tree such as CBT. However, it cannot provide high quality ACK trees if the underlying multicast routing protocols provide per-source routing trees such as DVMRP, MOSPF, and PIM-DM [23]. These two examples show that there is a fundamental trade-off between the quality of ACK trees and the tree maintenance overhead when a global shared routing tree is not supported.1 In this paper, we investigate how to achieve the high quality ACK trees while keeping the maintenance overhead reasonably low for tree-based many-to-many reliable multicast. We propose Group-Aided Multicast (GAM) which fully uses a spectrum of policies that subsumes the shared tree approach and the per-source tree approach, by introducing a ‘group’ concept into ACK tree configuration. GAM is motivated by an observation that senders close in a session share large part of the multicast routing trees, and thus can share corresponding ACK trees. Thus, if we make groups of senders and maintain one tree for each group, the maintenance overhead can be reduced as much as the number of senders without severe degradation of the quality of ACK trees. GAM builds a two-layer logical tree. At the bottom layer, colocated session members in a local ‘group’ join a ‘core’-rooted shared logical tree. At the top layer, the cores of the groups constitute per-source logical trees. Two key mechanisms are proposed to ensure high quality ACK trees generated from the hierarchy. One is a tree configuration mechanism that maintains the logical trees congruent with the underlying multicast routing trees even in the presence of dynamic group membership and route changes. The other is a group configuration mechanism that maintains a multicast session in the form of multiple distant groups in order to approximate backbone networks and regional 1 It is difficult in practice to provide a global shared tree for a many-to-many session because today’s Internet topology is viewed as a collection of ‘independent’ routing domains interconnected by a number of backbone networks. In each routing domain, per-source trees could be provided by such underlying multicast routing protocols as DVMRP, MOSPF, and PIM-DM and shared tree multicast routing protocols could be used, e.g., CBT and PIM-SM. However, in their current deployed form, CBT is hardly supported by vendors and PIM never uses shared trees for routing [4]. Thus, we assume a per-source tree model for simplicity.

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

Source Parent Child List S

P

C1 C2 C3 C4 10 11 12 13 14 15

111111 lb 000000 000000 111111 000000 111111 000000 111111 111111 000000 111111 000000 000000 111111 000000 111111 000000 111111 000000 111111 000000 111111 000000 111111 000000 111111 000000 111111 000000 111111 111111 000000 111111 000000 ub

ACK List

RTX Buffer

Fig. 1. Buffer management at each node.

GGT(Z , g , GP , REP , TBP) Divide a multicast session-Z into groups G1 ; G2 ; ; Gg based on GP . For each group Gi , select a representative node Ri among the members based on REP . For each group Gi , construct a logical tree Ti rooted at Ri that spans all the session members, based on TBP . Each node sets its parent for a source-S 2 Z to a node located upward on the path to the source-S in the logical tree Ti where S 2 Gi . End GGT Fig. 2. The Generic Group/Tree (GGT) framework.

networks of global multicast networks. Through simulation experiments, we compare the performance of GAM with SRM, an existing many-to-many reliable multicast protocol based on NACK suppression-based error recovery [5]. The results show that the proposed tree-based scheme is more suitable for manyto-many sessions than the suppression-based recovery in terms of processing cost for request/repair packets and recovery latency. The remainder of this paper is organized as follows. In Section II, we show that there exists a spectrum of policies for ACK tree maintenance. In Section III, we present the design of GAM. The mechanisms for maintaining ACK trees and dividing a single session into multiple groups, and feedback/retransmission are described in detail. In Section IV, we evaluate the mechanisms of GAM and present the results of simulation experiments. In Section V, we discuss limitations of GAM. In Section VI, we summarize related works. We finally give concluding remarks on our work in Section VII. II. D ESIGN C ONSIDERATION Two existing approaches for tree-based many-to-many reliable multicast are a per-source tree approach such as RMTP [20] and a shared tree approach such as Lorax [12]. In the latter, each node has a different parent for each data source and sends a separate ACK to the parent for each data source over a single ACK tree. Even though a single tree is used, a separate tree rooted at each source is used for error recovery. Thus, in this paper, we strictly distinguish a “logical tree” from an “ACK tree.” We define an ACK tree as a tree where a root is the source of multicast and each node forwards ACKs to the root. We define a logical tree as a tree which spans all the group member nodes and one or more ACK trees are derived from it. In this respect, a one-tomany session has exactly one logical tree, which is also an ACK tree. On the contrary, a many-to-many session with N members has one to N logical trees and N ACK trees. For example, Lorax maintains a single “logical” tree and RMTP maintains N logical trees while both maintain N ACK trees. ACK trees and logical trees are directly related to two overheads of tree-based protocols. One is ACK tree operation overhead such as timers for loss detection, feedback (ACK/NACK) generation/processing, transmission of repair packets, and buffer management. Figure 1 illustrates this. For each source-S, each node maintains a parent-P upon which it depends on retransmission and a list of its children Ci’s. An en-

GGT(Z, 1)

GGT(Z, |Z|) Higher ACK tree quality

Lower tree maintenance cost

Fig. 3. GGT Spectrum.

tire ACK tree for a source is implemented as a sum of this partial tree information kept by all the nodes. The shaded box in the figure indicates that an ACK for a given packet has been received. The operation overhead is linear to the number of data sources. The higher the quality of ACK trees, the less the operation overhead. The other is logical tree maintenance overhead such as constructing logical trees, checking validity of parent-child relationships, detecting path changes due to dynamic group membership or underlying route changes, and adapting the trees in response to these changes. The maintenance overhead is linear to the number of logical trees. While the per-source tree approach and the shared tree approach are two extreme ends, there exist a spectrum of policies subsuming the two ends. By introducing a ‘group’ concept, we generalize the two existing approaches into a single spectrum over which a fundamental trade-off exists between the quality of ACK trees and the tree maintenance overhead. Here, we introduce a framework called Generic Group/Tree (GGT) as described in Figure 2. In GGT, a given multicast session-Z is first divided into g groups, based on a grouping policy (GP). Then a representative election policy (REP) elects a representative node of each group and a tree building policy (TBP) constructs logical tree rooted at the representatives. Once a logical tree Ti is determined, for a data source-S belonging to Gi , an ACK tree rooted at source-S is generated from the logical tree. A nodeN first sets its parent for the source-S belonging to Gi to a node located upward on the path to source-S in the corresponding logical tree Ti . The neighborhood nodes of node-N except the upward node become logical child nodes of node-N for source-S. Then source-S can multicast data packets reliably to the whole session by using the ACK tree. Since the quality of ACK trees can heavily depend on the number of such logical trees, as well as a particular tree con-

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

A 7

B

D

C

6

D

B 2

B

B

D

C

A

G

4

E

G G2

C

A

A 2

G1

(a) A logical tree.

C

A

2

4 E

C

4

6 5

5

5

2

E

E 2

4

(c) An ACK tree for GGT(Z, |Z|).

(b) An ACK tree for GGT(Z, 1).

B

D

E

F

D F

G3

(a) A GAM session.

(b) An ACK tree for C.

Fig. 4. An example (the numbers represent link cost).

Fig. 5. An illustration of a GAM session

struction method, the GGT framework provides a spectrum of policies for ACK tree configuration as illustrated in Figure 3. At one end where a single shared logical tree is used, the logical tree maintenance overhead is smallest but the quality of ACK trees is much degraded (the tree operation overhead is highest). It is called GGT(Z , 1), with the remaining parameters ignored. An example is Lorax [12]. At the other end where per-source logical trees are used, the logical tree maintenance overhead is largest but the quality of ACK trees is highly enhanced. It is called GGT(Z , jZ j) and an example is RMTP [20]. Here, jX j denotes the number of members belonging to group-X . Figure 4 illustrates these two extreme cases. Suppose that GGT(Z , 1) uses a shared logical tree (thick edges) in (a). An ACK tree for a source node-E is generated from the logical tree, as illustrated in (b). Meanwhile, GGT(Z , jZ j) maintains persource logical trees. Thus, an ACK tree is the same as the corresponding logical tree, as illustrated in (c). We observe that the ACK tree in (c) has higher quality, keeping better network-layer packet loss correlation between parents and children (Recall that per-source shortest-path multicast routing is used at network layer). In this paper, we propose using the “full” spectrum of GGT, not just the two ends. Given particular grouping policies, representative election policies, and tree building policies, the spectrum is regulated by the parameter g . Somewhere in the spectrum between GGT(Z , 1) and GGT(Z , jZ j), there is a “sweet spot” at which we achieve the high quality of ACK trees with reasonably low maintenance overhead. Because senders in vicinity in the same session share much part of multicast routing trees and could accordingly share the corresponding ACK trees, we can keep the quality of the ACK trees high though we do not maintain a separate logical tree for each of the senders.

distributed like the cores and conversely much gain is not expected for densely distributed group members considering the overhead incurred. The per-source logical trees of the cores are called inter-group logical trees and the shared logical tree of each group Gi is called an intra-group logical tree. The idea is illustrated in Figure 5. The shaded nodes are cores. The links between the cores represent three inter-group trees and the links within each group represent intra-group trees. An ACK tree for each source is constructed by “grafting” the inter-group trees and the intra-group trees. For a source in a group Gi , nodes in Gi use the intra-Gi logical tree as an ACK tree rooted at the source while nodes outside Gi use the same ACK tree that would result if Ri were the source. For example, Figure 5(b) illustrates an ACK tree for source-C. Over this tree, source-C reliably multicasts data packets to all the session members. The following four subsections give a detailed description of behaviors of the GAM protocol.

III. T HE P ROPOSED S CHEME A. Design Principle A key principle of the GGT spectrum is that we can use any point GGT(Z , g) (1 g jZ j). GAM exploits the same principle. It first divides a session into KG groups. A group is roughly defined as a set of nodes in vicinity which has networklayer correlation in terms of packet loss and delay. Representative nodes of each group, called cores, make a core group-C. Cores can be positioned statically or elected dynamically. Then GAM invokes GGT(C, jC j) for the core group and GGT(Gi , 1) for each group Gi . Note that jC j = KG . This is because the per-source approach has much gains when nodes are sparsely

B. Logical Tree Configuration In GAM, each core node is the root of an inter-group logical tree of all the core nodes. It is also the root of one intragroup logical tree of all the members of a group Gi . Thus, each core node participates in jC j inter-group logical trees and one intra-group logical tree. Each non-core node participates in one intra-group logical tree. In the following, we describe an end-toend algorithm that constructs/maintains those logical trees congruent with the underlying multicast routing trees by exploiting packet loss pattern observed at end hosts. Each member of a logical tree maintains delivery status information of packets sent by the root of the logical tree. The information, called error bitmap, consists of start sequence number (ssn) and array of bits (B) each of which indicates the status of transmission of the corresponding packet; 1 means a successful packet delivery to a receiver and 0 indicates a packet loss. For example, ssn=1 and B =11010 means that the receiver has successfully received packet-1, 2, and 4. Error bitmap is distinguished from RMTP’s status message in that error bitmap records the status of ‘original’ multicast data packets. Even if a packet loss occurs and a corresponding repair packet arrives, a receiver sets a bit for the packet to 0. Figure 6(a) illustrates a logical tree. Error bitmap of the nodes preserves packet loss correlation: if a loss occurs at a parent node of a multicast routing tree, then all its descendants experience the same loss. By comparing error bitmap in a distributed manner, the nodes can construct and maintain such a high-quality logical tree congru-

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

S

S A

A

E

B

10010

11011

C 11000

B C

01001

E

D

D

01011

(a) A logical tree.

(b) E becomes a child of B.

Fig. 6. An illustration of logical tree configuration.

ent with the underlying routing tree [10]. A member node-M periodically sends ERROR BITMAP [S , M , ssn, B] to a parent of S-rooted logical tree. The period is both spatial and temporal. Node-M sends ERROR BITMAP whenever new KB bits are filled or when a timer TB expires since the transmission of the previous message.2 Receiving ERROR BITMAP, the parent stores the information into cumulative history of the child’s reception status. The parent can determine a proper position of its children in the logical tree by comparing the cumulative information for the children. We now describe a procedure for a newcomer node-N to join a logical tree rooted at node-S that spans all members of group-G. We call this RTE JOIN(N , S , G). Node-N is attached to an existing S-rooted logical tree as a tentative child of node-S by sending TREE JOIN [N] to node-S. Node-S sends TREE CHANGE [S (N] to all the members of the logical tree so that they configure parent/child information for node-N. Node-N feeds ERROR BITMAP back to its parent-S when it receives packets from node-S and error bitmap gets filled up. Receiving the error bitmap information from node-N, node-S compares it with those of its children to check if node-N has child or parent relationship with any of them. If node-N is a potential parent of node-C (a child of node-S), node-S sends TREE CHANGE [S (N , N (C] to all the members. We say that node-A is a potential parent of node-B if and only if each bit of error bitmap of node-A is equal to or greater than that of node-B.3 If node-C is a potential parent of node-N, nodeS sends TREE DELEGATION [N , S , ssn, B] to node-C, who again compares the bitmap information of node-N with its own children. In Figure 6(a), node-E feeds error bitmap (01001) and node-S sends TREE DELEGATION to node-B, node-B multicasts TREE CHANGE [B (E , E (D], and node-E is finally placed on the proper position in (b). A logical tree is also reconfigured when a node leaves a session. A leaving node-L sends TREE LEAVE [L] to its parent and children before leave. If a logical tree is a shared tree, then TREE LEAVE must be multicast to all the tree nodes. Receiving TREE LEAVE, the other nodes becomes aware that the logical tree should be reconfigured such that the parent of node-L adopts the children of node-L. The procedure is called

K

2 The value of B reflects a tradeoff between accuracy in parent-child relationship and responsiveness to session dynamics. B = 32 provides high accuracy of the estimation with reasonable latency to fill 32 bits up [10]. 3 If last hops between end hosts and local routers were loss-prone, potential parent-child relationship would keep on fluctuating. Against this, our implementation allows for violation up to R (a parameter for bitmap violation resilience) among B bits [10].

K

K

K

RTE LEAVE(L, S , G) In order to keep congruency with its corresponding routing tree, a logical tree is adaptive to change of the underlying multicast path. ERROR BITMAP messages are used for this. From the updated bitmap information from child nodes, a parent node can tell whether the existing logical tree is congruent with the multicast routing tree or not. Node-N may find that parent/child relationship with its child node-C is no longer valid. Then nodeN sends TREE DELEGATION [C] to its parent-P and relies on P for locating a new position of node-C. The same process is repeated upward the tree until a node who is a potential parent of node-C is found. After that, a similar procedure to RTE JOIN() is applied downward the tree from that node and a node-D who finally determines to adopt node-C multicasts TREE CHANGE so that other nodes accordingly reconfigure the logical tree. The procedure is called RTE ADAPT(). The procedures above ensure that the logical tree be approximately congruent with the corresponding routing tree in the presence of dynamic group membership and route change, thereby making ACK trees generated from the logical tree also keep high quality. More details on the algorithms and performance are found in [10]. C. Group Configuration A GAM session is partitioned into multiple groups. The number of groups is KG . A group consists of members in vicinity. Distance between two nodes is determined by the RTT measured between the nodes. A core for each group can be preassigned statically or elected dynamically. We assume that at least one static core exists. The number of static cores is KS . From the application’s point of view, it is efficient and robust in practice that multiple dedicated application servers coordinate a multi-sender application of a large number of clients, e.g., replicated database servers or Web proxy caches, servers for peer-topeer file exchange, and region servers of distributed interactive simulation or networked virtual environments. The application servers could play a role of core in GAM. The static cores are strategically placed in networks, e.g., near ingress/egress points linking local networks and backbone networks or at Point-OfPresence in networks as in RMTP [20] or RMTP-II [25]. Cores can consist of either static cores or a combination of static cores and dynamic cores. The following describes how the inter-group trees are configured in each case. C.1 Static Cores only (KS

= KG)

During an initial step of a multicast session-Z, the static cores join a core group-C and invoke RTE JOIN() to maintain persource inter-group logical trees rooted at themselves. The addresses of session-Z and group-C are the session parameters set a priori. Each of cores also assigns a separate multicast address for its own ‘group.’ A newcomer node-N multicasts RQST SESS INFO [ts1] to group-C at time ts1 . Each core replies with RPLY SESS INFO [ts1 , ts2 , ts3 , addr(Gi)] where ts2 and ts3 are the clock time when receiving the request and sending the reply, respectively. Receiving the reply at ts4 , b node-N calculates RTT = a ; b and clock offset a+ 2 where a = ts2 ; ts1 and b = ts3 ; ts4 . Node-N repeats a similar procedure Kp times and for each core, selects RTT value for a

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

minimal clock offset. Node-N identifies the nearest core ci with the smallest RTT, and joins group Gi . After that, node-N participates in ci -rooted intra-group logical tree by RTE JOIN(N , ci , Gi) and finally subscribes to the address of session-S. A leaving node-L belonging to Gi triggers RTE LEAVE(L, ci , Gi) so that the logical tree and ACK tree information are reconfigured at other nodes. Then it multicasts SESS LEAVE [L] to session-S and leaves session-S. C.2 A Combination of Static Cores and Dynamic Cores (KS KG)

 2C i

When the number of current groups is greater than or equal to KG and the distance from node-N to its nearest core is longer than , it is better to merge the nearest cores and let node-N create a new group. Node-N sends RQST GROUP FUSE [cp , cq] to group-C where (cp ; cq) = . That i is minimum distance to dynamic cores ensures that two predefined static cores are never merged. The cores, cp and cq exchange error bitmap and tree information for the other cores and cp adopts the whole tree rooted at cq if it knows that packet loss probability is lower by seeing the error bitmap information. We can presume that cp is placed nearer the ingress point of network because of its lower loss probability. cp sends GROUP FUSE [cp , Gp , tree info]

b

b

to Gp and Gq , and then, the members of Gq leave Gq and join Gp . cp sends CNFM GROUP FUSE [cp , cq] to C notifying the other cores that cp absorbs cq . Receiving the confirm message, the other cores delete all the information related to cq and nodeN performs a group creation procedure similar to the first case. Dynamic cores can be re-elected. A dynamic core ci may find a tentative, i.e., newly joining child node-T of the intragroup logical tree shows better delivery status for the data packets from the members out of its group (for this, node-T should observe loss patterns of data packets sent by core ci+1 and send the error bitmap information in the first feedback to ci). This is a strong evidence that the child is nearer the ingress point of regional network than the core. In that case, the logical tree should be reconfigured such that the child becomes a new core of the group. For notifying this, the previous core sends NOTI CORE CHANGE [T , ci , Gi] to the core groupC and local group Gi . The cores update distance values between themselves computed by timestamp information which is carried in periodically multicast RQST CORE DIST [ts] messages. When a dynamic core of a group leaves a session, a new core must be elected. The leaving core ci selects one of its children of the logical tree who is estimated to be nearer the ingress point of regional networks and sends NOTI CORE CHANGE [D, ci , Gi] to the core group-C and group-Gi. The new core-D sends RQST CORE DIST [ts] in order to obtain distance information between cores. ci multicasts SESS LEAVE [ci] to session-Z and leaves session-Z. A procedure for leave of noncores is the same as the static core case. D. ACK Tree Configuration Once group configuration for a newcomer node-N is done, node-N subscribes to session-Z and begins multicasting data packets DATA [Gi , N , msg body] to session-Z and receiving data packets from other sources. When receiving the first data packet, an existing node-E gets aware of the new node-N and sets up a data structure for source node-N, as illustrated in Figure 1. Suppose that node-N and node-E belong to Gi and Gj , respectively. If node-E and node-N are in the same group (i = j), the parent of node-E for source node-N is an upward node toward node-N in the intra-group logical tree of Gi , where node-N is tentatively attached to a child of the core of Gi , and its children are the neighbors of node-E except the upward node. Otherwise (i 6= j), the parent of node-E is an upward node toward the core cj in the intra-group logical tree of Gj and its children are the neighbors of node-E except the upward node. A similar procedure is initiated when node-N receives a data packet from node-E for the first time. Afterwards, RTE ADAPT() renders node-N re-placed in a more proper position in the logical tree of group Gi and the logical tree of Gi is accordingly reconfigured.4 Note that the reconfiguration of the logical tree and the subsequent change of ACK tree information are made only for local members of group Gi . It does not affect members of other groups. This is an outstanding feature of the two-layer hierarchy of multi-level hierarchical logical trees in GAM.5 4 To guarantee message stability in the presence of changes in ACK trees, an aggregate ACK might be used [12]. 5 By ‘multi-level,’ we mean that peer or non-core nodes can be parent nodes in the logical trees. In RMTP [20], peer or client nodes are allowed to be leaves

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

G1

B

G1

B A

A

A

G2

G2

G2

D

C

C

G1

B

G3

G3

(a) Initial setup of the static cores.

(b) After join of C.

(c) After join of D.

Fig. 7. An example of group configuration.

E. Feedback and Retransmission Loss recovery over an ACK tree is “child-initiated.” If a node detects packet losses by seeing a gap in the sequence numbers of received packets, it unicasts a NACK to its parent and sets a timer. The expiration of the timer TN without receiving repair packets triggers re-emission of the same NACK. Receiving the NACK, the parent immediately unicasts repair packets if available. If the same losses have occurred at the parent, the parent relays the repair packets when it receives them from its parent. In GAM, NACKs and repair packets are sent via unicast only. In a many-to-many case, because each member plays one role of a receiver for each other source, the receiver processing time is no longer negligible to the session throughput. Unicasting NACKs does not incur complex overhead such as multicasting and suppressing NACKs. Unicast retransmission allows receives to be exposed to repair packets minimally compared with multicast retransmission. Furthermore, unicast NACK/retransmission provides lower recovery latency and is simple to implement. There is an exception. If a core node of group Gi experiences loss of a packet from outer group and receives a corresponding repair packet, it then multicasts the repair packet to Gi to avoid a number of cascaded unicast retransmission over the intra-group tree of Gi . A packet (from members of outer groups) loss at a core is a strong hint for the same packet loss at the subtree of the core because the proposed group/tree configuration scheme keeps ACK trees congruent with underlying multicast routing trees. Multicast retransmission by cores further enhances throughput of the GAM protocol. ACK packets are sent by a node to its parent periodically at KA -interval whenever new KA packets are received. Receiving ACKs, the parent checks if all of its children have successfully received the packets. Then it reclaims the buffer space for the packets. F. An Example A GAM session is illustrated in Figure 7. At startup, the two static cores exist (KG =3 and KS =2) and they construct the two logical trees (solid links and dashed links) rooted at themselves. When joining the session, node-C creates a new group G3 since KS < KG and the new core-C joins the existing two logical trees and constructs a logical tree (dotted links). When joining only, i.e., the children of Designated Receivers. Thus, for supporting large-scale sessions, a number of Designated Receivers are required. The logical trees of GAM could be considered a hybrid of server-based trees of RMTP and receiverbased trees of TRAM [3].

the session, node-D finds that it would be better to fuse G1 and G3 into G1 . After exchanging group configuration messages, the group of core-C is destructed, node-C joins A-rooted intragroup, node-D becomes a new core of a new group, and the inter-group logical trees are reconfigured. G. Difference of GAM from GGT Though GAM is considered a two-layer hierarchy of GGT, it still provides a similar spectrum of policies. For a sessionZ, GAM(1) corresponds to GGT(Z, 1) while GAM(jZ j) corresponds to GGT(Z, jZ j). GAM is distinguished in the following aspects. In GGT, for each source, a node decides its parent and children by looking up a global logical tree that spans all the session members. Meanwhile, in GAM, a node sets a parent and children by looking up the intra-group logical tree of a group it belongs to. In GGT, a tree change, e.g., insertion of new members, should be notified to the entire session members and for all the logical trees. Meanwhile, in GAM, a tree change has only to be notified to the members of the intra-group tree and for the tree only. IV. P ERFORMANCE E VALUATION A. Quality of ACK Trees We investigate more thoroughly the tradeoff between tree maintenance overhead and tree operation overhead. We show the existence of a sweet spot in the tradeoff, by comparing ACK trees of the GGT framework and GAM. We calculate the ACK trees from transit-stub topologies of 100 nodes generated by the GT-ITM tool [1]. The transit-stub topologies consist of transit domains and stub domains analogous to the current Internet’s backbone transit network and edge networks. Ten different transit-stub topologies are used. In order to quantitatively measure the quality of ACK trees and their impact on the protocol operation overhead, we introduce a performance metric, Recovery Cost (RC) .

=

X X (n; s)

s2G n2G

(1)

where G represents the multicast group and (n; s) is the recovery cost of a node n for the source s. (n; s) is in turn defined as

(n; s) = (n; p(n; s)) + (p(n; s); s)

(2)

The definition is based on the behavior of the tree-based protocols such that a child can be repaired after the error of its par-

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

830000

10000

GGT GAM maintenance cost

820000

RC

810000 800000 790000 780000 770000 760000

GGT GAM

8000 6000 4000 2000 0

0

20

40

60

80

100

0

20

g

(a) Operation overhead.

40

60

80

100

g

(b) Maintenance overhead.

Fig. 8. Comparison of GGT and GAM.

ent is recovered. p(n; s) is a parent node of n for the source s. (n; m) can represent a total sum of the cost or delay of underlying links connecting the two nodes (n and m) or link (hop) counts. If (n; m) is defined as delay, represents total endto-end latency. If (n; m) is defined as count, represents total network bandwidth consumption. Figure 8(a) shows the average RC value () of the ACK trees of GGT and GAM. For both cases, the tree operation overhead, represented by value, decreases abruptly (more than linearly) as g increases. Figure 8(b) shows the tree maintenance overhead. The maintenance cost for adaptive tree reconfiguration (feedback between a parent and a child or control packets from utilities such as mtrace [14]) increases linearly with the number of logical trees multiplied by the size of these trees. For a session of GGT(Z, g) with N members, total g trees with size N are maintained. For a session of GAM(g), which denotes GAM with g = KG = jC j, total g inter-group trees with size g and g intra-group trees with size Ng are maintained. The lower maintenance overhead of GAM is attributed to the two-level hierarchy. One important observation - as g increases to a certain point, the tree maintenance overhead of GAM increases less than linearly while the tree operation overhead decreases more than linearly. We find a sweet spot between the extreme ends of the GGT spectrum, at which we can radically enhance the quality of ACK trees with small amount of increase in the maintenance overhead. B. Simulation B.1 Simulation model We implement GAM using ns-2 and compare it with SRM, a most widely known many-to-many protocol [5]. GAM and SRM are examples of the generic tree-based and NACK suppression protocols, respectively, which are currently known most promising ARQ approaches for reliable multicast [26]. The topologies for simulation are 100-node transit-stub topologies generated by the GT-ITM tool [1]. In Figure 9, nodes 0 to 3 are transit nodes and nodes 4 to 99 are stub nodes. The average delay on stub-to-stub, transit-to-stub, and transit-to-transit links are 5, 20, and 30 ms, respectively. Transit-to-transit links have 45 Mbps bandwidth and transit-to-stub and stub-to-stub links have 10 Mbps bandwidth. We apply the selective error model of the ns-2 simulator for each link to approximate the MBone loss patterns - most losses occur near the leaves of the network and not on the backbone [27]. Packet drop rate of transit-totransit links is uniformly randomly distributed with a rate 0.01

Fig. 9. A transit-stub topology. TABLE I P ROTOCOL PARAMETERS .

Parameter

KB KR KA TB TN

Description size of error bitmap bitmap violation resilience ACK period Timeout for error bitmap NACK timeout

Value 32 packets 1 packet 32 packets 5 sec 200 ms

while that of transit-to-stub and stub-to-stub links is with rate (=0.01, 0.05, and 0.1). Many-to-many sessions with size (= 20 to 100 members) are simulated. In this simulation, we use a static version of GAM. For example, for the topology in Figure 9, twelve static cores (nodes 4, 12, 17, 29, 40, 44, 53, 63, 69, 80, 88, 95) are strategically deployed at the ingress points of leaf networks. The configuration parameters for GAM are shown in Table I. Each node in a many-to-many session generates source traffics by an exponential on/off model. The parameters of the exponential model, burst time, idle time, and peak rate are set to 500 ms, 500 ms, 150 Kbps, respectively. We observe 1000 packets per source. B.2 Processing cost for request messages Processing cost for request messages is twofold. One is loss detection and subsequent transmission of request messages. The other is cost for receiving the request messages. The processing cost of GAM and SRM as varying a session size is presented in Figure 10(a). The cost is calculated by averaging request sending and receiving times of all session members per data packet. Both the cost value and the increase rate are higher for SRM. For SRM, most of the cost, more than 90 %, is cost for receiving messages. Due to the timer-based suppression mechanism, only a small amount of requests may be generated but because the requests should be multicast for the suppression, the requests

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

111 SRM 000 GAM

11 00 00 11 00 11 00 11 00 11 11 00 20

11 00 00 11 00 11 00 11 00 11 00 11 00 11 00 11 40

11 00 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11

11 00 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11

60 80 session size

11 00 00 11 100

(a) Scaling characteristics with session size (= 0:05).

number of request messages

number of request messages

18000 16000 14000 12000 10000 8000 6000 4000 2000 0

25000

SRM GAM

20000 15000 10000 5000 0 0

0.02

0.04 0.06 loss rate

(b) Impact of loss rate (

0.08

0.1

= 100).

Fig. 10. Processing cost for request messages.

cause extremely large number of requests to arrive at other receivers. For GAM, unicast-based feedback results in almost the same sending cost and receiving cost. The receiving cost is slightly lower than the sending cost due to packet loss. This highlights the strength of unicast feedback in a many-to-many case. Figure 10(b) illustrates the impact of link loss probability. We find that in this practical range of the probability, the suppression-based error recovery is poorer than the tree-based recovery. B.3 Processing cost for repair messages Processing cost for repair messages include sending and receiving cost of these messages. The cost for different session size is presented in Figure 11(a). Both the cost value and the increase rate are higher for SRM. Again, for SRM, most of the cost is the receiving cost. Ideal behavior of SRM is that only one request and repair message are generated. Our result shows that the suppression of repair messages works more poorly than that of request messages. This results in unnecessary and redundant receipt of repair messages, so-called exposure problem [19]. A comparison of the cost for repairs and requests shows that exposure is a severer problem than implosion in a manyto-many session. The suppression-based error recovery is less adequate for reducing exposure than unicast recovery of GAM. Figure 11(b) shows that in the practical range of link loss probability (less than 0.1) the tree-based recovery is better. B.4 Recovery latency The average recovery latency is calculated by averaging time spent from the detection of a loss to the receipt of the corresponding repair message. Figure 12 shows the latency for different session size and link loss probability. For most cases, the latency of SRM is four or five times larger because of delay for the suppression of both requests and repairs. Meanwhile, request and repair messages of GAM are always sent promptly. The latency of GAM decreases with session size because the path between parent/child becomes shorter and increases with loss probability because unicast feedback/retransmission is influenced directly by the link loss rate.

V. D ISCUSSION GAM supports a many-to-many reliable multicast session in which each member is a sender and at the same time a receiver and all the packets are delivered to and also meaningful or useful to all the session members. Applications include large-scale replicated database or Web cache protocols where primary site of each item is spread in wide-area networks and each transactional data for the item is distributed to all backup sites and peer-to-peer multicast file transfer model. Some of many-to-many applications are tightly coupled with a social/human factor. For example, in a video conferencing or collaborative engineering session, participants would not likely interact with hundreds of people. Even for a distributed shared virtual world consisting of thousands of people, session members are typically not interested in all data. Partitioning of group members based on interest, e.g., a large virtual world divided into multiple regions or cells [11], has been a strong trend [15]. We think that such human-related large-scale applications will not likely be supported by a single many-to-many session, and thus, GAM is not suitable for those applications. It is practically difficult to choose the best value of the static parameter KG . Maintaining ACK trees approximately congruent with the underlying multicast routing trees will be difficult when the number of cores (KG) is less than the number of routing domains in which members are present. The current version of GAM assumes that applications set the value depending on application-level statistics such as in how many regional networks the participants of the session are distributed or borrowing from ISP’s the topology information on which the applications are deployed. In the future version, we investigate dynamic control of KG adaptive to the session status. For example, when a new member in a different geographic region joins the session and KG groups currently exist, we let the member increase KG by one and create a new group without merging two groups who are located nearest but have different path characteristics. When the distribution of session members are very sparse, the ACK tree structure of GAM becomes close to the source specific tree structure of SRM for local error recovery [17]. In this case, reduction of the tree maintenance overhead might not be so substantial. However, we could still expect that unicast NACK/retransmission of GAM will be better than (local) NACK suppression/multicast retransmission of SRM because, unlike

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

35000

111 SRM 000 GAM

30000 25000 20000 15000 10000 5000 0

11 00 00 11 11 00 20

11 00 00 11 00 11 00 11 00 11 00 11 00 11 40

11 00 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11

11 00 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11 00 11

60 80 session size

11 00 00 11 100

(a) Scaling characteristics with session size (= 0:05).

45000

number of repair messages

number of repair messages

40000

SRM GAM

40000 35000 30000 25000 20000 15000 10000 5000 0 0

0.02

0.04 0.06 loss rate

(b) Impact of loss rate (

0.08

0.1

= 100).

Fig. 11. Processing cost for repair messages.

in one-to-many cases, reducing exposure is a far more important factor than reducing implosion with respect to scalability of many-to-many reliable multicast protocols [29]. VI. R ELATED WORK Most of existing Grouping Policies (GP) conglomerate homogeneous co-located receivers that behave in a similar fashion as a single group. In Self Organized Transcoding (SOT) [9], a receiver with sufficiently high loss initiates the formation of a new multicast group and then locally transcodes an original continuous stream toward the group. In Group Formation Protocol (GFP) [22], receivers are self-organized into a hierarchy of disjoint multicast groups which is congruent with the underlying tree topology and the lower loss rate receiver within a homogeneous group (sub-region) is elected. Local Group Concept (LGC) [7] suggests the first idea of dynamic ‘group’ configuration. A group controller per group plays the role of collecting status information from receivers of the local group and coordinating local retransmission. All of them introduce a ‘group’ concept for reducing sender implosion or accommodating heterogeneity in a one-to-many case while group in GAM is for reducing tree maintenance overhead in many-to-many case. Tree Building Policies (TBP) may take two different approaches. One category assumes the assist of networks [14][19][20]. Tracer protocol [14] deterministically discovers the nearest node upward the routing tree using MTRACE. Papadopoulos et al. [19] propose a scheme for creating a hierarchy of repliers who deliver retransmission only to loss subtree by using a new router forwarding service called DMCAST. In RMTP [20], receivers select Designated Receivers at the upper position than themselves by seeing the TTL value of control messages sent via subtree multicast. A common, inevitable problem of this category lies in deployment. The other category is an endto-end approach. To infer the underlying multicast routing tree, S. Ratnasamy et al. [21] use loss prints observed by receivers. Loss prints differ from error bitmaps in that they are used for statistically approximating the probability of true shared losses, not for comparison bit by bit. The approach lacks in practicability and dynamic property [22]. TMTP [28] and Lorax [12] rely on expanding ring search. The lack-of-direction property of TTL may lead to the degraded quality of ACK trees. Several many-to-many protocols have been proposed. SRM

is most widely known for supporting interactive many-to-many applications such as shared whiteboards [5]. Suppression mechanism using timers reduces NACK and repair packets. The timer-based suppression might not work so much well in WAN or for large number of participants. Local recovery based TTL scoping is suggested [17]. For stable delivery, SRM’s implementation requires that every node should store all packets or that the application layer should store all relevant data. Lorax is a tree-based many-to-many protocol [12] which constructs and maintains a single shared tree in a dynamic and scalable manner. Lorax could achieve fairly good quality of ACK trees if used on top of such underlying routing trees as CBT. Liebeherr et al. propose using n-dimensional hypercube [16]. The hypercube control topology is more scalable and balanced than the shared tree of Lorax. In practice, path characteristics of the underlying routing trees is not easily reflected in the hypercube topology. Reliable Multicast proXies (RMX) [2] could be used for manyto-many sessions. It is an overlay multicast in which a heterogeneous multicast group is partitioned into small homogeneous data groups, agents representing the data groups are connected via TCP, and members within a group may use any reliable multicast protocol. Unlike the cores of GAM, the agents relay all the original data packets as well as repair packets. VII. C ONCLUDING R EMARKS In this paper, we have addressed one practically important issue in many-to-many reliable multicast protocols based on the tree-based approach: how to achieve the high quality of the ACK trees while keeping the maintenance overhead acceptably low? We propose mechanisms for configuring a two-layer hierarchy of multi-level hierarchical logical trees. The two-layer hierarchy best fits for the hierarchical structure of the current Internet. Simulation experiments on transit-stub topologies highlight this point. The experimental results show that the tree-based loss recovery of GAM outperforms the well-known suppression-based recovery in all aspects - processing cost for request messages, processing cost for repair messages, and recovery latency. Unlike in one-to-many cases, each member in a many-to-many session is overwhelmed by the receiver’s burden because the member receives a number of messages from other members. In such case, complex cooperation for message suppression and

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

111 000 000 111 111 000 111 000 20

111 000 000 111 000 111 000 111 000 111 000 111 000 111 000 111 000 111 000 111 000 111 000 111 000 111 000 111 000 111 000 111 000 111 111 000 111 000 40

11 00 00 11

1111 0000 SRM 11GAM 00 00 11 00 11 00 11 00 11 00 00 11 11 00 11 00 11 00 00 11 11 00 11 00 11 00 00 11 11 00 11 00 11 00 00 11 11 00 11 00 11 00 00 11 11 00 11 00 11 00 00 11 11 00 11 00 11 00 00 11 11 00 11 00 11 00 00 11 11 00 11 00 11 00 00 11 11

60 80 session size

0.5

recovery latency (sec)

recovery latency (sec)

0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1

SRM GAM

0.4 0.3 0.2 0.1 0 0

100

(a) Impact of session size (= 0:05).

0.02

0.04 0.06 loss rate

(b) Impact of loss rate (

0.08

0.1

= 100).

Fig. 12. Recovery latency.

involved multicast feedback/retransmission is not a good solution. Rather, the tree-based approach with simple unicast feedback/retransmission is better. The simulation result consists with an analysis result that the tree-based approach with unicast NACK/retransmission and periodic polling is most promising for many-to-many sessions because it is simple to implement yet the most efficient approach in terms of throughput, network bandwidth, and delay [29]. We expect that most emerging many-to-many applications can benefit in practice from multiple application-layer servers dedicated for the purpose of coordination in terms of scalability, efficiency, and robustness. Designed on an end-to-end basis, the architecture of GAM could make good use of such applicationaware servers. It is also easily deployable and independent of underlying multicast routing protocols. GAM can configure high-quality ACK trees whether a shared tree model or a persource tree model is used for network-layer multicast, which is a practical and desirable feature because today’s Internet topology is viewed as a collection of independent routing domains interconnected by a number of backbone networks. R EFERENCES [1] K. I. Calvert, M. B. Doar, and E. W. Qegura, “Modeling Internet Topology,” IEEE Communications Magazine, 35(6), pp. 160-163, June 1997 [2] Y. Chawathe, S. McCanne, and E. A. Brewer, “RMX: Reliable Multicast for Heterogeneous Network,” IEEE INFOCOM ’00, pp. 795-804, April 2000 [3] D.-M. Chiu, S. Hurst, M. Kadansky, and J. Wesley, “TRAM: A Tree-based Reliable Multicast Protocol,” Technical Report, SML TR-98-66, Sun Microsystems, July 1998 [4] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. Balensiefen, ”Deployment Issues for the IP Multicast Service and Architecture,” IEEE Network, 14(1), pp. 78-88, January/February 2000 [5] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang, “A Reliable Multicast Framework for Light-weight Sessions and Application Level Framing,” IEEE/ACM Transactions on Networking, 5(6), pp. 784-803, December 1997 [6] M. Handley, S. Floyd, B. Whetten, R. Kermode, L. Vicisano, and M. Luby, “The Reliable Multicast Design Space for Bulk Data Transfer,” IETF RFC 2887, August 2000 [7] M. Hoffman, “Enabling Group Communication in Global Networks,” Global Networking ’97, pp. 321-330, November 1997 [8] M. Kadansky, D. M. Chiu, B. Whetten, B. N. Levine, G. Taskale, B. Cain, D. Thaler, and S. Koh, “Reliable Multicast Transport Building Block: Tree Auto-Configuration,” Internet Draft, draft-ietf-rmt-bb-treeconfig-02.txt, March 2001 [9] I. Kouvelas, V. Hardman and J. Crowcroft, ”Network Adaptive Continuousmedia Applications Through Self Organised Transcoding,” NOSSDAV ’98, July 1998 [10] D. Lee, W. Yoon, and H. Y. Youn, “Enhancing Scalability of Tree-based

Reliable Multicast by Approximating Logical Tree to Multicast Routing Tree,” IEICE Transactions of Communications, Vol. E84-B, No. 10, pp. 2850-2862, October 2001 [11] E. Lety and T. Turletti, “Issues in Designing a Communication Architecture for Large-scale Virtual Environments,” NGC ’99, pp. 54-71, November 1999 [12] B. N. Levine, D. B. Lavo and J. J. Garcia-Luna-Aceves, “The Case for Reliable Concurrent Multicasting Using Shared Ack Trees,” ACM Multimedia ’96, pp. 365-376, November 1996 [13] B. N. Levine and J. J. Garcia-Luna-Aceves, “A Comparison of Reliable Multicast Protocols,” ACM Multimedia Systems, 6, pp. 334-348, 1998 [14] B. N. Levine, S. Paul, and J. J. Garcia-Luna-Aceves, “Organizing Multicast Receivers Deterministically by Packet-Loss Correlation,” ACM Multimedia ’98, pp. 201-210, September 1998 [15] B. N. Levine, J. Crowcroft, C. Diot, J. J. Garcia-Luna-Aceves, and J. Kurose, “Consideration of Receiver Interest for IP Multicast Delivery, IEEE INFOCOM ’00, pp. 470-479, March 2000 [16] J. Liebeherr and B. S. Sethi, “A Scalable Control Topology for Multicast Communications,” IEEE INFOCOM ’98, pp. 1197-1204, 1998 [17] C.-G. Liu, D. Estrin, S. Shenker, and L. Zhang, “Local Error Recovery in SRM: Comparison of Two Approaches,” IEEE/ACM Transactions on Networking, 6(6), pp. 686-699, December 1998 [18] C. Maihofer, “A Bandwidth Analysis of Reliable Multicast Transport Protocols,” NGC ’00, November 2000 [19] C. Papadopoulos, G. Parulkar, and G. Varghese, “An Error Control Scheme for Large-scale Multicast Applications,” IEEE INFOCOM ’98, pp. 11881196, March 1998 [20] S. Paul, K. Sabnani, J. C. Lin, and S. Bhattacharyya, “Reliable Multicast Transport Protocol,” IEEE JSAC, pp. 407-421, April 1997 [21] S. Ratnasamy and S. McCanne, “Inference of Multicast Routing Trees and Bottleneck Bandwidths using End-to-end Measurements,” IEEE INFOCOM ’99, pp. 353-360, March 1999 [22] S. Ratnasamy and S. McCanne, “Scaling End-to-end Multicast Transports with a Topologically-sensitive Group Formation Protocol,” IEEE ICNP ’99, pp. 79-88, October 1999 [23] L. H. Sahasrabuddhe and B. Mukherjee, “Multicast Routing Algorithms and Protocols: A Tutorial,” IEEE Network, 14(1), pp. 90-102, January 2000 [24] T. Speakman, D. Farinacci, S. Lin, A. Tweedly, N. Bhaskar, R. Edmonstone, R. Sumanasekera, and L. Vicisano, “PGM Reliable Transport Protocol Specification,” Internet Draft, draft-speakman-pgm-spec-06.txt, February 2001 [25] B. Whetten and G. Taskale, “An Overview of Reliable Multicast Transport Protocol II,” IEEE Network, 14(1), pp. 37-47, January/February 2000 [26] B. Whetten, L. Vicisano, R. Kermode, M. Handley, S. Floyd, and M. Luby, “Reliable Multicast Transport Building Blocks for One-to-many Bulk-data Transfer,” IETF RFC 3048, January 2001 [27] M. Yajnik, J. Kurose, and D. Towsley, “Packet Loss Correlation in the MBone Multicast Network,” IEEE GLOBECOM ’96, pp. 94-99, November 1996 [28] R. Yavatkar, J. Griffioen, and M. Sudan, “A Reliable Dissemination Protocol for Interactive Collaborative Applications,” ACM Multimedia ’95, pp. 333-344, November 1995 [29] W. Yoon, D. Lee, H. Y. Youn, and S. J. Koh, “Performance Analysis of Tree-based Protocols for Many-to-many Reliable Multicast,” Technical Report, CDSN-2001-TR012, ICU, August 2001 available at http://cds.icu.ac.kr/research/reports.asp

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.

des documents recommandant

[image: alt]

A selection approach for scalable fuzzy integral combination .fr

Jun 22, 2009 - [Ð�0.034, Ð�0.013]. Grape. 0.236. 4.5. 0.251. 24.6. 0.827. Ð�0.015. [Ð�0.036, Ð�0.006]. 212. P. Bulacio et al. / Information Fusion 11 (2010) 208â€“213 ...

[image: alt]

AN APPROACH TO SCALABLE MOLECULAR ... - Xun ZHANG

arithmetic is deployed completely on reconfigurable hard- ware. We compare, in terms of communication costs and processing efficiency, our technique based ...

[image: alt]

k-maxitive fuzzy measures: a scalable approach to

from labeled data is designed on the basis of HLMS (Heuristic Least Mean Squares). In a classification The results for Wine dataset are shown in Table 9.

[image: alt]

Efficient Scalable Variational Bayesian Approximation methods for

g = Hf+ϵ, ϵi ∼ N(ϵi |0,vei) → ϵ ∼ N(ϵ|0,Ve = diag [ve1,··· ,veM]). – Student-t prior model and its equivalent IGSM : f j |vfj ∼ N(f j |0,vfj) and vfj ∼ IG(vfj |αf0 ,βf0) ...

[image: alt]

Bandit Algorithms for Tree Search

Mar 13, 2007 - 2 log(p) ni. (1). In this paper we consider a max search (the minimax problem the leaf i is chosen, this means that Xâˆ—,nâˆ— +cnâˆ— â‰¤ Xi,ni +cni .

[image: alt]

System Description AC500 Scalable PLC for Individual

A low battery error is output before the battery condition becomes critical (about See relevant chapters in the operating manual Data Carrier Detect. DSR.

[image: alt]

Belief Approach for Social Networks

(Aâˆ’m(/0)). ,âˆ€A âŠ† Î˜. (3). To focus on the type of relationship between two different reasoning under uncertainty based on evidential fusion networks in home.

[image: alt]

Structural Approach for Building Reconstruction

Nov 7, 2008 - (left examples) and 0.7 meter resolution satellite views. (right examples). order to normalize the parameter values according to the metric system. ... to ensure convergence towards the target measure for any initial configuration

[image: alt]

Binary Tree-based Generic Demosaicking Algorithm for

ing, edge-sensing interpolation, mosaicking, multispectral filter array (MSFA) the intrinsic properties of the MSFA and discover the underlying generic rules in ...

[image: alt]

Treemaps for Search-Tree Visualization - Remi Coulom

lions of nodes (up to 200 million nodes per second for Deep Blue [3]), and traditional node-and-link diagrams do not allow to represent them conveniently.

[image: alt]

Cross-layer architecture for scalable video transmission in wireless

transmit the control information and to optimize the multimedia transmission over ... Lite; RTP packetization; WLAN link layer scheduling; Medium access control ...

[image: alt]

Scalable hardware accelerator for comparing DNA and protein

Dec 19, 2016 - be to compare one newly determined sequence with each sequence in a database, ... restrictions on the length of the protein sequences, support the [2] T. F. Smith and M. S. Waterman, â€œIdentification of common molecular.

[image: alt]

Scalable Content-Based Video Copy Detection for Stream

3.5 Difficulties in adapting a stream monitoring solution to video mining 3.8 Sentence-based indexing medium to high dimension (from 10 to 1000) computed on a keyframe, retrieval based on a pdf that models signature distortions.

[image: alt]

Cloud computing for Scalable Network ... - JÃ©rÃ´me FranÃ§ois

Exercise. â–· hadoop fs, hadoop fs -help ls â†’. Goal. Cmd display sample.txt get a local copy of sam- Solutions: â–». Join job may be done by the mappers â†’ extra operations SQL/database like modules: Pig, Hive, HBase, Sqoop. â–».

[image: alt]

A new bitplane coder for scalable transform audio coding

Jun 23, 2010 - Lab. I3S-UMR 6070 CNRS and Univ. of Nice Sophia Antipolis, ... ing consists in decomposing integer sequences in binary, from most ... We address the general problem of entropy coding a signed integer The proposed method starts wit

[image: alt]

A Scalable Location Service for Geographic Ad Hoc Routing .fr

their actual identities, assisted by a predefined ordering of node identifiers and a predefined geographic hierarchy. Queries for a mobile node's location also use ...

[image: alt]

Scalable Subgraph Mapping for Acyclic Computation ... - Sami Yehia

interesting area of future work, though. In this work Edges are heuristically weighted to guide the partitioner so that is does ... size, although an interesting avenue for future work. However, we have made the decision to disallow this p

[image: alt]

THE TREE

it is the story of a woman who, after her husband suddenly dies, discovers “the image of a whispering tree is springing out of the anthropomorphism of a man.

[image: alt]

Indexing Local Configurations of Features for Scalable Content-Based

Oct 23, 2009 - navigation in the results to a textual query or in the entire database. This shows how relevant content-based video copy detection (CBVCD) can ...

[image: alt]

Auto-adaptive reconfigurable architecture for scalable ... - Xun ZHANG

organisation. This organisation is materialized through a global hardware In these systems, the management of reconfigurations is a very important part in the ...

[image: alt]

Duck Tree

McDuck. Angus. Â«PotholeÂ». Â«CatfishÂ». McDuck. Jeremiah. McDuck. Gregor. Â«AdventurerÂ». McDuck. Donald. McDuck. Angus. McHaggis. Vera. O'Drake. Downy.

[image: alt]

Alif Tree

Feb 22, 2006 - Anyone who has ever listened to Miles Davis' Kind of Blue knows that a powerful degree of soul can be imparted through a particularly well- ...

[image: alt]

Tree house

Georges W. Bush accrochée au rétroviseur existent bel et bien, mais pas à Cambridge. ... demandé si je souhaite l'accompagner à ses cours de yoga, mais j'ai décliné ... gare après que j'aie raté la dernière navette qui devait me ramener d'un centre .

[image: alt]

HexaShrink, an exact scalable framework for ... - Laurent Duval

spanning tree does not retain the same topology as the ... geometry compression, a Minimum Spanning Tree min- egory when the maximum is not unique.

×
Report Tree Approach for Scalable Many-to-many

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

