

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

Auto-adaptive reconfigurable architecture for scalable ... - Xun ZHANG

organisation. This organisation is materialized through a global hardware In these systems, the management of reconfigurations is a very important part in the ...

 Télécharger le PDF

 168KB taille
 4 téléchargements
 324 vues

 commentaire

 Report

Auto-adaptive reconfigurable architecture for scalable multimedia applications Xun ZHANG, Hassan RABAH, Serge WEBER Nancy University Laboratoire d’Instrumentation Electronique de Nancy BP239, 54506, Vandoeuvre-les-Nancy Email: xun.zhang, hassan.rabah, Abstract— The paper presents a layered reconfigurable architecture based on partial and dynamical reconfigurable FPGA in order to meet the adaptivity and scalability needs in multimedia applications. An efficient adaptivity is enabled thanks to the introduction of an application adaptive level and a task adaptive level organisation. This organisation is materialized through a global hardware reconfiguration and local hardware reconfiguration by using partial and dynamic reconfiguration of FPGAs. A case study of a discret wavelet transform is used to demonstrate the feasibility in task adaptive level considering different types of filters. A platform based on a Xilinx Virtex-4 FPGA is used for experimental implementation.

I. I NTRODUCTION In the multimedia terminal development, customers demand more functionality and better audio-visual quality. At the same time, competitive pressures make achieving faster time-tomarket essential. Moreover, the diversity of communication networks, the bandwidth availability, energy constraints and the evolution of encoding standards require different types of encoding and decoding systems. All this requirements, among others, give the adaptivity concept, which is not new, a crucial importance in present and future electronic devices. Making a system auto-adaptive to requirements of a given application by adapting the hardware is the efficient solution to fulfil the computation needs in multimedia domain. This adaptivity can be achieved by using reconfigurable hardware. In the research area of reconfigurable computing systems, most of the work focuses on the re-use of devices like FPGAs for different applications or different partitions of an application. The weak point is the reconfiguration efficiently that mainly depends on the size of re-used device or partition. A huge reconfigurable device takes great reconfiguration time. In this context, we focus on two problems that need to be solved for developing an auto-adaptive system in the multimedia environment. The first problem and also the most important problem we called the application adaptive is that different applications need different architectures. To minimize the reconfiguration overhead in this level, we define a class of applications. Each application is characterised by a set of tasks. The second problem we called task adaptive is that, for a given task a set of versions are defined and characterized for use in a situation to adapt the application to different constraints like energy, and bandwidth requirement. To cope with these two problems, we propose an auto-adaptive and reconfigurable

hybrid architecture. Our approach is a hierarchical structure with two levels of reconfigurations. The first level allows the application swapping by partially reconfiguring a subset of tasks and communication between the rests of the system (global configuration). The second level allows the adaptation of an application to a given constraint by partially reconfiguring a task (local configuration). In order to demonstrate the feasibility of our architecture, we choose a video decoder as an application and we focus on task adaptive level where we use the wavelet transform [1] as an adaptable task. The inherent scalability of wavelet transform and its use in new compression standards make it as a good candidate and motivate our choice. Moreover, the wavelet transform is achievable using different types of algorithms and different types of filters. Some proposals [2-7] addressed the importance of flexibility and proposed programmable Discret Wavelet Transform (DWT) architectures based on two types: VLSI or FPGA architecture. The VLSI architectures have large limitations in terms of flexibility and scalability compared to the FPGA architectures. Even though some recent proposed programmable and scalable solutions for variable wavelet filters [2-4] and Forward Discret Wavelet Transform (FDWT) [5], they remain, in addition to their cost, dedicated to specific algorithms and cannot be adapted to future solutions. In other hand, the existing FPGA architectural solutions are mainly ASIC like architectures and use external off-the-shelf memory components, which represent a bottleneck for data access. The possibility of parallelizing the processing elements offered by FPGAs associated to a sequential access to data and bandwidth limitations do not enhance the overall computing throughput. The very powerful commercial VLIW digital signal processor obtains its performance thanks to a double data-path with a set of arithmetic and logic operators with a possibility of parallel executions and a wide execution pipeline [8]. However, these performances are due to a high frequency working clock. Even though these DSP has a parallel but limited access to a set of instructions, the data memory access remains sequential. The partial reconfiguration revival materialized by certain commercial devices like Xilinx Virtex-II and more recently Virtex-4 testimonies of the promise the Partial Dynamical Reconfiguration of FPGAs (PDR-FPGAs) will bring to the designers as an alternative to the mainstream processors and ASICs. The adopted approach exploits the partial reconfigu-

ration in different levels in order to obtain the flexibility of processor and the efficiency of ASICs: global configuration for application adaptivity and local reconfiguration for task adaptivity. In this paper, as we focus on task adaptive level , we will develop the associated architecture. For this level, the main idea is to associate an array of reconfigurable processing elements composed of data-path, and register files, a reconfigurable controller and address generator and an on chip memory. The controller plays a key role as a reconfigurable interface allowing multiple accesses to local memory, external memory and feeding the processing element in an optimal fashion. The remainder of paper is organized in the follow: in section II we explain the approach of layered adptivity, the proposed layered and reconfigurable architecture is detailed in section III our approach is validated through the case study in section IV. section VI will give the concluding remarks and the future work.

In the multimedia environment, adaptation can be seen in two manners: the application adaptive and task adaptive. The application adaptive represents the switching between different applications. For example, the multimedia terminal switches it use from playing a movie to answering a video call. The task adaptive consists of the switching different versions of a task of an application, this situation can occur for instance in down scaling or up scaling situations. A. Application adaptive For a given domain, applications can be extracted with a set of processing tasks and sub tasks. The difference between the applications could be represented with common processing tasks and specific processing tasks. Figure 1 shows an example of two applications A1 and A2 featuring common tasks (continuous lines) and specific tasks (dash lines). Switching from application A1 to application A2 requires replacement of specific tasks and the communication between newly loaded tasks and common tasks. In some cases, the simultaneous execution of two applications is required. To achieve this, different versions of specific tasks must be available. T1

T2 T3

T7

T3 T8

T4 T9

T5 T6

T6

(A1)

(A2)

Fig. 1.

Application adaptive configuration

T1

T1

T2

T2

T30

T3

T31

T4

T4 T5

II. L EVELS OF AUTO - ADAPTATION

T1

B. Task adaptive Each task of an application commonly consists of a set of sub-tasks or a set of operators depending on the complexity of task as shown in figure 2. To enable task adaptivity, different versions of a task for a given algorithm must be defined and characterised in terms of power, area, throughput, efficiency and other objectives. For the same task, it must be also possible to change the type of algorithm in order to adapt the application to the future standards.

T32

T5 T6

T6

(A1)

(A2)

Fig. 2.

Task adaptive configuration

In this background, the application adaptive helps us to configure partially one part of application for adapting to a new application. The task adaptive level permits us mainly to make a small change in the task to make the application adapt to different sceneries. From the viewpoint of reconfiguration hardware, those two types of adaptivity are corresponding to two reconfiguration levels: the global reconfiguration level and the local reconfiguration level that are described below. III. L AYERED ARCHITECTURE With the down scaling technology, the modern FPGAs integrate a huge among of mixed grain hardware resources ranging from several hard microprocessors, hard arithmetic operators to hundred of thousand of simple gates allowing the integration of various soft cores. The problem of resources management becomes then very acute especially in reconfigurable systems. In these systems, the management of reconfigurations is a very important part in the design phase due to the complexity of hardware reconfigurations and the reconfigurability needs of an application. In the different proposed solutions, the two parts of reconfiguration that are reconfigurable capabilities of the hardware and the different reconfigurations possibilities of an application are not taken into account. A layered reconfiguration management approach through a hierarchical decomposition of a system will allow us to solve this problem. This hierarchical structure is composed of two levels: the first level is composed of a set of clusters executing the tasks of an application; the second level corresponds to the organisation of different clusters each executing a task. The complexity of a cluster will depend on the complexity of a task. Based on this organisation, two levels of reconfigurations are possible: a global reconfiguration level and a local reconfiguration level.

A. Global reconfiguration level in the global reconfiguration level, it is possible to reconfigure the communication between clusters and elements of a cluster in order to meet a particular need. The proposed organisation is depicted in figure 3. It is composed of an heterogeneous multiprocessor cores that allow software reuse, one or several Reconfigurable Processing Modules (RPM), a reconfigurable interface, and an on chip memory. The reconfigurable processing modules allow hardware acceleration and can be configured in a way that supports different versions of a task. The reconfigurable communication interface is used to build the interconnection between RPM and the other components. Each RPM can be reconfigured at runtime. An on chip processor can act as the reconfiguration manager to control the sequence of reconfigurations. When a new application is required, the configuration of RPM corresponding to the application will be loaded as well as those of the adequate communication.

RPM

RTOS

Memory

reconfigurable communication

RISC

RPM

RPM

reconfigurable communication

Fig. 3.

Layered architecture

B. Local reconfiguration level The task adaptive level is enabled by reconfiguration at processing element level, where versions of a task can be mapped into software or hardware. The software version can be executed on a general purpose embedded core processor or a specific embedded core processor. The hardware versions can be mapped on a Reconfigurable Processing Module. The reconfiguration of RPM is achieved by reconfiguring the interface or by reconfiguring the data path or the two. The reconfigurable interface connects the RPMs together and controls the protocol communication between the RPM and the other components in the system. In the proposed architecture, the major components of the RPM are reconfigurable interface, and reconfigurable processing unit (RPU) composed of a register files and reconfigurable data-path. A possible internal architecture of the RPM and connection with reconfigurable interface is shown in the figure 4.

On chip memory Reconfigurable Interface controller and address generator register file RPU

reconfigurable datapath

Fig. 4.

General architecture of the RPM

1) Reconfigurable interface: The reconfigurable interface plays a major role in the RPM. Thanks to its reconfigurable controller, the interface enables scalability and allows parallel executions of subtasks by associating several RPMs. The pipeline of execution is also achievable using register file. One of the important modules of the interface is the address generator. The address generator can allow multiple data access on a local fragmented memory. This is very important in the case of a RPM is composed of multiple data-path as shown in the case study. The address generator is also capable of generating simultaneously a read and write addresses, allowing an efficient execution pipeline. 2) Register file: The number of registers depends on the number of variables and constants required by the data-path. The registers are used to hold the present data, past data, present result and past results. They are organized in an efficient way so that the communication between the data path is possible and the data pipeline is efficiently managed. 3) Data path: The reconfigurable data-path consist of a set of operators organised in a data flow graph of a task. The data flow graph can be cut into partitions for which the intermediate results are passed to the register file. 4) On chip memory: The memory is also organised in a hierarchical way. The on chip memory is fragmented so that each RPM has its own memory allowing efficient parallelism. The memory of each RPM can also be fragmented in the case of multiple data accesses are required. The degree of parallelism and thus of the memory fragmentation is dictated by the data dependency. IV. C ASE STUDY In this section, we illustrate the proposed architecture by examining the design of Forward and Inverse Discrete Wavelet Transform task (F/I DWT) [7]. As the difference between the two transforms is very small shifting from IDWT to FDWT and vice versa requires small modifications. The DWT task is implemented in The Reconfigurable Processing Module architecture as shown in the figure 5 .

One of the main goals of the proposed architecture is to support the implementation of different filters with different coefficients, and adapt with any size of images and any level of transform. This novel dynamically reconfigurable architecture is composed of two reconfigurable processing units, a reconfigurable interface and an on chip memory used as a level one cache. By reading the image data from different memory area, the DWT module can compute the image with different resolution according to the requirement of application. The number of computational module could be changed at runtime as well as its interface with memory. The organization of memory uses four memory independent blocks allowing the computation module to work in parallel. On chip memory LL

LH

HL

odd datapath

Shifts

Multiplications

5 5 7 8 7 10 10 10 8 10 10 12

2 2 4 2 2 3 3 3 4 2 2 4

0 0 1 1 2 0 0 1 2 2 2 4

D[n] is the even term and S[n] is the odd term. The corresponding data flow graph is shown in figure 6. It is composed of two partitions: odd and even. Each partition is implemented in the corresponding data path of the RPU. The register file is used to hold intermediate computation results.

register file

even datapath

+

odd datapath

RPU2

RPU1

Fig. 5.

Additions

5/3 2/6 SPB 9/7-M 2/10 5/11-C 5/11-A 6/14 SPC 13/7-T 13/7-C 9/7-F

Even DataPath

even datapath

Filters

HH

Reconfigurable Interface controller and address generator

register file

TABLE I D IFFERENT FILTER TYPES OF WAVELET TRANSFORM

RPM configuration for DWT

+ >>

− even

The Reconfigurable Processing Unit (RPU) allows the implementation of different types of wavelet filters. A filter (task) is a set of arithmetic and logic operators. A configuration of RPU consist of a type of filter or a version of a filter. For a given filter, the corresponding operators can be connected in a different ways to realise different version of the filter. The different versions can be parallel, pipeline, sequential or a combination of them. Table I lists the number of main computational requirements (the number of additions, shifts, and multiplications per filtering operation). We choose two filters to illustrate the task adaptive level. a) The 5/3 lifting based wavelet transform: The IDWT 5/3 lifting based wavelet transform has short filter length for both low-pass and high-pass filter. They are computed through following equations : D[n] = S[n] =

S0 [n] − [1/4(D[n] + D[n − 1]) + 1/2] D0 [n] + [1/2(S0 (n + 1) + S0 [n])]

(1) (2)

The equations for FDWT 5/3 are given bellow: D[n] = S[n] =

D0 [n] − [1/2(S0 (n + 1) + S0 [n])]] s0 [n] + [1/4(D[n] + D[n − 1]) + 1/2]

(3) (4)

Odd DataPath

A. Reconfigurable processing unit + >>

+ odd

Fig. 6.

IDWT 5/3 data flow graph

b) The 9/7 − F based FDWT : The 9/7-F FDWT is an efficient approach which is computed through following equations: 203 (−S0 [n + 1] − S0 [n]) + 0.5] (5) 128 217 S1 [n] = S0 [n] + [(−D1 [n] − D1 [n − 1]) + 0.5](6) 4096 113 D[n] = D1 [n] + [(D1 [n + 1] + D1 [n]) + 0.5] (7) 128 1817 (D1 [n] + D1 [n − 1]) + 0.5] (8) S[n] = S1 [n] + [4096 There is similarities between equations of 5/3 filter and those of 9/7 − F filter which implies same similarities between the data flow graph of the two filters. It is clear that by duplicating the dataflow graph of filter 5/3 and inserting four multipliers we obtain the data flow graph of the 9/7 filter. Moreover, if we D1 [n] =

D0 [n] + [

Rl0

The reconfigurable interface core is the key element of the reconfigurable processing module. One of its functionalities is to connect the RPUs together and control the protocol communication between the RPUs and internal memory. The controller cell presides the generation of address for reading or writing the memory. A hardwired and reconfigurable sequencer is used to manage the sequence of operations and communication. The Reconfigurable Interface implements a 3stages pipeline for computation units except the computation at the first level. The pipeline stages are: 1) Reading (R): The source operands from the on chip memory are sent to the register file. The control module gives an order to the reading address generator integrated into the control module for reading the row or column resource from the memory module (internal SRAM in the FPGA) to the RPUs at the address pointed to be by a read counter. Two data are read in one clock cycle. 2) Execution (E): In this phase, the data available in the register file is used by the data-path to process in parallel the two parts of the filter. As the high pass filter part requires the previous result of low pass filter part, the execution is delayed by one clock cycle for high pas results. This operation is executed in one clock cycle. 3) Writeback (W): The results of computation are written back to the on chip memory at the address pointed to by a write counter. Two operations are executed in one clock cycle. The figure 7 shows the operating mode of the three stages pipeline. Because of sequential access to one memory block, the computations of the first level are performed as shown in (a) allowing the execution of three operations in one clock cycle. For the remaining processing, thanks to the parallel read, execute and write, six operations are executed in one clock cycle (b). C. Memory access The on chip memory consists of a set of fixed size blocks. Each block is a dual port memory with a simultaneous read and write access. The size of each memory block corresponds to the size of the image in the first level on transformation in IDWT case. In our experiment we choose a size of 32 × 32 bytes. Due to this organization, when the first level is processed, the two data paths of processing elements are fed in a sequential way, which requires two cycles for memory access. However, for the other levels, the data are retrieved from (or stored to) two different memory blocks for one processing element in parallel.

Rh1 Rl2

Rh2 Rl3

We0

(a)

Rl1

Rh4 Rl5

We1 Wo0 We2 Wo1 We3 Wo2

Rl4

Rl5

Rh0 Rh1 Rh2 Rh3 Rl4

Rl5

Rl2

Rh3 Rl4

Xe1 Xo0 Xe2 Xo1 Xe3 Xo2 Xe4

Xe0

Rl0

B. Reconfigurable interface

Rh0 Rl1

Rl3

Xe0 Xe1 Xe2 Xe3 Xe4 Xo0 Xo1 Xo2 (b)

Fig. 7.

We0 We1 We2 We3 Wo1 Wo2

Pipeline organization: special case (a), normal case (b)

Virtex−4 BRAM configurations memory

BRAM SM

HWICAP BRAM Buffer ICAP

SM

RA1 SM

SM

RA2

RA3

OPB

consider the table I, we can see that by partially reconfiguring the 9/7 filter we can implement all the list of the table. The reconfiguration of 9/7 filter consists of suppressing or disconnecting unused operators and generation of an adequate control and an efficient data management.

PowerPC

SDRAM

Fig. 8.

Target architecture.

V. I MPLEMENTATION DETAILS AND RESULTS A. Design methodology and framework In order to demonstrate the feasibility of proposed reconfigurable architecture, we implemented a reconfigurable IDWT architecture targeting a Xilinx FPGA of the Virtex family (Virtex-4) [10]. The virtex-4 supports the new partial reconfiguration with one frame being the basic unit for reconfiguration. Partial reconfiguration of Xilinx FPGAs is done by using partial bitstreams. In order to obtain partial bitstreams for each reconfigurable module, we have used the module-based partial reconfiguration flow described in [11]. Xilinx ISE8.2 software and the Early access Partial Reconfiguration tool was used for generating the required partial bitstreams. The implementation flow is: 1) The reconfigurable module: In this step the reconfigurable modules are generated. There is the reconfigurable interface (RI) and reconfigurable processing units (RPU). A parameterized set of reconfigurable interface RI0 , RI1 , ..., RIm−1 is generated by using the predefined Interface template and the module information from the data structure. A set of RPUs is defined as Reconfigurable Processing Elements RP U0 , RP U1 , ..., RP Uk−1 . A subset of processing element is associated to a reconfigurable interface to

TABLE II I MPLEMENTATION RESULTS Type of architecture

Resolution

Area(mm2 for VLSI and ASIC)(CLB for FPGA)

Max frequency of operation(MHz)

Memory (KB)

Proposed architecture (5/3 filter)

32x32 64x64

153 CLBs 538 CLBs

50 50

1.024 4.96

ASICs based [4]

one frame image

8.796 mm2

50

2 frame memory

Zero-padding scheme [2]

32x32

4.26mm2

50

6.99

implement the computation of a level. 2) Partition configurations: For a given level, two partitions are defined. The first corresponds the processing configuration (allowing the implementation of different types of filters: 5/3, 9/7 ...) and the second corresponds to the interface configuration allowing the communication between different processing units. 3) Bitstream generation: After the necessary control files are automatically built based on the information of the prior steps, an initial bitstreams and the bitstreams for the modules are generated and stored in the configuration memory via system memory. The system architecture is organized as shown figure 8: it is composed of a PowerPC allowing the hardware autoconfiguration through HWICAP [12] peripheral, a BRAM used to store partial bitstreams and one Reconfigurable Processing Module. The RPM is composed of a reconfigurable area (RA1) to hold communication interface, and reconfigurables areas (RA2 and RA3) to hold different data-path. The communication between different reconfigurable areas is achieved by slice macros. The RPM use a local and fragmented BRAM memory with double ports in order to enable parallelism. B. Implementation results A 2-D Inverse Discret Wavelet Transform is implemented using the 5/3 and 9/7 − F filters. We choose a 50MHz frequency of operation for an adequate comparison with other architectures. In the proposed organisation, the data image can be read from different memory area allowing an efficient parallelism. The IDWT module can reconstruct the image with different resolutions according to the requirement. The number of computational modules could be changed at runtime as well as its interface with memory. It requires that the Reconfigurable Interface be used not only to build the connection with the memory and computation module, but also be used like a controller to manage the working sequence of system. Table II compares the performances of various IDWT implementations with our experiment. The total size of one RPM based on different resolutions is shown in this table. The 5/3 filter occupies 17 slices (5 CLBs). The 9/7 − F filter uses 41 slices (11 CLBs). The result is shown in the table III. In terms of area, it is difficult to do an objective comparison due to the nature of targets. However, it is evident that our solution is more flexible than the ASIC one. The proposed architecture features small area and low memory requirements. The 32×32 image block needs 43 µs which give very low execution time

Requirement

than the traditional design. Using a 64 × 64 image block gives a good performance throughput which takes 86 µs for the transformation, for two-level inverse wavelet transform, which is capable to perform the CCIR (720 × 576) format image at 50 f rame/sec. TABLE III 5/3 AND 9/7 CONFIGURATION RESULTS Filter

Number of slices

one 5/3 filter one 9/7 filter

17 41

As explained above, the on chip PowerPC processor is used for auto-configuration through HWICAP. As the PowerPC is an element of the system, it is used to detect external or internal events and accordingly loads automatically the adequate configuration to adapte the system to the given situation and then making the system auto-adaptive. The HWICAP makes auto-configuration easier, in fact a C program running on PowerPC allows the transfer of 512x32 bit blocks of the partial bitstream from the configuration memory to a fixed size buffer of the HWICAP peripheral, which manages the transfer from the buffer to the ICAP. The total reconfiguration time can be approximated by the following equation: Tconf ig = TICAP + TBRAM

(9)

Where TICAP is the time required to transfer configuration data from the buffer to the ICAP, and TBRAM is the time required to transfer data from configuration memory to the HWICAP buffer. Table IV shows different parts of the system, the size of corresponding bitstream file and their configuration time. The system consists of a static part and reconfigurable parts (P art1 and P art2 are the two versions of reconfigurable communication allowing the switching between two filters, P art3 corresponds to 5/3 filter, and P art4 is the difference between 5/3 filter and 9/7 filter). The configuration time is measured using a free running counter (timer) incremented every system clock cycle, and capturing the start time and the end time. We see that the configuration time as expected depends linearly on the size of bitstream. To compare the measured configuration time with the minimum possible value, the theoretical value for the reconfiguration of Virtex-4 FPGA could be obtained with this equation: Tconf ig = L/r, where L is the length of the configuration

TABLE IV C ONFIGURATION OVERHEAD System parts

Size KB

Overhead

(ms)

TBRAM

TICAP

Tconf ig

Static part

582

by JTAG

2 seconds

P art1

63

87.6

0.97

90

P art2

11

15.6

0.19

16

P art3

33

41.7

0.43

45.3

P art4

28

38.9

0.27

40.2

file and r is the transfer rate. As an example, for a file of 63KB size, and a clock frequency of 100 MHz as used in our experimentation, the minimum theoretical reconfiguration time is 0.63 ms, which is much less than 90 ms that as given in table IV. This is due to PowerPC that acts as the configuration manager in our system. Large part of time is spent to copy reconfiguration data from on chip or external memory to HWICAP buffer. The difference between the measured configuration time (0.97 ms) and the computed time (0.63 ms) is due to the imprecision of the measurement method. In fact, the capture of start and stop time is achieved using software, which tacks additional clock cycles. In table IV we can see also that the main part of reconfiguration time is wasted for the transmission of reconfiguration files. It is obvious that the configuration time can be improved. A solution we are studying is based on a specific hardware reconfiguration manager capable to transfers the configuration data from on chip memory to ICAP. VI. C ONCLUSION AND FUTURE WORK In this paper, we have described auto-adaptive and reconfigurable hybrid architecture for multimedia applications. Two levels of auto adaptation are defined in order to minimize the reconfiguration overhead. The application adaptive level in which different applications of a domain are classified and characterized by a set of tasks. The task adaptive level in which for a given task, a set of versions are defined and characterized for use in a situation to adapt the application to different constraints like energy, and bandwidth requirement. The proposed architecture is a universal, scalable and flexible featuring two levels of reconfiguration in order to enable the application adaptivity and task adaptivity. We demonstrated through the case study that it can be used for any types of filters, any size of image and any level of transformation. The memory is organized as a set of independent memory blocks. Each memory block is a reconfigurable module. The high scalability of the architecture is achieved through the flexibility and ease of choosing the number of memory blocks and processing elements to match the desired resolution. The on-chip memory is used not only to hold the source image, but also to store the temporary and final result. Hence, there is no need of temporal memory. The processor has no instructions and then no decoder, in fact, the hardware reconfigurable controller plays the role of a specific set of instructions

and their sequencing. For a given set of tasks, a set of configurations are generated at compile time and loaded in run time by the configuration manager via configuration memory. In the future work, the reconfiguration controller that supports auto-adaptation corresponding to the application requirement will be optimized. An efficient reconfiguration management is under study to reduce the reconfiguration overhead. R EFERENCES [1] S. Mallat, ”A Theory for Multiresolution Signal Decomposition: The Wavelet Representation”, IEEE Transactions on Pattern Analysis and Machine Intellignece, Vol. 11, no. 7, pp674-693, July 1989. [2] S. Kavish, S. Srinivasan ”VLSI Implementation of 2-D DWT/IDWT Cores using 9/7-tap filter banks based on the Non-expansive Symmetric Extension Scheme”, IEEE,Proceedings of the 15th International Conference on VLSI Design(VLSID’02) 2002. [3] Sze-Wei Lee, Soon-Chieh Lim ”VLSI Design of a Wavelet Processing Core,” IEEE Transactions on circuits and systems for video technology, vol. 16, no.11, November 2006 [4] Po-Chich Tseng, Chao-Tsung Huang, and Liang-Gee Chen ”Reconfigurable discrete wavelet transform architecture for advanced multimedia systems” Signal Processing Systems, 2003. SIPS 2003. IEEE Workshop on Volume , Issue , 27-29 Aug. 2003 Page(s): 137 - 141 [5] M.A. Trenas, J.Lopez, and E.L. Zapata ” A Configurable architecture for the Wavelet Packet Transform,” The journal of VLSI Signal Processing, vol, 32, issue 3, pp. 151-163, November 2002. [6] P.Jamkhandi, A.Mukherjee, K. Mukherjee, and R. Franceschini, ”Parallel ardwaresoftware architecture for computation of discretewavelet transform using the recursive merge filtering algorithm,” in Proc. Int. Parallel Distrib. Process. Symp. Workshop, 2000, pp. 250-256. [7] A. Petrovsky, T. Laopoulos, V. Golovko, R. Sadykhov, and A. Sachenko, ”Dynamic instructor set computer architecture of wavelet packet processor for real-time audio signal compression systems,” in Proc. 2nd ICNNA, Feb. 2004, pp. 422-424. [8] texas,www.ti.com [9] W.Sweldens, ”The Lifting Scheme: A Custum-Design Construction of Biorthogonal Wavelets,” applied and computational Harmonic Analysis 3, pp 186-200, 1996. [10] Datasheet.V4,Xilinx, Inc.2004. ”Virtex-4 Data sheet”, Xilinx Inc. San Jose, CA [11] XAPP-290,Xilinx Inc. ”Two flows for partial reconfiguration: modulebased or difference based.” Xilinx App. Note 290 Sep., 2004 [12] http://www.xilinx.com/bvdocs/ipcenter/data sheet/opb hwicap.pdf

des documents recommandant

[image: alt]

Auto-adaptive reconfigurable architecture for scalable ... - Xun ZHANG

A platform based on a Xilinx Virtex-4 FPGA is used for experimental implementation. I. INTRODUCTION. In the multimedia terminal development, customers ...

[image: alt]

CLUSTER ARCHITECTURE FOR ... - Xun ZHANG

ABSTRACT. We describe a dynamic reconfigurable baseband signal- processing engine suitable for mobile communications that require short operation latency ...

[image: alt]

Cluster-Based Hybrid Reconfigurable Architecture for ... - Xun ZHANG

A platform based on a Xilinx Virtex-4 FPGA is used for experimental implementation. I. INTRODUCTION. In the multimedia applications, customers demand more.

[image: alt]

AN EFFICIENT AND SCALABLE ARCHITECTURE FOR ... - Xun ZHANG

Pedro O. Domingos, Fernando M. Silva, HorÃ¡cio C. Neto. Dept. of Electrical and Computer Engineering, IST/INESC-ID, Portugal ... tude over high-end software implementations are possible, using a GAs and embedded systems. The results ...

[image: alt]

A RECONFIGURABLE PERFECT-HASHING SCHEME ... - Xun ZHANG

and viruses have increased the need for network security. Deep packet inspection is performed by firewalls and in- trusion detection/prevention systems ...

[image: alt]

TOWARDS A RECONFIGURABLE TRACKING SYSTEM ... - Xun ZHANG

multiple correlations, convolutions and other complex ... The location of target object is found within scene ... concept to develop a multi-object tracking system.

[image: alt]

Designing Reconfigurable Computing solutions - Xun ZHANG

in a high-performance computing envi- ronment should ... System designers have introduced ... Verilog) have at their core the notions of parallel execution of ...

[image: alt]

Cluster-Based Hybrid Reconfigurable ... - Xun ZHANG

Abstractâ€”The paper presents a cluster-based hybrid recon- figurable architecture for One of the main object of the experiment is to test the hierarchical ...

[image: alt]

A DYNAMICALLY RECONFIGURABLE BLUETOOTH ... - Xun ZHANG

user design to remain in place while another portion is being updated. modules were translated into VHDL while others into Verilog. Final Assembly: all the ...

[image: alt]

AN APPROACH TO SCALABLE MOLECULAR ... - Xun ZHANG

arithmetic is deployed completely on reconfigurable hard- ware. We compare, in terms of communication costs and processing efficiency, our technique based ...

[image: alt]

A Dynamically-Reconfigurable FPGA Platform for ... - Xun ZHANG

recently that technology is allowing the physical implementation of bio-inspired systems. We are currently pursuing three lines of research : (1) refining.

[image: alt]

An Algorithm for Dynamically Reconfigurable FPGA ... - Xun ZHANG

Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan and estimates their cost by our metric. Example 1 In the example shown in ...

[image: alt]

Reconfigurable Platform-Based Design in FPGAs for ... - Xun ZHANG

This thesis examines methods for increasing productivity in the design of reconfigurable ... Finally, the system assembly 3.4 An example of data flow in a multi-stage application using Sonic Therefore, the fundamental aspects AMB

[image: alt]

EFFICIENT EXECUTION ON RECONFIGURABLE ... - Xun ZHANG

temporal parallelism to the execution paths on the reconfig- urable device. ... INTRODUCTION. Parallel processing compared to sequential execution brings.

[image: alt]

ARCHITECTURE-ADAPTIVE ROUTABILITY-DRIVEN ... - Xun ZHANG

FPGA layout, and the router assigns the signals that connect the placed logic blocks ... an impediment in the early stages of FPGA architecture development, when the changes in wire cost will not recognize moves that might improve future ...

[image: alt]

AN FPGA NETWORK ARCHITECTURE FOR ... - Xun ZHANG page

This paper presents a DES/3DES core that will support. Cipher Block Chaining (CBC) and also has a built in keygen that together take up about 10% of the ...

[image: alt]

Runtime reconfigurable interfaces - the RTR-IBF ... - Xun ZHANG

ured computation modules in real-time environments lead to massive systems. Therefore multiple operation modes are possible for each handler. When a ...

[image: alt]

aSOC: A Scalable, Single-Chip Communications ... - Xun ZHANG

Department of Electrical and Computer Engineering. University of currently underway and a high-level view of the approach is described in Section 6.

[image: alt]

HIERARCHICALLY RECONFIGURABLE HYBRID ARCHITECTURE

urable architecture based on partial and dynamical reconfig- urable FPGA in 18(5)(2001) 32-45. [3] K.COMPTON â€�Reconfigurable Computing: A Survey.

[image: alt]

Untitled - Xun ZHANG

group, and the European Union End to End Reconfigurability Project (E2R) ... train, taxi, next flight to . . . , restaurant, tickets to the opera, etc.). Concierge services ... core network infrastructure containing the billing system and through whi

[image: alt]

EFFICIENT QUADRATIC PLACEMENT FOR FPGAS ... - Xun ZHANG

Tool for FPGAs. Quadratic placement algorithms try to minimize total squared wire length by solving linear equations. The resulting placement tends to locate all ...

[image: alt]

MULTIDIMENSIONAL DYNAMIC PROGRAMMING FOR ... - Xun ZHANG

We have already proposed a computational method for three-dimensional alignment using reconfigura- tion and co-processing by FPGA and software[14]. In this.

[image: alt]

PGR : A SOFTWARE PACKAGE FOR ... - Xun ZHANG

ware that dynamically generate HDL description for a FEU. The approach of dynamic ... As well as communication software, the performance of a particular ...

[image: alt]

EFFICIENT HARDWARE ARCHITECTURES FOR ... - Xun ZHANG

... e.g., an RSA or. DSA (digital signature) operation can involve thousands of tem,â€� School of Electronic and Electrical Engineering,. Kyungpook National ...

×
Report Auto-adaptive reconfigurable architecture for scalable ... - Xun ZHANG

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

