datasheet search site | www.alldatasheet.com

using a new Texas Instruments Excalibur process. ... The complementary bipolar Excalibur process utilizes isolated vertical pnp transistors that yield dramatic.
1MB taille 1 téléchargements 273 vues
TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

D D D D D D

Supply Current . . . 230 µA Max High Unity-Gain Bandwidth . . . 2 MHz Typ High Slew Rate . . . 0.45 V/µs Min Supply-Current Change Over Military Temp Range . . . 10 µA Typ at VCC ± = ± 15 V Specified for Both 5-V Single-Supply and ±15-V Operation Phase-Reversal Protection

D D D D D

High Open-Loop Gain . . . 6.5 V/µV (136 dB) Typ Low Offset Voltage . . . 100 µV Max Offset Voltage Drift With Time 0.005 µV/mo Typ Low Input Bias Current . . . 50 nA Max Low Noise Voltage . . . 19 nV/√Hz Typ

description The TLE202x, TLE202xA, and TLE202xB devices are precision, high-speed, low-power operational amplifiers using a new Texas Instruments Excalibur process. These devices combine the best features of the OP21 with highly improved slew rate and unity-gain bandwidth. The complementary bipolar Excalibur process utilizes isolated vertical pnp transistors that yield dramatic improvement in unity-gain bandwidth and slew rate over similar devices. The addition of a bias circuit in conjunction with this process results in extremely stable parameters with both time and temperature. This means that a precision device remains a precision device even with changes in temperature and over years of use. This combination of excellent dc performance with a common-mode input voltage range that includes the negative rail makes these devices the ideal choice for low-level signal conditioning applications in either single-supply or split-supply configurations. In addition, these devices offer phase-reversal protection circuitry that eliminates an unexpected change in output states when one of the inputs goes below the negative supply rail. A variety of available options includes small-outline and chip-carrier versions for high-density systems applications. The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from – 40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of – 55°C to 125°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Copyright  1997, Texas Instruments Incorporated

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

1

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

TLE2021 AVAILABLE OPTIONS PACKAGED DEVICES TA

VIOmax AT 25°C

SMALL OUTLINE† (D)

SSOP‡ (DB)

CHIP CARRIER (FK)

CERAMIC DIP (JG)

PLASTIC DIP (P)

TSSOP‡ (PW)

CHIP FORM§ (Y)

0°C to 70°C

200 µ µV 500 µV

TLE2021ACD TLE2021CD

TLE2021CDBLE





TLE2021ACP TLE2021CP

— TLE2021CPWLE

— TLE2021Y

– 40°C to 85°C

200 µ µV 500 µV

TLE2021AID TLE2021ID







TLE2021AIP TLE2021IP





– 55°C to 125°C

100 µ µV 200 µV 500 µV

— TLE2021AMD TLE2021MD



TLE2021BMFK TLE2021AMFK TLE2021MFK

TLE2021BMJG TLE2021AMJG TLE2021MJG

— TLE2021AMP TLE2021MP





† The D packages are available taped and reeled. To order a taped and reeled part, add the suffix R (e.g., TLE2021CDR). ‡ The DB and PW packages are only available left-end taped and reeled. § Chip forms are tested at 25°C only.

TLE2022 AVAILABLE OPTIONS PACKAGED DEVICES CHIP CARRIER (FK)

CERAMIC DIP (JG)

PLASTIC DIP (P)

TSSOP‡ (PW)

CHIP FORM§ (Y)

— TLE2022CDBLE





— TLE2022ACP TLE2022CP

— — TLE2022CPWLE

— — TLE2022Y

TLE2022BID TLE2022AID TLE2022ID







— TLE2022AIP TLE2022IP





— TLE2022AMD TLE2022MD



— TLE2022AMFK TLE2022MFK

TLE2022BMJG TLE2022AMJG TLE2022MJG

— TLE2022AMP TLE2022MP





TA

VIOmax AT 25°C

SMALL OUTLINE† (D)

SSOP‡ (DB)

0°C to 70°C

150 µV 300 µV 500 µV

TLE2022BCD TLE2022ACD TLE2022CD



– 40°C to 85°C

150 µV 300 µV 500 µV

– 55°C 55 C to 125°C

150 µV 300 µ µV 500 µV

‡ The D packages are available taped and reeled. To oerder a taped and reeled part, add the suffix R (e.g., TLE2022CDR). ‡ The DB and PW packages are only available left-end taped and reeled. † Chip forms are tested at 25°C only. TLE2024 AVAILABLE OPTIONS PACKAGED DEVICES TA

VIOmax AT 25°C

0°C to 70°C

500 µV 750 µ µV 1000 µV

– 40°C to 85°C

– 55°C to 125°C

SMALL OUTLINE (DW)

CERAMIC DIP (J)

PLASTIC DIP (N)

TLE2024BCDW TLE2024ACDW TLE2024CDW





TLE2024BCN TLE2024ACN TLE2024CN

— — TLE2024Y

500 µV 750 µ µV 1000 µV

TLE2024BIDW TLE2024AIDW TLE2024IDW





TLE2024BIN TLE2024AIN TLE2024IN



500 µ µV 750 µV 1000 µV

TLE2024BMDW TLE2024AMDW TLE2024MDW

TLE2024BMFK TLE2024AMFK TLE2024MFK

TLE2024BMJ TLE2024AMJ TLE2024MJ

TLE2024BMN TLE2024AMN TLE2024MN



† Chip forms are tested at 25°C only.

2

CHIP FORM† (Y)

CHIP CARRIER (FK)

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

description (continued) TLE2021 D, DB, JG, P, OR PW PACKAGE (TOP VIEW) 1

8

2

7

3

6

4

5

NC OFFSET N1 NC NC NC

OFFSET N1 IN – IN + VCC – /GND

TLE2021 FK PACKAGE (TOP VIEW)

NC VCC + OUT OFFSET N2 4

3 2 1 20 19 18

5

17

6

16

7

15

8

14 9 10 11 12 13

NC VCC + NC OUT NC

NC VCC – / GND NC OFFSET N2 NC

NC IN – NC IN + NC

NC – No internal connection

1

8

2

7

3

6

4

5

VCC + 2OUT 2IN – 2IN +

NC 1IN – NC 1IN + NC

4

3 2 1 20 19 18

5

17

6

16

7

15

8

14 9 10 11 12 13

NC 2OUT NC 2IN – NC

NC VCC – / GND NC 2IN + NC

1OUT 1IN – 1IN + VCC – /GND

FK PACKAGE (TOP VIEW)

NC 1OUT NC VCC + NC

D, DB, JG, P, OR PW PACKAGE (TOP VIEW)

NC – No internal connection

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

3

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

1

16

2

15

3

14

4

13

5

12

6

11

7

10

8

9

4OUT 4IN – 4IN + VCC – /GND 3IN + 3IN – 3OUT NC

J OR N PACKAGE (TOP VIEW)

1IN + NC VCC + NC 2IN +

4

3 2 1 20 19 18

5

17

6

16

7

15

8

14 9 10 11 12 13

4IN + NC VCC – /GND NC 3IN +

2IN – 2OUT NC 3OUT 3IN –

1OUT 1IN – 1IN + VCC + 2IN + 2IN – 2OUT NC

FK PACKAGE (TOP VIEW)

1IN – 1OUT NC 4OUT 4IN –

DW PACKAGE (TOP VIEW)

NC – No internal connection

4

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

1OUT 1IN – 1IN + VCC + 2IN + 2IN – 2OUT

1

14

2

13

3

12

4

11

5

10

6

9

7

8

4OUT 4IN – 4IN + VCC – /GND 3IN + 3IN – 3OUT

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

TLE2021Y chip information This chip, when properly assembled, display characteristics similar to the TLE2021. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. This chip may be mounted with conductive epoxy or a gold-silicon preform. BONDING PAD ASSIGNMENTS (7)

(6)

(5)

OFFSET N1 IN + IN – OFFSET N2

VCC+ (7)

(1) (3) (2)

+

(6) OUT



(5) (4) VCC – /GND

78 CHIP THICKNESS: 15 MILS TYPICAL BONDING PADS: 4 × 4 MILS MINIMUM TJmax= 150°C TOLERANCES ARE ± 10%. ALL DIMENSIONS ARE IN MILS. (4) (1)

PIN (4) IS INTERNALLY CONNECTED TO BACKSIDE OF CHIP. (2)

(3) 54

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

5

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

TLE2022Y chip information This chip, when properly assembled, displays characteristics similar to TLE2022. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. This chip may be mounted with conductive epoxy or a gold-silicon preform. BONDING PAD ASSIGNMENTS

(7)

(6)

IN +

(3) (2)

IN – OUT

(8)

(7)

+

(1) OUT

– + –

(5) 80

VCC+ (8)

(5) (6)

IN + IN –

(4)

(4)

VCC –

(1) CHIP THICKNESS: 15 MILS TYPICAL BONDING PADS: 4 × 4 MILS MINIMUM TJmax = 150°C TOLERANCES ARE ± 10%. ALL DIMENSIONS ARE IN MILS. (2)

(3) 86

6

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

PIN (4) IS INTERNALLY CONNECTED TO BACKSIDE OF CHIP.

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

TLE2024Y chip information This chip, when properly assembled, displays characteristics similar to the TLE2024. Thermal compression or ultrasonic bonding may be used on the doped aluminum-bonding pads. This chip may be mounted with conductive epoxy or a gold-silicon preform. BONDING PAD ASSIGNMENTS

1IN + 1IN – 2OUT 2IN +

100

3IN – 4OUT

VCC + (4)

(3)

+

(1) 1OUT

(2)

– +

(7) (10)

– +

(5) (6)

2IN + 2IN –

(8) 3OUT

(9)

– +

(14)



(12) (13)

4IN + 4IN –

(11) VCC – /GND 140

CHIP THICKNESS: 15 MILS TYPICAL BONDING PADS: 4 × 4 MILS MINIMUM TJmax = 150°C TOLERANCES ARE ± 10%. ALL DIMENSIONS ARE IN MILS. PIN (11) IS INTERNALLY CONNECTED TO BACKSIDE OF CHIP.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

7

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

equivalent schematic (each amplifier) VCC+ Q13 Q3

Q22

Q17

Q7

Q28

Q31

Q35

Q29

Q19 Q1

Q32

Q24

Q39

Q20 Q8

Q5

Q34

Q38

Q11

D3

Q2

Q36

C4 IN –

Q4

Q12

D4

IN +

R7

Q23 Q25

C2

Q10

D1 D2

OUT

Q14

Q40 C3

Q21

Q27

R6 R1 C1 OFFSET N1 (see Note A)

Q6

Q9

R2

R4

R3

R5

Q15

Q30 Q33

Q26

Q18 Q16

OFFSET N2 (see Note A)

VCC – /GND ACTUAL DEVICE COMPONENT COUNT COMPONENT Transistors

8

TLE2021

TLE2022

TLE2024

40

80

160

Resistors

7

14

28

Diodes

4

8

16

Capacitors

4

8

16

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

Q37

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VCC+ (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V Supply voltage, VCC – (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 20 V Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 0.6 V Input voltage range, VI (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±VCC Input current, II (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1 mA Output current, IO (each output): TLE2021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 20 mA TLE2022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 30 mA TLE2024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 40 mA Total current into VCC+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 mA Total current out of VCC – . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 mA Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C Case temperature for 60 seconds, TC: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, DP, P, or PW package . . . . . . . . 260°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package . . . . . . . . . . . . . . . . . . . . 300°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC +, and VCC – . 2. Differential voltages are at IN+ with respect to IN –. Excessive current flows if a differential input voltage in excess of approximately ± 600 mV is applied between the inputs unless some limiting resistance is used. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE

TA ≤ 25°C POWER RATING

DERATING FACTOR ABOVE TA = 25°C

TA = 70°C POWER RATING

TA = 85°C POWER RATING

TA = 125°C POWER RATING

D–8

725 mW

5.8 mW/°C

464 mW

377 mW

145 mW

4.2 mW/°C

336 mW





656 mW

533 mW

205 mW

880 mW

715 mW

275 mW

DB–8

525 mW

DW–16

1025 mW

FK

1375 mW

8.2 mW/°C 11.0 mW/°C

J–14

1375 mW

11.0 mW/°C

880 mW

715 mW

275 mW

JG–8

1050 mW

8.4 mW/°C

672 mW

546 mW

210 mW

N–14

1150 mW

736 mW

598 mW

230 mW

P–8

1000 mW

8.0 mW/°C

9.2 mW/°C

640 mW

520 mW

200 mW

PW–8

525 mW

4.2 mW/°C

336 mW





recommended operating conditions

Supply voltage, VCC Common mode input voltage, Common-mode voltage VIC

VCC = ± 5 V VCC ± = ± 15 V

Operating free-air temperature, TA

POST OFFICE BOX 655303

C SUFFIX

I SUFFIX

M SUFFIX

MIN

MAX

MIN

MAX

MIN

MAX

±2

± 20

±2

± 20

±2

± 20

0

3.5

0

3.2

0

3.2

–15

13.5

–15

13.2

–15

13.2

0

70

– 40

85

– 55

125

• DALLAS, TEXAS 75265

UNIT V V °C

9

Input offset voltage

αVIO

Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4)

IIO

Input offset current

IIB

Input bias current

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

VICR

Common mode input voltage range Common-mode

TA†

TLE2021C MIN

25°C

MAX

120

600

Full range

MAX

100

300

MIN

TYP

MAX

80

200

600

300

UNIT µV

2

2

µV/°C

25°C

0.005

0.005

0.005

µV/mo

25°C

0.2 25

Full range 0 to 3.5

Full range

0 to 3.5

25°C

4

VOH

High level output voltage High-level

VOL

Low level output voltage Low-level

AVD

Large-signal g g differential voltage amplification

VO = 1.4 V to 4 V,, RL = 10 kΩ

25°C

0.3

Full range

0.3

CMRR

Common mode rejection ratio Common-mode

VIC = VICRmin,, RS = 50 Ω

25°C

85

Full range

80

kSVR

Supply-voltage y g rejection j ratio (∆VCC /∆VIO)

VCC = 5 V to 30 V

25°C

105

Full range

100

ICC

Supply current

∆ICC

Supply-current change over operating temperature range

Full range

– 0.3 to 4

25 – 0.3 to 4

4 0.8

4.3

4 0.8

85

1.5

105

Full range

230

120

105

170

230

110

dB

120 170

230 5

dB 230 230

5

V V/µV

100

230 5

1.5

80

100 170

0.8 0.85

85

nA

V

0.3 110

nA

V

4.3 0.7

0.3

80 120

– 0.3 to 4

0.85 0.3

110

90

3.9 0.7

0.3

70

0 to 3.5

0.85 1.5

25 0 to 3.5

3.9 0.7

6 10

90 0 to 3.5

4.3

0.2

70

0 to 3.5

Full range

Full range

6 10

70

3.9

25°C

25°C

0.2

90

25°C RS = 50 Ω

6 10

25°C

VO = 2.5 V, No load

TLE2021BC

TYP

2

Full range

RL= 10 kΩ

MIN

850

Full range

VIC = 0,, RS = 50 Ω

TLE2021AC

TYP

µA µA

† Full range is 0°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Template Release Date: 7–11–94

VIO

TEST CONDITIONS

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

PARAMETER

SLOS191 – FEBRUARY 1997

10

TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)

TLE2021 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise noted) PARAMETER VIO

Input offset voltage

αVIO

Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4)

IIO

Input offset current

IIB

Input bias current

VOM OM+

Common mode input voltage range Common-mode

TA†

TLE2021C MIN

25°C

120

500

80

200

MIN

TYP

MAX

40

100

500

200

UNIT µV µV/°C

25°C

0.006

0.006

0.006

µV/mo

25°C

0.2 25 – 15 to 13.5

Full range

– 15 to 13.5

25°C Full range

14

– 15.3 to 14

25°C

– 13.7

Full range

– 13.7

AVD

Large-signal g g differential voltage amplification

VO = ± 10 V,, RL = 10 kΩ

25°C

1

Full range

1

CMRR

Common mode rejection ratio Common-mode

VIC = VICR min,, RS = 50 Ω

25°C

100

Full range

96

kSVR

Supply-voltage y g rejection j ratio (∆VCC /∆VIO)

VCC ± = ± 2.5 V to ± 15 V

25°C

105

Full range

100

ICC

Supply current

25 – 15.3 to 14

14 – 13.7 1

14.3

100 105

– 14.1

– 13.7

6.5

1

300

100

120

105

– 14.1

V

6.5

V/µV

115

dB

120

dB

100 200

300

200

300

300 300

6

µA µA

† Full range is 0°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

11

SLOS191 – FEBRUARY 1997

6

nA

V

96

300 6

14.3

1 115

nA

V

– 13.7

100 200

– 15.3 to 14

13.9

96 120

90

14

1 115

70

15 to 13.5

– 13.7 6.5

25 – 15 to 13.5

13.9 – 14.1

6 10

90 – 15 to 13.5

14.3

0.2

70

15 to 13.5

Full range Full range

6 10

70

13.9

Maximum negative peak g output voltage swing

25°C

0.2

90

25°C RS = 50 Ω

6 10

Full range

No load

MAX

2

25°C

VO = 0 0,

TYP

2

Full range

RL = 10 kΩ

MIN

TLE2021BC

2

Full range

Maximum positive peak output voltage swing

Supply-current change over operating temperature range

MAX 750

VOM –

∆ICC

TYP

Full range

VIC = 0, RS = 50 Ω

TLE2021AC

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

VICR

TEST CONDITIONS

Input offset voltage

αVIO

Temperature coefficient of input offset voltage Input offset voltage g long-term g drift (see Note 4)

IIO

Input offset current

IIB

Input bias current

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

VICR

VOH

Common-mode input voltage range

VIC = 0 0,

RS = 50 Ω

TYP

CMRR

Common mode rejection ratio Common-mode

VIC = VICRmin min,

RS = 50 Ω

kSVR

Supply-voltage ratio y g rejection j (∆VCC ± /∆VIO)

VCC = 5 V to 30 V

ICC

Supply current

400

µV

2

2

µV/°C

25°C

0 005 0.005

0 005 0.005

0 005 0.005

µV/mo

25°C

0.5 35

0.4

70

Full range g

0 to 3.5 4

– 0.3 to 4

33

– 0.3 to 4

4 0.8

0.3 0.3

25°C

85

Full range

80

25°C

100

Full range

95

1.5

4.3

4 0.8

87

1.5

103

450

600

102

0.8 0.85

1.5

90

118

105

105

dB

120

dB

100 450

600

450

600 7

600 600

7

V V/µV

85

600 7

V

0.5

98

Full range

nA

V

4.3 0.7

0.5

82 115

– 0.3 to 4

0.85 0.4

100

90

3.9 0.7

0.4

70

nA

0 to 3.5

0.85

25°C

30

0 to 3.5

3.9 0.7

6 10

70

0 to 3.5 4.3

0.3

90 0 to 3.5

3.9

Full range

6 10

90 0 to 3.5

Full range

6 10

25°C

25°C No load

UNIT

2

Full range

VO = 2 2.5 5V V,

MAX

550

25°C

RL = 10 kΩ

TYP

800

Full range

VO = 1.4 1 4 V to 4 V, V

MIN

Full range

25°C

Large-signal g g differential voltage amplification

TLE2022BC MAX

250

RS = 50 Ω

AVD

TYP

400

Full range

Low level output voltage Low-level

MIN

600

25°C

VOL

TLE2022AC MAX

25°C

Full range

High level output voltage High-level

Supply y current change g over operating temperature range

TLE2022C MIN

Full range

RL = 10 kΩ

∆ICC

TA†

µA µA

† Full range is 0°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Template Release Date: 7–11–94

VIO

TEST CONDITIONS

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

PARAMETER

SLOS191 – FEBRUARY 1997

12

TLE2022 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)

TLE2022 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted) PARAMETER VIO

Input offset voltage

αVIO

Temperature coefficient of input offset voltage Input offset voltage g long-term g drift (see Note 4)

IIO

Input offset current

IIB

Input bias current

Common-mode input voltage range

25°C

VIC = 0 0,

RS = 50 Ω

MAX

150

500

VO = ± 10 V V,

RL = 10 kΩ

CMRR

Common mode rejection ratio Common-mode

VIC = VICRmin min,

RS = 50 Ω

kSVR

Supply-voltage ratio y g rejection j (∆VCC ± /∆VIO)

2 5 V to ± 15 V VCC ± = ± 2.5

ICC

Supply current

70

150

450

300

UNIT µV

0 006 0.006

0 006 0.006

µV/mo

25°C

0.5 35

0.4

70

Full range g

– 15 to 13.5 14

– 15.3 to 14

33

– 13.7

Full range

– 13.7

25°C

0.8

Full range

0.8

25°C

95

Full range

91

25°C

100

Full range

95

– 15.3 to 14

14 – 13.7 1

14.3

97

14

– 14.1

– 13.7

103

7

1.5

Full range

700

109

14.3

V

– 14.1

V

10

V/µV

100

112

dB

96 118

105

120

dB

100 550

700

700

550

700 9

700 700

9

µA µA

† Full range is 0°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

13

SLOS191 – FEBRUARY 1997

9

nA

V

1.5

98 550

– 15.3 to 14

– 13.7

93 115

90

13.9

1 106

70

nA

– 15 to 13.5

– 13.7 4

30

– 15 to 13.5

13.9 – 14.1

6 10

70

– 15 to 13.5 14.3

0.3

90 – 15 to 13.5

13.9

25°C

6 10

90 – 15 to 13.5

Full range

6 10

25°C

Full range

No load

MAX

0 006 0.006

25°C VO = 0 0,

300

TYP

25°C

25°C

Large-signal g g differential voltage amplification

120

MIN

µV/°C

RS = 50 Ω

AVD

MAX

2

25°C

RL = 10 kΩ

TLE2022BC

TYP

2

Full range

Maximum negative g peak output voltage swing

MIN

2

Full range

VOM –

TLE2022AC

TYP

700

Full range

Maximum positive peak output voltage swing

Supply y current change g over operating temperature range

TLE2022C MIN

Full range

VOM +

∆ICC

TA†

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

VICR

TEST CONDITIONS

Input offset voltage

αVIO

Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4)

IIO

Input offset current

IIB

Input bias current

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

VICR

Common-mode input voltage g range

VIC = 0,

RS = 50 Ω

TYP

AVD

Large-signal g g differential voltage amplification

VO = 1.4 1 4 V to 4 V, V

RL = 10 kΩ

CMRR

Common mode rejection ratio Common-mode

VIC = VICRmin min,

RS = 50 Ω

kSVR

Supply-voltage y g rejection j ratio (∆VCC /∆VIO)

VCC = 5 V to 30 V

ICC

Supply current

TYP

MAX

850

600 800

UNIT µV

2

2

2

µV/°C

25°C

0.005

0.005

0.005

µV/mo

25°C

0.6 45 0 to 3.5

Full range

0 to 3.5

25°C

3.9

Full range

3.7

40 0 to 3.5

– 0.3 to 4

3.9

Full range

0.1

25°C

80

Full range

80

25°C

98

Full range

93

1.5

4.2

4 0.8

1.5

100

Full range

115

103

800

1200

95

dB

117 800

1200 15

dB 1200 1200

15

V V/µV

98

1200 15

1.5

85

95 1200

0.8 0.95

85

nA

V

0.1 92

nA

V

4.3 0.7

0.4

82

800

– 0.3 to 4

3.8

0.1

112

90

0.95

82

70

0 to 3.5

0.7 0.3

90

35 0 to 3.5

3.7 0.8

6 10

70

0 to 3.5 4.2

0.4

90

0.95 0.2

6 10

70

– 0.3 to 4

0.7

25°C

Full range

0.5

90

25°C

25°C

6 10

25°C

No load

MIN

1050

Full range

VO = 2 2.5 5V V,

TLE2024BC MAX

1100

RS = 50 Ω

RL = 10 kΩ

TYP

1300

Full range

Low level output voltage Low-level

MIN

25°C

25°C

VOL

TLE2024AC MAX

Full range

Full range

High level output voltage High-level

Supply current change over operating temperature range

TLE2024C MIN

Full range

VOH

∆ICC

TA†

µA µA

† Full range is 0°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Template Release Date: 7–11–94

VIO

TEST CONDITIONS

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

PARAMETER

SLOS191 – FEBRUARY 1997

14

TLE2024 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)

TLE2024 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted) PARAMETER VIO

Input offset voltage

αVIO

Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4)

IIO

Input offset current

IIB

Input bias current

VOM +

Common-mode input voltage g range

VIC = 0,

RS = 50 Ω

MIN

TYP

Large-signal g g differential voltage amplification

VO = ± 10 V V,

RL = 10 kΩ

CMRR

Common mode rejection ratio Common-mode

VIC = VICRmin min,

RS = 50 Ω

kSVR

Supply-voltage y g rejection j ratio (∆VCC ± /∆VIO)

VCC ± = ± 2.5 2 5 V to ± 15 V

ICC

Supply current No load

MAX

MIN

TYP

MAX

750

500

950

700

UNIT µV

2

2

2

µV/°C

25°C

0.006

0.006

0.006

µV/mo

25°C

0.6 50

0.5

70

Full range

– 15 to 13.5

25°C

13.8

Full range

13.7

25°C

– 13.7

Full range

– 13.6

25°C

0.4

Full range

0.4

25°C

92

Full range

88

25°C

98

Full range

93

– 15.3 to 14

6

45

70

– 15.3 to 14

13.9 – 13.7

14.2

0.8

14

– 14.1

– 13.7

94

4

1

105

97

100

1050

Full range

1400

115

103

1050

1400

– 14.1

V

7

V/µV

108

dB

117 1050

1400

dB 1400 1400

20

µA µA

† Full range is 0°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

15

SLOS191 – FEBRUARY 1997

20

nA

V

98

1400 20

14.3

93

95

nA

V

1

90 112

– 15.3 to 14

– 13.6

0.8 102

90

13.9

– 13.6 2

70

– 15 to 13.5

13.8 – 14.1

40 – 15 to 13.5

– 15 to 13.5

6 10

90 – 15 to 13.5

14.1

0.4

10

90 – 15 to 13.5

Full range

6 10

25°C

25°C VO = 0 0,

TYP

1200

RS = 50 Ω

AVD

MIN

1000

Full range

Maximum negative peak output g voltage swing

MAX

TLE2024BC

25°C

25°C

RL = 10 kΩ

TLE2024AC

Full range

Full range

Maximum positive peak output voltage swing

Supply y current change g over operating temperature range

TLE2024C

Full range

VOM –

∆ICC

TA†

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

VICR

TEST CONDITIONS

Input offset voltage

αVIO

Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4)

IIO

Input offset current

IIB

Input bias current

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

VICR

VOH

Common mode input voltage range Common-mode

TA†

TLE2021I MIN

25°C

MAX

120

600

Full range

100

300

MIN

TYP

MAX

80

200

600

300

UNIT µV

2

µV/°C

25°C

0.005

0.005

0.005

µV/mo

25°C

0.2 25 0 to 3.5

Full range

– 15 to 3.2

25°C Full range

4

– 0.3 to 4

25°C

AVD

Large-signal g g differential voltage amplification

VO = 1.4 V to 4 V,, RL = 10 kΩ

25°C

0.3

Full range

0.25

CMRR

Common mode rejection ratio Common-mode

VIC = VICR min,, RS = 50 Ω

25°C

85

Full range

80

kSVR

Supply-voltage y g rejection j ratio (∆VCC /∆VIO)

VCC = 5 V to 30 V

25°C

105

Full range

100

ICC

Supply current

∆ICC

Supply-current change over operating temperature range

– 0.3 to 4

4 0.8

4.3

4 0.8

105

110

170

230

1.5

120

105

110

dB

120

dB

100 170

230

170

230 6

230 230

6

V V/µV

80

230 6

0.8 0.9

85

100

Full range

V

0.25

80 120

4.3 0.7

0.3

nA

V

0.9 1.5

nA

– 0.3 to 4

3.9 0.7

85

70 90

0 to 3.5

0.25 110

25

0 to 3.2

0.9 0.3

6 10

70

3.9

1.5

0.2

90 0 to 3.5

4.3

Full range

Full range

25

15 to 3.2

0.7

Low level output voltage Low-level

6 10

70

3.9

VOL

25°C

0.2

90

25°C RS = 50 Ω

6 10

25°C

VO = 2.5 V, No load

MAX

2

Full range

RL = 10 kΩ

TLE2021BI

TYP

2

Full range

High level output voltage High-level

MIN

950

Full range VIC = 0, RS = 50 Ω

TLE2021AI

TYP

µA µA

† Full range is – 40°C to 85°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Template Release Date: 7–11–94

VIO

TEST CONDITIONS

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

PARAMETER

SLOS191 – FEBRUARY 1997

16

TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)

TLE2021 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted) PARAMETER VIO

Input offset voltage

αVIO

Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4)

IIO

Input offset current

IIB

Input bias current

VOM +

Common-mode input voltage g range g

TA†

TLE2021I MIN

25°C

500

80

200

MIN

TYP

MAX

40

100

500

200

UNIT µV

2

µV/°C

25°C

0.006

0.006

0.006

µV/mo

25°C

0.2

25°C

25 – 15 to 13.5

Full range

– 15 to 3.2

25°C Full range

14

25°C

– 13.7

Full range

– 13.6

AVD

Large-signal g g differential voltage amplification

VO = 10 V,, RL = 10 kΩ

Full range

0.75

CMRR

Common mode rejection ratio Common-mode

VIC = VICR min,, RS = 50 Ω

25°C

100

Full range

96

kSVR

Supply-voltage y g rejection j ratio (∆VCC /∆VIO)

VCC ± = ± 2. 5 V to ± 15 V

25°C

105

Full range

100

ICC

Supply current

25°C

– 15.3 to 14

1

25 – 15.3 to 14

14 – 13.7 1

14.3

100

14

– 14.1

– 13.7

105

6.5

1

115

100

300

105

200

300

– 14.1

V

6.5

V/µV

115

dB

120 200

300

dB 300 300

7

µA µA

† Full range is – 40°C to 85°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

17

SLOS191 – FEBRUARY 1997

7

nA

V

100

300 7

14.3

96 120

nA

V

0.75

100 200

– 15.3 to 14

– 13.6

96 120

90

13.9

0.75 115

70

15 to 3.2

– 13.6 6.5

25 – 15 to 13.5

13.9 – 14.1

6 10

90 – 15 to 13.5

14.3

0.2

70

15 to 3.2

Full range Full range

6 10

70

13.9

Maximum negative peak output g voltage swing

25°C

0.2

90

25°C RS = 50 Ω

6 10

Full range

VO = 0 V, V No load

MAX

2

Full range

RL = 10 kΩ

TLE2021BI

TYP

2

Full range

Maximum positive peak output voltage swing

Supply-current change over operating temperature range

120

MIN

850

VOM –

∆ICC

MAX

Full range

VIC = 0, RS = 50 Ω

TLE2021AI

TYP

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

VICR

TEST CONDITIONS

Input offset voltage

αVIO

Temperature coefficient of input offset voltage Input offset voltage g long-term g drift (see Note 4)

IIO

Input offset current

IIB

Input bias current

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

VICR

VOH

Common-mode input voltage range

VIC = 0 0,

RS = 50 Ω

TYP

CMRR

Common mode rejection ratio Common-mode

VIC = VICRmin min,

RS = 50 Ω

kSVR

Supply-voltage ratio y g rejection j (∆VCC ± /∆VIO)

VCC = 5 V to 30 V

ICC

Supply current

400

µV

2

2

µV/°C

25°C

0 005 0.005

0 005 0.005

0 005 0.005

µV/mo

25°C

0.5 35

0.4

70

Full range g

0 to 3.2 4

– 0.3 to 4

33

– 0.3 to 4

4 0.8

0.3 0.2

25°C

85

Full range

80

25°C

100

Full range

95

1.5

4.3

4 0.8

87

1.5

103

450

600

102

0.8 0.9

1.5

90

118

105

105

dB

120

dB

100 450

600

450

600 15

600 600

15

V V/µV

85

600 15

V

0.2

98

Full range

nA

V

4.3 0.7

0.5

82 115

– 0.3 to 4

0.9 0.2

100

90

3.9 0.7

0.4

70

nA

0 to 3.2

0.9

25°C

30

0 to 3.5

3.9 0.7

6 10

70

0 to 3.2 4.3

0.3

90 0 to 3.5

3.9

Full range

6 10

90 0 to 3.5

Full range

6 10

25°C

25°C No load

UNIT

2

Full range

VO = 2 2.5 5V V,

MAX

550

25°C

RL = 10 kΩ

TYP

800

Full range

VO = 1.4 1 4 V to 4 V, V

MIN

Full range

25°C

Large-signal g g differential voltage amplification

TLE2022BI MAX

250

RS = 50 Ω

AVD

TYP

400

Full range

Low level output voltage Low-level

MIN

600

25°C

VOL

TLE2022AI MAX

25°C

Full range

High level output voltage High-level

Supply y current change g over operating temperature range

TLE2022I MIN

Full range

RL = 10 kΩ

∆ICC

TA†

µA µA

† Full range is – 40°C to 85°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Template Release Date: 7–11–94

VIO

TEST CONDITIONS

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

PARAMETER

SLOS191 – FEBRUARY 1997

18

TLE2022 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)

TLE2022 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted) PARAMETER VIO

Input offset voltage

αVIO

Temperature coefficient of input offset voltage Input offset voltage g long-term g drift (see Note 4)

IIO

Input offset current

IIB

Input bias current

Common-mode input voltage g range g

25°C

VIC = 0 0,

RS = 50 Ω

MAX

150

500

VO = ± 10 V V,

CMRR

Common mode rejection ratio Common-mode

VIC = VICRmin min, RS = 50 Ω

kSVR

Supply-voltage ratio y g rejection j (∆VCC ± /∆VIO)

2 5 V to ± 15 V VCC = ± 2.5

ICC

Supply current No load

70

150

450

300

UNIT µV

0 006 0.006

0 006 0.006

µV/mo

25°C

0.5 35

0.4

70

Full range g

– 15 to 13.2 14

– 15.3 to 14

33

– 13.7

Full range

– 13.6

25°C

0.8

Full range

0.8

25°C

95

Full range

91

25°C

100

Full range

95

– 15.3 to 14

14 – 13.7 1

14.3

97

14

– 14.1

– 13.7

103

7

1.5

109

100

Full range

700

105

550

700

– 14.1

V

10

V/µV

112

dB

120 550

700

dB 700 700

30

µA µA

† Full range is – 40°C to 85°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

19

SLOS191 – FEBRUARY 1997

30

nA

V

100

700 30

14.3

96 118

nA

V

1.5

98 550

– 15.3 to 14

– 13.6

93 115

90

13.9

1 106

70

– 15 to 13.2

– 13.6 4

30 – 15 to 13.5

13.9 – 14.1

6 10

70

– 15 to 13.2 14.3

0.3

90 – 15 to 13.5

13.9

25°C

6 10

90 – 15 to 13.5

Full range

6 10

25°C

25°C VO = 0 0,

MAX

0 006 0.006

Full range

RL = 10 kΩ

300

TYP

25°C

25°C

Large-signal g g differential voltage amplification

120

MIN

µV/°C

RS = 50 Ω

AVD

MAX

2

25°C

RL = 10 kΩ

TLE2022BI

TYP

2

Full range

Maximum negative g peak output voltage swing

MIN

2

Full range

VOM –

TLE2022AI

TYP

700

Full range

Maximum positive peak output voltage swing

Supply y current change g over operating temperature range

TLE2022I MIN

Full range

VOM +

∆ICC

TA†

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

VICR

TEST CONDITIONS

Input offset voltage

αVIO

Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4)

IIO

Input offset current

IIB

Input bias current

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

VICR

Common-mode input voltage g range

VIC = 0,

RS = 50 Ω

TYP

AVD

Large-signal g g differential voltage amplification

VO = 1.4 1 4 V to 4 V, V

RL = 10 kΩ

CMRR

Common mode rejection ratio Common-mode

VIC = VICRmin min,

RS = 50 Ω

kSVR

Supply-voltage y g rejection j ratio (∆VCC± /∆VIO)

VCC ± = ± 2.5 2 5 V to ± 15 V

ICC

Supply current

TYP

MAX

850

600 800

UNIT µV

2

2

2

µV/°C

25°C

0.005

0.005

0.005

µV/mo

25°C

0.6 45 0 to 3.5

Full range

0 to 3.2

25°C

3.9

Full range

3.7

40 0 to 3.5

– 0.3 to 4

3.9

Full range

0.1

25°C

80

Full range

80

25°C

98

Full range

93

1.5

4.2

4 0.8

1.5

100

Full range

115

103

800

1200

95

dB

117 800

1200 30

dB 1200 1200

30

V V/µV

98

1200 30

1.5

85

95 1200

0.8 0.95

85

nA

V

0.1 92

nA

V

4.3 0.7

0.4

82

800

– 0.3 to 4

3.8

0.1

112

90

0.95

82

70

0 to 3.2

0.7 0.3

90

35 0 to 3.5

3.7 0.8

6 10

70

0 to 3.2 4.2

0.4

90

0.95 0.2

6 10

70

– 0.3 to 4

0.7

25°C

Full range

0.5

90

25°C

25°C

6 10

25°C

No load

MIN

1050

Full range

VO = 0 0,

TLE2024BI MAX

1100

RS = 50 Ω

RL = 10 kΩ

TYP

1300

Full range

Maximum negative peak g output voltage swing

MIN

25°C

25°C

VOM –

TLE2024AI MAX

Full range

Full range

Maximum positive peak output voltage swing

Supply current change over operating temperature range

TLE2024I MIN

Full range

VOM +

∆ICC

TA†

µA µA

† Full range is – 40°C to 85°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Template Release Date: 7–11–94

VIO

TEST CONDITIONS

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

PARAMETER

SLOS191 – FEBRUARY 1997

20

TLE2024 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)

TLE2024 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted) PARAMETER VIO

Input offset voltage

αVIO

Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4)

IIO

Input offset current

IIB

Input bias current

VOM +

Common-mode input voltage g range

VIC = 0,

RS = 50 Ω

MIN

TYP

Large-signal g g differential voltage amplification

VO = ± 10 V V,

RL = 10 kΩ

CMRR

Common mode rejection ratio Common-mode

VIC = VICRmin min,

RS = 50 Ω

kSVR

Supply-voltage y g rejection j ratio (∆VCC ± /∆VIO)

VCC ± = ± 2.5 2 5 V to ± 15 V

ICC

Supply current No load

MAX

MIN

TYP

MAX

750

500

950

700

UNIT µV

2

2

2

µV/°C

25°C

0.006

0.006

0.006

µV/mo

25°C

0.6 50

0.5

70

Full range

– 15 to 13.2

25°C

13.8

Full range

13.7

25°C

– 13.7

Full range

– 13.6

25°C

0.4

Full range

0.4

25°C

92

Full range

88

25°C

98

Full range

93

– 15.3 to 14

6

45

70

– 15.3 to 14

13.9 – 13.7

14.2

0.8

14

– 14.1

– 13.7

94

4

1

105

97

100

1050

Full range

1400

115

103

1050

1400

– 14.1

V

7

V/µV

108

dB

117 1050

1400

dB 1400 1400

50

µA µA

† Full range is – 40°C to 85°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

21

SLOS191 – FEBRUARY 1997

50

nA

V

98

1400 50

14.3

93

95

nA

V

1

90 112

– 15.3 to 14

– 13.6

0.8 102

90

13.8

– 13.6 2

70

– 15 to 13.2

13.7 – 14.1

40 – 15 to 13.5

– 15 to 13.2

6 10

90 – 15 to 13.5

14.1

0.4

10

90 – 15 to 13.5

Full range

6 10

25°C

25°C VO = 0 0,

TYP

1200

RS = 50 Ω

AVD

MIN

1000

Full range

Maximum negative peak output g voltage swing

MAX

TLE2024BI

25°C

25°C

RL = 10 kΩ

TLE2024AI

Full range

Full range

Maximum positive peak output voltage swing

Supply y current change g over operating temperature range

TLE2024I

Full range

VOM –

∆ICC

TA†

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

VICR

TEST CONDITIONS

Input offset voltage

αVIO

Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4)

IIO

Input offset current

IIB

Input bias current

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

VICR

VOH

Common-mode input voltage range

MAX

120

600

RS = 50 Ω

Common mode rejection ratio Common-mode

VIC = VICRmin min,

RS = 50 Ω

kSVR

Supply-voltage y g rejection j ratio (∆VCC ± /∆VIO)

VCC = 5 V to 30 V

ICC

Supply current

300

µV

µV/mo

25°C

0.2 25

0.2

70

Full range

0 to 3.2 4

– 0.3 to 4

25 – 0.3 to 4

4 0.8

Full range

0.1

25°C

85

Full range

80

25°C

105

Full range

100

1.5

4.3

4

85

0.8

1.5

105

170

230

120

105

170

230

110

dB

120 170

230 9

dB 230 230

9

V V/µV

100

230 9

1.5

80

100

Full range

0.8 0.95

85

nA

V

0.1 110

nA

V

4.3 0.7

0.3

80 120

– 0.3 to 4

0.95 0.1

110

90

3.8 0.7

0.3

70

0 to 3.2

0.95 0.3

25 0 to 3.5

3.8 0.7

6 10

70

0 to 3.2 4.3

0.2

90 0 to 3.5

3.8

25°C

6 10

90 0 to 3.5

Full range

6 10

25°C

25°C No load

600

0.005

Full range

VO = 2 2.5 5V V,

200

0.005

25°C

CMRR

80

UNIT

0.005

25°C

RL = 10 kΩ

MAX

25°C

Full range

VO = 1.4 1 4 V to 4 V, V

300

TYP

µV/°C

RS = 50 Ω

Large-signal g g differential voltage amplification

100

MIN

2

25°C

AVD

MAX

2

Full range

Low level output voltage Low-level

TLE2021BM

TYP

2

Full range

VOL

MIN

1100

Full range VIC = 0,

TLE2021AM

TYP

Full range

High level output voltage High-level

Supply current change over operating temperature range

TLE2021M MIN

25°C

RL = 10 kΩ

∆ICC

TA†

µA µA

† Full range is – 55°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Template Release Date: 7–11–94

VIO

TEST CONDITIONS

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

PARAMETER

SLOS191 – FEBRUARY 1997

22

TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)

TLE2021 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise noted) PARAMETER VIO

Input offset voltage

αVIO

Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4)

IIO

Input offset current

IIB

Input bias current

VOM +

Common-mode input voltage range

25°C

TYP 120

VIC = 0,

RS = 50 Ω

CMRR

Common mode rejection ratio Common-mode

VIC = VICRmin min,

RS = 50 Ω

kSVR

Supply-voltage y g rejection j ratio (∆VCC ± /∆VIO)

VCC ± = ± 2 2.5 5 V to ± 15 V

ICC

Supply current No load

40

100

500

200

UNIT µV

0.006

0.006

µV/mo

25°C

0.2 25

Full range

– 15 to 13.2 14

– 15.3 to 14

25°C

– 13.7 – 13.6 1

Full range

0.5

25°C

100

Full range

96

25°C

105

Full range

100

6

25

70

– 15.3 to 14

14 – 13.7

14.3

1

14

– 14.1

– 13.7

100

6.5

1

115

100

105

200

Full range

300

120

105

200

300

– 14.1

V

6.5

V/µV

115

dB

120

200

300

dB 300 300

10

µA µA

† Full range is – 55°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

23

SLOS191 – FEBRUARY 1997

10

nA

V

100

300 10

14.3

96

100

nA

V

0.5

96 120

– 15.3 to 14

– 13.6

0.5 115

90

13.8

– 13.6 6.5

70

0 to 13.2

13.8 – 14.1

25 – 15 to 13.5

– 15 to 13.2

6 10

90 – 15 to 13.5

14.3

0.2

10

70

13.8

Full range

Full range

0.2

90 – 15 to 13.5

25°C

6 10

25°C

25°C VO = 0 0,

MAX

0.006

25°C

RL = 10 kΩ

200

TYP

25°C

Full range

VO = ± 10 V V,

80

MIN

µV/°C

RS = 50 Ω

Large-signal g g differential voltage amplification

MAX

2

25°C

AVD

500

TLE2021BM

TYP

2

Full range

Maximum negative peak g output voltage swing

MIN

2

Full range

RL = 10 kΩ

TLE2021AM MAX 1000

Full range

Maximum positive peak output voltage swing

Supply current change over operating temperature range

TLE2021M MIN

Full range

VOM –

∆ICC

TA†

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

VICR

TEST CONDITIONS

Input offset voltage

αVIO

Temperature coefficient of input offset voltage Input offset voltage g long-term g drift (see Note 4)

IIO

Input offset current

IIB

Input bias current

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

VICR

VOH

Common-mode input voltage g range g

VIC = 0 0,

RS = 50 Ω

TYP

CMRR

Common mode rejection ratio Common-mode

VIC = VICRmin min,

RS = 50 Ω

kSVR

Supply-voltage ratio y g rejection j (∆VCC ± /∆VIO)

VCC = 5 V to 30 V

ICC

Supply current

400

µV

2

2

µV/°C

25°C

0 005 0.005

0 005 0.005

0 005 0.005

µV/mo

25°C

0.5 35

0.4

70

Full range g

0 to 3.2 4

– 0.3 to 4

33 – 0.3 to 4

4 0.8

0.3 0.1

25°C

85

Full range

80

25°C

100

Full range

95

1.5

4.3

4 0.8

87

1.5

103

450

600

118

105

450

600

105

dB

120 450

600 37

dB 600 600

37

V V/µV

100

600 37

1.5

85

98

Full range

0.8 0.95

90

nA

V

0.1 102

nA

V

4.3 0.7

0.5

82 115

– 0.3 to 4

0.95 0.1

100

90

3.8 0.7

0.4

70

0 to 3.2

0.95

25°C

30 0 to 3.5

3.8 0.7

6 10

70

0 to 3.2 4.3

0.3

90 0 to 3.5

3.8

Full range

6 10

90 0 to 3.5

Full range

6 10

25°C

25°C No load

UNIT

2

Full range

VO = 2 2.5 5V V,

MAX

550

25°C

RL = 10 kΩ

TYP

800

Full range

VO = 1.4 1 4 V to 4 V, V

MIN

Full range

25°C

Large-signal g g differential voltage amplification

TLE2022BM MAX

250

RS = 50 Ω

AVD

TYP

400

Full range

Low level output voltage Low-level

MIN

600

25°C

VOL

TLE2022AM MAX

25°C

Full range

High level output voltage High-level

Supply y current change g over operating temperature range

TLE2022M MIN

Full range

RL = 10 kΩ

∆ICC

TA†

µA µA

† Full range is – 55°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Template Release Date: 7–11–94

VIO

TEST CONDITIONS

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

PARAMETER

SLOS191 – FEBRUARY 1997

24

TLE2022 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)

TLE2022 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted) PARAMETER VIO

Input offset voltage

αVIO

Temperature coefficient of input offset voltage Input offset voltage g long-term g drift (see Note 4)

IIO

Input offset current

IIB

Input bias current

Common-mode input voltage g range g

25°C

VIC = 0 0,

RS = 50 Ω

MAX

150

500

VO = ± 10 V V,

RL = 10 kΩ

CMRR

Common mode rejection ratio Common-mode

VIC = VICRmin min,

RS = 50 Ω

kSVR

Supply-voltage ratio y g rejection j (∆VCC ± /∆VIO)

2 5 V to ± 15 V VCC ± = ± 2.5

ICC

Supply current

70

150

450

300

UNIT µV

0 006 0.006

0 006 0.006

µV/mo

25°C

0.5 35

0.4

70

Full range g

– 15 to 13.2 14

– 15.3 to 14

33

– 13.7

Full range

– 13.6

25°C

0.8

Full range

0.8

25°C

95

Full range

91

25°C

100

Full range

95

– 15.3 to 14

14 – 13.7 1

14.3

97

14

– 14.1

– 13.7

103

7

1.5

109

100

Full range

700

105

550

700

– 14.1

V

10

V/µV

112

dB

120 550

700

dB 700 700

60

µA µA

† Full range is 0°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

25

SLOS191 – FEBRUARY 1997

60

nA

V

100

700 60

14.3

96 118

nA

V

1.5

98 550

– 15.3 to 14

– 13.6

93 115

90

13.9

1 106

70

– 15 to 13.2

– 13.6 4

30 – 15 to 13.5

13.9 – 14.1

6 10

70

– 15 to 13.2 14.3

0.3

90 – 15 to 13.5

13.9

25°C

6 10

90 – 15 to 13.5

Full range

6 10

25°C

Full range

No load

MAX

0 006 0.006

25°C VO = 0 0,

300

TYP

25°C

25°C

Large-signal g g differential voltage amplification

120

MIN

µV/°C

RS = 50 Ω

AVD

MAX

2

25°C

RL = 10 kΩ

TLE2022BM

TYP

2

Full range

Maximum negative g peak output voltage swing

MIN

2

Full range

VOM –

TLE2022AM

TYP

700

Full range

Maximum positive peak output voltage swing

Supply y current change g over operating temperature range

TLE2022M MIN

Full range

VOM +

∆ICC

TA†

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

VICR

TEST CONDITIONS

Input offset voltage

αVIO

Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4)

IIO

Input offset current

IIB

Input bias current

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

VICR

Common-mode input voltage g range

VIC = 0,

RS = 50 Ω

TYP

AVD

Large-signal g g differential voltage amplification

VO = 1.4 1 4 V to 4 V, V

RL = 10 kΩ

CMRR

Common mode rejection ratio Common-mode

VIC = VICRmin min,

RS = 50 Ω

kSVR

Supply-voltage y g rejection j ratio (∆VCC± /∆VIO)

VCC ± = ± 2.5 2 5 V to ± 15 V

ICC

Supply current

TYP

MAX

850

600 800

UNIT µV

2

2

2

µV/°C

25°C

0.005

0.005

0.005

µV/mo

25°C

0.6 45 0 to 3.5

Full range

0 to 3.2

25°C

3.9

Full range

3.7

40 0 to 3.5

– 0.3 to 4

3.9

Full range

0.1

25°C

80

Full range

80

25°C

98

Full range

93

1.5

4.2

4 0.8

1.5

100

Full range

115

103

800

1200

95

dB

117 800

1200 50

dB 1200 1200

50

V V/µV

98

1200 50

1.5

85

95 1200

0.8 0.95

85

nA

V

0.1 92

nA

V

4.3 0.7

0.4

82

800

– 0.3 to 4

3.8

0.1

112

90

0.95

82

70

0 to 3.2

0.7 0.3

90

35 0 to 3.5

3.7 0.8

6 10

70

0 to 3.2 4.2

0.4

90

0.95 0.2

6 10

70

– 0.3 to 4

0.7

25°C

Full range

0.5

90

25°C

25°C

6 10

25°C

No load

MIN

1050

Full range

VO = 0 0,

TLE2024BM MAX

1100

RS = 50 Ω

RL = 10 kΩ

TYP

1300

Full range

Maximum negative peak g output voltage swing

MIN

25°C

25°C

VOM –

TLE2024AM MAX

Full range

Full range

Maximum positive peak output voltage swing

Supply current change over operating temperature range

TLE2024M MIN

Full range

VOM +

∆ICC

TA†

µA µA

† Full range is – 55°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

Template Release Date: 7–11–94

VIO

TEST CONDITIONS

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

PARAMETER

SLOS191 – FEBRUARY 1997

26

TLE2024 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)

TLE2024 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted) PARAMETER VIO

Input offset voltage

αVIO

Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4)

IIO

Input offset current

IIB

Input bias current

VOM +

Common-mode input voltage g range

VIC = 0,

RS = 50 Ω

MIN

TYP

Large-signal g g differential voltage amplification

VO = ± 10 V V,

RL = 10 kΩ

CMRR

Common mode rejection ratio Common-mode

VIC = VICRmin min,

RS = 50 Ω

kSVR

Supply-voltage y g rejection j ratio (∆VCC ± /∆VIO)

VCC ± = ± 2.5 2 5 V to ± 15 V

ICC

Supply current No load

MAX

MIN

TYP

MAX

750

500

950

700

UNIT µV

2

2

2

µV/°C

25°C

0.006

0.006

0.006

µV/mo

25°C

0.6 50

0.5

70

Full range

– 15 to 13.2

25°C

13.8

Full range

13.7

25°C

– 13.7

Full range

– 13.6

25°C

0.4

Full range

0.4

25°C

92

Full range

88

25°C

98

Full range

93

– 15.3 to 14

6

45

70

– 15.3 to 14

13.9 – 13.7

14.2

0.8

14

– 14.1

– 13.7

94

4

1

105

97

100

1050

Full range

1400

115

103

1050

1400

– 14.1

V

7

V/µV

108

dB

117 1050

1400

dB 1400 1400

85

µA µA

† Full range is – 55°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

27

SLOS191 – FEBRUARY 1997

85

nA

V

98

1400 85

14.3

93

95

nA

V

1

90 112

– 15.3 to 14

– 13.6

0.8 102

90

13.8

– 13.6 2

70

– 15 to 13.2

13.7 – 14.1

40 – 15 to 13.5

– 15 to 13.2

6 10

90 – 15 to 13.5

14.1

0.4

10

90 – 15 to 13.5

Full range

6 10

25°C

25°C VO = 0 0,

TYP

1200

RS = 50 Ω

AVD

MIN

1000

Full range

Maximum negative peak output g voltage swing

MAX

TLE2024BM

25°C

25°C

RL = 10 kΩ

TLE2024AM

Full range

Full range

Maximum positive peak output voltage swing

Supply y current change g over operating temperature range

TLE2024M

Full range

VOM –

∆ICC

TA†

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

VICR

TEST CONDITIONS

Slew rate at unity gain

VO = 1 V to 3 V, f = 10 Hz

See Figure 1

TA

C SUFFIX MIN

TYP

I SUFFIX MAX

MIN

TYP

M SUFFIX MAX

MIN

TYP

25°C

0.5

25°C

21

50

0.5 21

50

21

30

17

30

17

MAX

0.5

Vn

Equivalent q input noise voltage g (see Figure 2)

f = 1 kHz

25°C

17

VN(PP)

Peak-to-peak equivalent q input noise voltage

f = 0.1 to 1 Hz

25°C

0.16

0.16

0.16

f = 0.1 to 10 Hz

25°C

0.47

0.47

0.47

UNIT V/µs nV/Hz µV

In B1

Equivalent input noise current

25°C

0.09

0.09

0.9

pA/Hz

Unity-gain bandwidth

See Figure 3

25°C

1.2

1.2

1.2

MHz

φm

Phase margin at unity gain

See Figure 3

25°C

42°

42°

42°

TLE2021 operating characteristics at specified free-air temperature, VCC = ± 15 V POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PARAMETER

TEST CONDITIONS

MIN

TYP

25°C

0.45

0.65

Full range

0.45

I SUFFIX MAX

MIN

TYP

0.45

0.65

M SUFFIX MAX

MIN

TYP

0.45

0.65

SR

Slew rate at unity gain

VO = 1V to 3 V V,

Vn

Equivalent q input noise voltage g (see Figure 2)

f = 10 Hz

25°C

19

50

19

50

19

f = 1 kHz

25°C

15

30

15

30

15

VN(PP)

Peak-to-peak equivalent q input noise voltage

f = 0.1 to 1 Hz

25°C

0.16

0.16

0.16

f = 0.1 to 10 Hz

25°C

0.47

0.47

0.47

25°C

0.09

0.09

0.09

25°C

2

2

2

In B1

Equivalent input noise current Unity-gain bandwidth

See Figure 3

See Figure 1

C SUFFIX

TA†

0.42

0.45

φm Phase margin at unity gain See Figure 3 25°C 46° 46° † Full range is 0°C to 70°C for the C-suffix devices, – 40°C to 85°C for the I-suffix devices, and – 55°C to 125°C for the M-suffix devices.

46°

MAX

UNIT V/µs nV/Hz µV pA/Hz MHz

Template Release Date: 7–11–94

SR

TEST CONDITIONS

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

PARAMETER

SLOS191 – FEBRUARY 1997

28

TLE2021 operating characteristics, VCC = 5 V, TA = 25°C

TLE2022 operating characteristics, VCC = 5 V, TA = 25°C PARAMETER SR

TEST CONDITIONS

Slew rate at unity gain

VO = 1 V to 3 V, f = 10 Hz

Vn

Equivalent q input noise voltage g (see Figure 2)

VN(PP)

Peak to peak equivalent input noise voltage Peak-to-peak

In

Equivalent input noise current

B1 φm

Unity-gain bandwidth

See Figure 3

Phase margin at unity gain

See Figure 3

C SUFFIX MIN

See Figure 1

TYP

I SUFFIX MAX

MIN

0.5

f = 1 kHz

TYP

M SUFFIX MAX

MIN

TYP

0.5

MAX

0.5

21

50

21

50

21

17

30

17

30

17

UNIT V/µs nV/√Hz

f = 0.1 to 1 Hz

0.16

0.16

0.16

f = 0.1 to 10 Hz

0.47

0.47

0.47

0.1

0.1

0.1

pA/√Hz

1.7

1.7

1.7

MHz

47°

47°

47°

µV

PARAMETER

TEST CONDITIONS

C SUFFIX

TA†

MIN

TYP

25°C

0.45

0.65

Full range

0.45

I SUFFIX MAX

MIN

TYP

0.45

0.65

M SUFFIX MAX

MIN

TYP

0.45

0.65

SR

Slew rate at unity gain

VO = ± 10 V V,

Vn

Equivalent q input noise voltage (see Figure 2)

f = 10 Hz

25°C

19

50

19

50

19

f = 1 kHz

25°C

15

30

15

30

15

VN(PP)

Peak-to-peak equivalent q input noise voltage

f = 0.1 to 1 Hz

25°C

0.16

0.16

0.16

f = 0.1 to 10 Hz

25°C

0.47

0.47

0.47

In B1

Equivalent input noise current Unity-gain bandwidth

φm Phase margin at unity gain † Full range is 0°C to 70°C.

See Figure 1

0.42

0.4

MAX

UNIT V/µs

nV/√Hz µV

25°C

0.1

0.1

0.1

pA/√Hz

See Figure 3

25°C

2.8

2.8

2.8

MHz

See Figure 3

25°C

52°

52°

52°

SLOS191 – FEBRUARY 1997

29

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLE2022 operating characteristics at specified free-air temperature, VCC = ± 15 V

Slew rate at unity gain

VO = 1 V to 3 V, f = 10 Hz

Vn

Equivalent input noise voltage (see Figure 2)

VN(PP)

Peak to peak equivalent input noise voltage Peak-to-peak

In B1

Equivalent input noise current Unity-gain bandwidth

See Figure 3

φm

Phase margin at unity gain

See Figure 3

C SUFFIX MIN

See Figure 1

TYP

I SUFFIX MAX

MIN

0.5

f = 1 kHz

TYP

M SUFFIX MAX

MIN

TYP

0.5

MAX

0.5

21

50

21

50

21

17

30

17

30

17

UNIT V/µs nV/√ Hz

f = 0.1 to 1 Hz

0.16

0.16

0.16

f = 0.1 to 10 Hz

0.47

0.47

0.47

0.1

0.1

0.1

pA/√Hz

1.7

1.7

1.7

MHz

47°

47°

47°

µV

TLE2024 operating characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PARAMETER

TEST CONDITIONS

TA†

C SUFFIX MIN

TYP

25°C

0.45

0.7

Full range

0.45

I SUFFIX MAX

MIN

TYP

0.45

0.7

M SUFFIX MAX

MIN

TYP

0.45

0.7

MAX

UNIT

SR

Slew rate at unity gain

VO = ± 10 V V,

Vn

Equivalent q input noise voltage g (see Figure 2)

f = 10 Hz

25°C

19

50

19

50

19

f = 1 kHz

25°C

15

30

15

30

15

VN(PP)

Peak-to-peak equivalent q input noise voltage

f = 0.1 to 1 Hz

25°C

0.16

0.16

0.16

f = 0.1 to 10 Hz

25°C

0.47

0.47

0.47

25°C

0.1

0.1

0.1

pA/√Hz MHz

In B1

Equivalent input noise current Unity-gain bandwidth

φm Phase margin at unity gain † Full range is 0°C to 70°C.

See Figure 1

0.42

0.4

See Figure 3

25°C

2.8

2.8

2.8

See Figure 3

25°C

52°

52°

52°

V/µs

nV/√Hz µV

Template Release Date: 7–11–94

SR

TEST CONDITIONS

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

PARAMETER

SLOS191 – FEBRUARY 1997

30

TLE2024 operating characteristics, VCC = 5 V, TA = 25°C

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

TLE2021Y electrical characteristics at VCC = 5 V, TA = 25°C (unless otherwise noted) PARAMETER VIO

TEST CONDITIONS

Input offset voltage

TYP

MAX

Input offset current Input bias current

RS = 50 Ω

VICR

Common-mode input voltage range

VOH VOL

Maximum high-level output voltage

AVD CMRR

Large-signal differential voltage amplification

kSVR

Supply-voltage rejection ratio (∆VCC ± /∆VIO)

RL = 10 kΩ

Maximum low-level output voltage Common-mode rejection ratio

VO = 1.4 to 4 V, VIC = VICR min,

µV/mo

0.005

RS = 50 Ω

VIC = 0 0,

RL = 10 kΩ

RS = 50 Ω VCC = 5 V to 30 V VO = 2.5 V, No load

UNIT µV

150

Input offset voltage long-term drift (see Note 4) IIO IIB

TLE2021Y MIN

0.5

nA

35

nA

– 0.3 to 4

V

4.3

V

0.7

V

1.5

V/µV

100

dB

115

dB

ICC Supply current 400 µA NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

TLE2021Y operating characteristics at VCC = 5 V, TA = 25°C PARAMETER

TEST CONDITIONS

SR

Slew rate at unity gain

Vn

Equivalent input noise voltage

VN(PP)

Peak to peak equivalent input noise voltage Peak-to-peak

In

Equivalent input noise current

B1 φm

TLE2021Y MIN

TYP

VO = 1 V to 3 V f = 10 Hz

0.5

f = 1 kHz

17

MAX

UNIT V/µs

21

f = 0.1 to 1 Hz

0.16

f = 0.1 to 10 Hz

0.47

nV/√Hz µV

0.1

pA/√Hz

Unity-gain bandwidth

1.7

MHz

Phase margin at unity gain

47°

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

31

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

TLE2022Y electrical characteristics, VCC = 5 V, TA = 25°C (unless otherwise noted) PARAMETER VIO

TEST CONDITIONS

Input offset voltage Input offset voltage long-term drift (see Note 4)

IIO IIB

TLE2022Y MIN

Input offset current

VIC = 0 0,

RS = 50 Ω

VOH VOL

Maximum high-level output voltage

AVD CMRR

Large-signal differential voltage amplification

kSVR

Supply-voltage rejection ratio (∆VCC ± /∆VIO)

Common-mode rejection ratio

VO = 1.4 to 4 V, VIC = VICR min,

600

µV µV/mo

0.5

nA

35

nA V

4.3

V

0.7

V

RL= 10 kΩ

1.5

V/µV

RS = 50 Ω

100

dB

115

dB

RL = 10 kΩ

Maximum low-level output voltage

150

UNIT

– 0.3 to 4

RS = 50 Ω

Common-mode input voltage range

MAX

0.005

Input bias current

VICR

TYP

VCC = 5 V to 30 V VO = 2.5 V, No load

ICC Supply current 450 µA NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

TLE2022Y operating characteristics, VCC = 5 V, TA = 25°C PARAMETER SR

TEST CONDITIONS

Slew rate at unity gain

VO = 1 V to 3 V, f = 10 Hz

See Figure 1

TLE2022Y MIN

TYP 0.5

MAX

UNIT V/µs

21

Vn

Equivalent input noise voltage (see Figure 2)

VN(PP)

Peak to peak equivalent input noise voltage Peak-to-peak

In

Equivalent input noise current

0.1

pA/√Hz

B1 φm

Unity-gain bandwidth

See Figure 3

1.7

MHz

Phase margin at unity gain

See Figure 3

47°

32

f = 1 kHz

17

f = 0.1 to 1 Hz

0.16

f = 0.1 to 10 Hz

0.47

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

nV/√Hz µV

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

TLE2024Y electrical characteristics, VCC = 5 V, TA = 25°C (unless otherwise noted) PARAMETER

TEST CONDITIONS

TLE2024Y MIN

Input offset voltage long-term drift (see Note 4) IIO IIB

Input offset current

VICR

Common-mode input voltage range

VOH VOL

High-level output voltage

MAX

RS = 50 Ω

Input bias current RS = 50 Ω

RL = 10 kΩ

UNIT µV/mo

0.005 VIC = 0,

Low-level output voltage

TYP 0.6

nA

45

nA

– 0.3 to 4

V

4.2

V

0.7

V

AVD

Large-signal differential voltage amplification

VO = 1.4 V to 4 V,

RL = 10 kΩ

1.5

V/µV

CMRR

Common-mode rejection ratio

VIC = VICRmin,

RS = 50 Ω

90

dB

kSVR

Supply-voltage rejection ratio (∆VCC /∆VIO)

VCC = 5 V to 30 V

112

dB

ICC Supply current VO = 2.5 V, No load 800 µA NOTE 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

TLE2024Y operating characteristics, VCC = 5 V, TA = 25°C PARAMETER SR

TEST CONDITIONS

Slew rate at unity gain

VO = 1 V to 3 V, f = 10 Hz

See Figure 1

TLE2024Y MIN

TYP 0.5

MAX

UNIT V/µs

21

Vn

Equivalent input noise voltage (see Figure 2)

VN(PP)

Peak to peak equivalent input noise voltage Peak-to-peak

In B1

Equivalent input noise current

0.1

pA/√Hz

Unity-gain bandwidth

See Figure 3

1.7

MHz

φm

Phase margin at unity gain

See Figure 3

47°

POST OFFICE BOX 655303

f = 1 kHz

17

f = 0.1 to 1 Hz

0.16

f = 0.1 to 10 Hz

0.47

• DALLAS, TEXAS 75265

nV/√ Hz µV

33

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

PARAMETER MEASUREMENT INFORMATION 20 kΩ

20 kΩ

5V

15 V –



VO

VO VI

+ 30 pF (see Note A)

+

VI

– 15 V 30 pF (see Note A)

20 kΩ

(a) SINGLE SUPPLY

20 kΩ

(b) SPLIT SUPPLY

NOTE A: CL includes fixture capacitance.

Figure 1. Slew-Rate Test Circuit 2 kΩ 2 kΩ 15 V 5V



20 Ω

VO

– +

VO

2.5 V +

– 15 V

20 Ω

20 Ω

20 Ω

(a) SINGLE SUPPLY (b) SPLIT SUPPLY

Figure 2. Noise-Voltage Test Circuit 10 kΩ

10 kΩ

5V

15 V

100 Ω –

VI

VI VO

2.5 V

– 100 Ω

VO +

+

30 pF (see Note A)

– 15 V 30 pF (see Note A)

10 kΩ

(a) SINGLE SUPPLY

(b) SPLIT SUPPLY

NOTE A: CL includes fixture capacitance.

Figure 3. Unity-Gain Bandwidth and Phase-Margin Test Circuit

34

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

10 kΩ

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

PARAMETER MEASUREMENT INFORMATION 5V –

– 10 kΩ

VI

VO

VO VI

+ 10 kΩ

+

0.1 µF

15 V

– 15 V 10 kΩ

30 pF (see Note A)

30 pF (see Note A)

(a) SINGLE SUPPLY

10 kΩ

(b) SPLIT SUPPLY

NOTE A: CL includes fixture capacitance.

Figure 4. Small-Signal Pulse-Response Test Circuit

typical values Typical values presented in this data sheet represent the median (50% point) of device parametric performance.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

35

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

TYPICAL CHARACTERISTICS Table of Graphs FIGURE

36

VIO

Input offset voltage

Distribution

IIB

Input bias current

vs Common-mode input voltage vs Free-air temperature

II

Input current

vs Differential input voltage

VOM

Maximum peak output voltage

vs Output current vs Free-air temperature

VOH

High-level output voltage

vs High-level output current vs Free-air temperature

19, 20 21

VOL

Low-level output voltage

vs Low-level output current vs Free-air temperature

22 23

VO(PP)

Maximum peak-to-peak output voltage

vs Frequency

AVD

Large-signal differential voltage amplification

vs Frequency vs Free-air temperature

26 27, 28, 29

IOS

Short-circuit output current

vs Supply voltage vs Free-air temperature

30 – 33 34 – 37

ICC

Supply current

vs Supply voltage vs Free-air temperature

38, 39, 40 41, 42, 43

CMRR

Common-mode rejection ratio

vs Frequency

44, 45, 46

SR

Slew rate

vs Free-air temperature

47, 48, 49

Voltage-follower small-signal pulse response

vs Time

50, 51

Voltage-follower large-signal pulse response

vs Time

52 – 57

VN(PP)

Peak-to-peak equivalent input noise voltage

0.1 to 1 Hz 0.1 to 10 Hz

58 59

Vn

Equivalent input noise voltage

vs Frequency

60

B1

Unity-gain bandwidth

vs Supply voltage vs Free-air temperature

61, 62 63, 64

φm

Phase margin

vs Supply voltage vs Load capacitance vs Free-air temperature

65, 66 67, 68 69, 70

Phase shift

vs Frequency

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

5, 6, 7 8, 9, 10 11, 12, 13 14 15, 16, 17 18

24, 25

26

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

TYPICAL CHARACTERISTICS DISTRIBUTION OF TLE2022 INPUT OFFSET VOLTAGE

DISTRIBUTION OF TLE2021 INPUT OFFSET VOLTAGE 20

ÏÏÏÏÏÏÏÏÏÏÏ

20 231 Units Tested From 1 Wafer Lot VCC ± = ± 15 V

ÏÏÏÏ TA = 25°C P Package

16 Percentage of Units – %

Percentage of Units – %

16

398 Amplifiers Tested From 1 Wafer Lot VCC ± = ± 15 V TA = 25°C

12

8

P Package

12

8

4

4

0 0 150 300 450 – 600 – 450 – 300 – 150 VIO – Input Offset Voltage – µV

0 – 600

600

– 400 – 200 0 200 400 VIO – Input Offset Voltage – µV

Figure 5

Figure 6 TLE2021 INPUT BIAS CURRENT vs COMMON-MODE INPUT VOLTAGE

DISTRIBUTION OF TLE2024 INPUT OFFSET VOLTAGE 16

– 40 796 Amplifiers Tested From 1 Wafer Lot VCC ± = ± 15 V TA = 25°C N Package

VCC ± = ± 15 V TA = 25°C

– 35 I IB – Input Bias Current – nA IIB

Percentage of Units – %

600

12

8

4

– 30 – 25 – 20 – 15 – 10 –5

0 –1

– 0.5

0

0.5

1

VIO – Input Offset Voltage – mV

0 – 15

– 10 –5 0 5 10 VIC – Common-Mode Input Voltage – V

15

Figure 8

Figure 7

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

37

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

TYPICAL CHARACTERISTICS TLE2022 INPUT BIAS CURRENT vs COMMON-MODE INPUT VOLTAGE

TLE2024 INPUT BIAS CURRENT vs COMMON-MODE INPUT VOLTAGE

– 50

– 60 VCC ± = ± 15 V TA = 25°C IIIB IB – Input Bias Current – nA

IIB I IB – Input Bias Current – nA

– 45

VCC ± = ± 15 V TA = 25°C

– 40

– 35

– 50

– 40

ÁÁ ÁÁ

– 30

– 25

– 20 – 15

– 20 – 15

15

– 10 –5 0 5 10 VIC – Common-Mode Input Voltage – V

– 30

– 10

–5

10

15

TLE2022 INPUT BIAS CURRENT† vs FREE-AIR TEMPERATURE

TLE2021 INPUT BIAS CURRENT† vs FREE–AIR TEMPERATURE

– 50

– 35 VCC ± = ± 15 V VO = 0 VIC = 0

– 25 – 20 – 15 – 10

VCC ± = ± 15 V VO = 0 VIC = 0

– 45 IIIB IB – Input Bias Current – nA

IIB I IB – Input Bias Current – nA

5

Figure 10

Figure 9

– 30

0

VIC – Common-Mode Input Voltage – V

– 40

– 35

– 30

– 25 –5 0 – 75

– 50

– 25 0 25 50 75 100 TA – Free-Air Temperature – °C

125

– 20 – 75

– 50

– 25

0

25

50

75

100

TA – Free-Air Temperature – °C

Figure 11

Figure 12

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

38

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

125

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

TYPICAL CHARACTERISTICS TLE2024 INPUT BIAS CURRENT† vs FREE-AIR TEMPERATURE

ÏÏÏÏÏ ÏÏÏ ÏÏÏ ÏÏÏ

1

VCC± = ±15 V VO = 0 VIC = 0

– 50

– 40

ÁÁ ÁÁ

VCC± = ±15 V VIC = 0 TA = 25°C

0.9 0.8 I III – Input Current – mA

IIB – Input Bias Current – nA IIB

– 60

INPUT CURRENT vs DIFFERENTIAL INPUT VOLTAGE

– 30

0.7 0.6 0.5 0.4 0.3 0.2 0.1

– 20 – 75

0 – 50

– 25

0

25

50

75

100

0

125

TA – Free-Air Temperature – °C

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 |VID| – Differential Input Voltage – V

Figure 14

Figure 13

TLE2022 MAXIMUM PEAK OUTPUT VOLTAGE vs OUTPUT CURRENT

TLE2021 MAXIMUM PEAK OUTPUT VOLTAGE vs OUTPUT CURRENT 16

12

VCC ± = ± 15 V TA = 25°C

|VVOM| OM – Maximum Peak Output Voltage – V

VOM – Maximum Peak Output Voltage – V V OM

16 14

ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ VOM+

10

ÁÁ ÁÁ ÁÁ

VOM –

8

1

6

ÁÁ ÁÁ

4 2 0 0

2

4 6 8 IO – Output Current – mA

10

VCC ± = ± 15 V TA = 25°C

14 12

ÏÏÏ ÏÏÏ

10

VOM–

8

ÏÏÏÏ ÏÏÏÏ VOM+

6 4 2 0 0

2

8 10 4 6 |IO| – Output Current – mA

12

14

Figure 16

Figure 15

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

39

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

TYPICAL CHARACTERISTICS TLE2024 MAXIMUM PEAK OUTPUT VOLTAGE vs OUTPUT CURRENT

ÁÁ ÁÁ ÁÁ

15

ÏÏÏÏ ÏÏÏ ÏÏÏ ÏÏÏ VCC ± = ± 5 V TA = 25°C

14 12

|VVOM| OM – Maximum Peak Output Voltage – V

VOM – Maximum Peak Output Voltage – V VOM

16

MAXIMUM PEAK OUTPUT VOLTAGE† vs FREE-AIR TEMPERATURE

VOM +

10

VOM –

8 6 4 2 0 0

2

8 10 4 6 IO – Output Current – mA

12

14

14.5 VOM + 14 VOM – 13.5

ÁÁ ÁÁ ÁÁ

13

12.5

12 – 75

VCC ± = ± 15 V RL = 10 kΩ TA = 25°C – 50

Figure 17

Figure 18

TLE2021 HIGH–LEVEL OUTPUT VOLTAGE vs HIGH–LEVEL OUTPUT CURRENT

TLE2022 AND TLE2024 HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT 5

5 VCC = 5 V TA = 25°C

VOH – High-Level Output Voltage – V VOH

VOH VOH – High-Level Output Voltage – V

– 25 0 25 50 75 100 TA – Free-Air Temperature – °C

4

3

2

ÁÁÁ ÁÁÁ

VCC = 5 V TA = 25°C 4

3

2

ÁÁ ÁÁ

1

1

0

0 0

–1 –2 –3 –4 –5 –6 IOH – High-Level Output Current – mA

–7

0

–2

–4

–6

–8

– 10

IOH – High-Level Output Current – mA

Figure 20

Figure 19

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

40

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

125

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

TYPICAL CHARACTERISTICS

5

HIGH-LEVEL OUTPUT VOLTAGE† vs FREE-AIR TEMPERATURE

LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT 5 VCC = 5 V TA = 25°C VOL VOL – Low-Level Output Voltage – V

VOH VOH – High-Level Output Voltage – V

VCC = 5 V 4.8

4.6

No Load

4.4

ÁÁ ÁÁ

ÁÁ ÁÁ ÁÁ

RL = 10 kΩ

4.2

4 – 75

– 50 – 25

0

25

50

75

100

4

3

2

1

0

125

0

0.5 1 1.5 2 2.5 IOL – Low-Level Output Current – mA

TA – Free-Air Temperature – °C

Figure 21

Figure 22

LOW-LEVEL OUTPUT VOLTAGE† vs FREE-AIR TEMPERATURE VVOPP O(PP) – Maximum Peak-to-Peak Output Voltage – V

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY

VOL VOL – Low-Level Output Voltage – V

1

IOL = 1 mA 0.75

IOL = 0 0.5

ÁÁ ÁÁ

0.25

VCC ± = ± 5 V 0 – 75

– 50

3

– 25 0 25 50 75 100 TA – Free-Air Temperature – °C

125

5

4

3

2

ÁÁÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁ 1

VCC = 5 V RL = 10 kΩ TA = 25°C

0

100

Figure 23

1k

10 k 100 k f – Frequency – Hz

1M

Figure 24

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

41

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

TYPICAL CHARACTERISTICS MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY VVOPP O(PP) – Maximum Peak-to-Peak Output Voltage – V

30

25

20

15

10

ÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁ VCC ± = ± 15 V RL = 10 kΩ TA = 25°C

5

0 100

1k

10 k 100 k f – Frequency – Hz

1M

Figure 25

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY

ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏÏ ÏÏÏÏÏÏ

AVD – Large-Signal Differential Voltage Amplification – dB

100

80°

Phase Shift

80

100°

VCC ± = ± 15 V

AVD 60

120°

VCC = 5 V

40

140°

20

160°

0 – 20

ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ RL = 10 kΩ CL = 30 pF TA = 25°C

10

100

180° 200°

1k 10 k 100 k f – Frequency – Hz

1M

Figure 26

42

60°

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

10 M

Phase Shift

120

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

TYPICAL CHARACTERISTICS TLE2021 LARGE-SCALE DIFFERENTIAL VOLTAGE AMPLIFICATION† vs FREE–AIR TEMPERATURE

TLE2022 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION† vs FREE-AIR TEMPERATURE

10

6 RL = 10 kΩ

ÏÏÏÏÏ ÏÏÏÏÏ

8

5 AVD AVD – Large-Signal Differential Voltage Amplification – V/µV

AVD – Large-Signal Differential Voltage Amplification – V/ µ V

RL = 10 kΩ

VCC ± = ± 15 V

6

4

2

ÁÁ ÁÁ ÁÁ

ÏÏÏÏ ÏÏÏÏ VCC = 5 V

0 – 75

– 50

– 25

0

25

50

75

100

VCC ± = ± 15 V

4

3

2

1 VCC = 5 V 0 – 75

125

– 50

TA – Free-Air Temperature – °C

– 25 0 25 50 75 100 TA – Free-Air Temperature – °C

Figure 28

Figure 27 TLE2024 LARGE-SCALE DIFFERENTIAL VOLTAGE AMPLIFICATION† vs FREE-AIR TEMPERATURE

TLE2021 SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE

ÏÏÏÏ ÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ

10

10

VCC ± = ± 15 V

6

4

2 VCC ± = ± 5 V 0 – 75

– 50

– 25

0

25

50

75

100

125

IIOS OS – Short-Circuit Output Current – mA

AVD – Large-Signal Differential Voltage Amplification – V/ µ V

RL = 10 kΩ

8

125

ÁÁ ÁÁ

VO = 0 TA = 25°C

8 6

VID = –100 mV

4 2 0 –2 –4

ÏÏÏÏÏ

–6

VID = 100 mV

–8 – 10 0

2

TA – Free-Air Temperature – °C

4 6 8 10 12 |VCC ±| – Supply Voltage – V

14

16

Figure 30

Figure 29

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

43

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

TYPICAL CHARACTERISTICS TLE2022 AND TLE2024 SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE

TLE2021 SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE 12

VO = 0 TA = 25°C

IIOS OS – Short-Circuit Output Current – mA

I OS – Short-Circuit Output Current – mA IOS

15

ÏÏÏÏÏÏ ÏÏÏÏÏÏ

10

VID = –100 mV

5

0

–5 VID = 100 mV – 10

– 15 0

2

4

6

8

10

12

14

16

|VCC ±| – Supply Voltage – V

TA = 25°C 8 VID = –100 mV VO = VCC 4

0

–4

ÁÁ ÁÁ ÁÁ

VID = 100 mV VO = 0

–8

– 12 5

0

10 15 20 25 VCC – Supply Voltage – V

Figure 32

Figure 31 TLE2022 AND TLE2024 SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE

ÏÏÏÏÏ ÏÏÏÏÏ

TLE2021 SHORT-CIRCUIT OUTPUT CURRENT† vs FREE-AIR TEMPERATURE 8 VCC = 5 V

TA = 25°C

IOS I OS – Short-Circuit Output Current – mA

I OS – Short-Circuit Output CUrrent – mA IOS

15

10

VID = – 100 mV VO = VCC

5

0

–5 VID = 100 mV VO = 0 – 10

– 15 0

5

10

15

20

25

30

6 VID = –100 mV VO = 5 V

4 2 0 –2

VID = 100 mV VO = 0

ÁÁ ÁÁ

–4 –6 –8 – 75

– 50

VCC – Supply Voltage – V

– 25 0 25 50 75 100 TA – Free-Air Temperature – °C

Figure 34

Figure 33

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

44

30

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

125

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

TYPICAL CHARACTERISTICS TLE2022 AND TLE2024 SHORT-CIRCUIT OUTPUT CURRENT † vs FREE-AIR TEMPERATURE

TLE2021 SHORT-CIRCUIT OUTPUT CURRENT† vs FREE-AIR TEMPERATURE 12

VCC = 5 V

VID = –100 mV VO = 5 V

4

IOS I OS – Short-Circuit Output Current – mA

IOS I OS – Short-Circuit Output Current – mA

6

2 0 –2 –4

ÏÏÏ ÏÏÏÏÏ ÏÏÏ

–8 – 10 – 75

– 50

– 25

0

25

50

75

8

100

VID = –100 mV

4

0

–4

ÁÁ ÁÁ

VID = 100 mV VO = 0

–6

VCC ± = ± 15 V VO = 0

–8 VID = 100 mV

– 12 – 75

125

– 50

TA – Free-Air Temperature –°C

– 25 0 25 50 75 100 TA – Free-Air Temperature – °C

Figure 36

Figure 35 TLE2022 AND TLE2024 SHORT-CIRCUIT OUTPUT CURRENT † vs FREE-AIR TEMPERATURE

TLE2021 SUPPLY CURRENT vs SUPPLY VOLTAGE 250 VO = 0 No Load

VCC ± = ± 15 V VO = 0 200 A IICC CC – Supply Current – µua

I OS – Short-Circuit Output Current – mA IOS

15

10

ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÁÁ ÏÏÏÏ ÁÁ

5 VID = – 100 mV 0

–5 VID = 100 mV

150

TA = 125°C

TA = 25°C

100

TA = – 55°C

50

– 10

– 15 – 75

125

– 50

– 25

0

25

50

75

100

125

0 0

2

TA – Free-Air Temperature – °C

4 6 8 10 12 |VCC ±| – Supply Voltage – V

14

16

Figure 38

Figure 37

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

45

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

TYPICAL CHARACTERISTICS TLE2022 SUPPLY CURRENT vs SUPPLY VOLTAGE

TLE2024 SUPPLY CURRENT vs SUPPLY VOLTAGE

500

VO = 0 No Load

TA = 25°C

300

TA = 125°C TA = – 55°C

200

100

0

TA = 125°C

800 I CC – Supply Current – µ A

IICC A CC – Supply Current – µua

400

ÁÁ ÁÁ ÁÁ

ÏÏÏÏÏ

1000

VO = 0 No Load

TA = 25°C 600 TA = – 55°C 400

200

0

2

4 6 8 10 12 |VCC ±| – Supply Voltage – V

14

0

16

0

2

4

8

10

12

14

16

|VCC ±| – Supply Voltage – V

Figure 39

Figure 40 TLE2022 SUPPLY CURRENT† vs FREE-AIR TEMPERATURE

TLE2021 SUPPLY CURRENT† vs FREE-AIR TEMPERATURE

ÏÏÏÏÏÏ ÏÏÏÏÏÏ ÏÏÏÏÏÏ ÏÏÏÏÏÏ ÁÁ ÁÁ

225

6

500

VCC ± = ± 15 V

175 150

VCC ± = ± 2.5 V

125 100

ÁÁÁ ÁÁÁ

75 50 25 0 – 75

VCC ± = ± 15 V

400

IICC A CC – Supply Current – µua

A IICC CC – Supply Current – µua

200

VCC ± = ± 2.5 V

300

200

100

VO = 0 No Load – 50

– 25 0 25 50 75 100 TA – Free-Air Temperature – °C

125

VO = 0 No Load 0 – 75

– 50

Figure 41

– 25 0 25 50 75 100 TA – Free-Air Temperature – °C

Figure 42

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

46

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

125

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

TYPICAL CHARACTERISTICS TLE2021 COMMON-MODE REJECTION RATIO vs FREQUENCY

TLE2024 SUPPLY CURRENT † vs FREE-AIR TEMPERATURE 1000

CMRR – Common-Mode Rejection Ratio – dB

ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ VCC ± = ± 15 V

800 I CC – Supply Current – µ A

120

VCC ± = ± 2.5 V

600

400

200 VO = 0 No Load 0 – 75

– 50

– 25

0

25

50

75

100

ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏ ÏÏÏÏ

100

VCC ± = ± 15 V

80

VCC = 5 V

60

40

20 TA = 25°C 0

125

10

100

TA – Free-Air Temperature – °C

1k 10 k 100 k f – Frequency – Hz

Figure 43

10 M

Figure 44 TLE2024 COMMON-MODE REJECTION RATIO vs FREQUENCY

TLE2022 COMMON-MODE REJECTION RATIO vs FREQUENCY

ÏÏÏÏÏÏ

120 CMRR – Common-Mode Rejection Ratio – dB

120 CMRR – Common-Mode Rehection Ratio – dB

1M

TA = 25°C

100

VCC ± = ± 15 V 80 VCC = 5 V 60

40

20

100

80

ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏ ÏÏÏÏ VCC ± = ± 15 V

VCC = 5 V

60

40

20 TA = 25°C 0

0 10

100

1k 10 k 100 k f – Frequency – Hz

1M

10 M

10

100

1k

10 k

100 k

1M

10 M

f – Frequency – Hz

Figure 45

Figure 46

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

47

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

TYPICAL CHARACTERISTICS TLE2022 SLEW RATE† vs FREE-AIR TEMPERATURE

TLE2021 SLEW RATE† vs FREE-AIR TEMPERATURE 1

1

ÏÏÏÏÏÏ ÏÏÏÏÏÏ ÏÏÏÏ ÏÏÏÏ VCC ± = ± 15 V

0.8 SR – Slew Rate – V/ µ uss

SR – Slew Rate – V/us µs

0.8

VCC = 5 V

0.6

0.4

0.2

0 – 75

0.6 VCC = 5 V 0.4

0.2

RL = 20 kΩ CL = 30 pF See Figure 1 – 50

VCC ± = ± 15 V

– 25 0 25 50 75 100 TA – Free-Air Temperature – °C

RL = 20 kΩ CL = 30 pF See Figure 1

0 – 75

125

– 50

TLE2024 SLEW RATE† vs FREE-AIR TEMPERATURE

VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE

1

ÏÏÏÏÏ

SR – Slew Rate – V/s V/ µ s

VCC ± = ± 15 V

VCC = 5 V 0.4

0 – 75

– 25

50

VCC ± = ± 15 V RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 4

ÏÏÏÏ ÏÏÏÏ

0

ÁÁ ÁÁ

RL = 20 kΩ CL = 30 pF See Figure 1 – 50

VO – Output Voltage – mV VO

100

0.6

0.2

0

25

50

75

100

125

– 50

– 100 0

TA – Free-Air Temperature – °C

Figure 49

20 40 t – Time – µs

60

Figure 50

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

48

125

Figure 48

Figure 47

0.8

– 25 0 25 50 75 100 TA – Free-Air Temperature – °C

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

80

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

TYPICAL CHARACTERISTICS VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE

2.55

4

VCC = 5 V RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 4

ÏÏÏÏ

VO – Output Voltage – V VO

VO – Output Voltage – V VO

2.6

TLE2021 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE

2.5

ÁÁ ÁÁ

3

2.4

ÏÏÏÏÏ ÏÏÏÏÏ

2

ÁÁ ÁÁ

2.45

VCC = 5 V RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 1

1

0 0

20 40 t – Time – µs

60

80

0

Figure 51

ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ 4

VCC = 5 V RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 1

VO – Output Voltage – V VO

VO VO – Output Voltage – V

80

TLE2024 VOLTAGE-FOLLOWER LARGE-SCALE PULSE RESPONSE

4

ÁÁ ÁÁ

60

Figure 52

TLE2022 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE

3

20 40 t – Time – µs

2

1

3

VCC ± = 5 V RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 1

2

1

0

0 0

20 40 t – Time – µs

60

0

80

20

40

60

80

t – Time – µs

Figure 53

Figure 54

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

49

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

TYPICAL CHARACTERISTICS TLE2021 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE

VO – Output Voltage – V VO

10

ÁÁ ÁÁ

VCC ± = ± 15 V RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 1

15

10 VO VO – Output Voltage – V

15

TLE2022 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE

5

0

– 10

VCC ± = ± 15 V RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 1

5

ÁÁ ÁÁ

–5

ÏÏÏÏÏ ÏÏÏÏÏ

0

–5

– 10

– 15 0

20 40 t – Time – µs

60

– 15

80

0

TLE2024 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE

ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ

15

VO – Output Voltage – V VO

10

VCC ± = ± 15 V RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 1

5

0

–5

–10

–15 0

20 t – Time – µs

Figure 57

50

60

80

Figure 56

40

60

80

VN(PP) VNPP – Peak-to-Peak Equivalent Input Noise Voltage – uV µV

Figure 55

20 40 t – Time – µs

PEAK-TO-PEAK EQUIVALENT INPUT NOISE VOLTAGE 0.1 TO 1 Hz

0.5 0.4

VCC ± = ± 15 V TA = 25°C

0.3 0.2 0.1 0 – 0.1 – 0.2 – 0.3

ÁÁ ÁÁ ÁÁ

POST OFFICE BOX 655303

ÏÏÏÏÏ ÏÏÏÏÏ

– 0.4 – 0.5 0

1

• DALLAS, TEXAS 75265

2

3 4 5 t – Time – s

Figure 58

6

7

8

9

10

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

PEAK-TO-PEAK EQUIVALENT INPUT NOISE VOLTAGE 0.1 TO 10 Hz 0.5

VCC ± = ± 15 V TA = 25°C

0.4 0.3 0.2 0.1 0 – 0.1 – 0.2 – 0.3

ÁÁ ÁÁ ÁÁ

EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY

ÁÁ ÁÁ ÁÁ VVn nV/ Hz n – Equivalent Input Noise Voltage – nVHz

VN(PP) VNPP – Peak-to-Peak Equivalent Input Noise Voltage – uV µV

TYPICAL CHARACTERISTICS

– 0.4 – 0.5

VCC ± = ± 15 V RS = 20 Ω TA = 25°C See Figure 2

160

120

80

40

0 0

1

2

3

4 5 6 t – Time – s

7

8

9

10

1

10

Figure 60 TLE2022 AND TLE2024 UNITY-GAIN BANDWIDTH vs SUPPLY VOLTAGE

4

4

B1 B1 – Unity-Gain Bandwidth – MHz

RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 3

3

10 k

100 1k f – Frequency – Hz

Figure 59 TLE2021 UNITY-GAIN BANDWIDTH vs SUPPLY VOLTAGE

B1 B 1 – Unity-Gain Bandwidth – MHz

ÏÏÏÏÏ ÁÁÁÁÁ ÁÁÁÁÁ ÏÏÏÏÏ ÏÏÏÏ ÏÏÏÏÏ ÁÁÁÁÁ ÏÏÏÏÏ ÁÁÁÁÁ

200

2

1

0

3

ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 3

2

1

0 0

2

4

6 8 10 12 14 |VCC±| – Supply Voltage – V

16

0

2

Figure 61

4 6 8 10 12 |VCC±| – Supply Voltage – V

14

16

Figure 62

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

51

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

TYPICAL CHARACTERISTICS TLE2021 UNITY-GAIN BANDWIDTH† vs FREE-AIR TEMPERATURE 4

RL = 10 kΩ CL = 30 pF See Figure 3

3 VCC ± = ± 15 V 2

ÏÏÏÏÏ

1

VCC = 5 V

– 50 – 25 0 25 50 75 TA – Free-Air Temperature – °C

100

ÏÏÏÏÏ ÏÏÏÏÏ

3

VCC ± = ± 15 V

2

VCC = 5 V 1

0 – 75

0 – 75

125

– 50

– 25 0 25 50 75 100 TA – Free-Air Temperature – °C

Figure 63

TLE2022 AND TLE2024 PHASE MARGIN vs SUPPLY VOLTAGE

RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 3

53° φ m – Phase Margin

φm m – Phase Margin

ÁÁ ÁÁ

ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ

55°

RL = 10 kΩ CL = 30 pF TA = 25°C See Figure 3

48°

46°

51°

ÁÁ ÁÁ

44°

49°

47°

42°

45°

40° 0

2

4 6 8 10 12 14 |VCC ±| – Supply Voltage – V

16

0

2

4 6 8 10 12 |VCC±| – Supply Voltage – V

14

Figure 66

Figure 65

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

52

125

Figure 64

TLE2021 PHASE MARGIN vs SUPPLY VOLTAGE 50°

ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ RL = 10 kΩ CL = 30 pF See Figure 3

B1 B1 – Unity-Gain Bandwidth – MHz

B B1 1 – Unity-Gain Bandwidth – MHz

4

TLE2022 AND TLE2024 UNITY-GAIN BANDWIDTH† vs FREE-AIR TEMPERATURE

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

16

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

TYPICAL CHARACTERISTICS TLE2022 AND TLE2024 PHASE MARGIN vs LOAD CAPACITANCE

TLE2021 PHASE MARGIN vs LOAD CAPACITANCE 60°

70°

RL = 10 kΩ TA = 30 pF See Figure 3

50°

60°

VCC ± = ± 15 V

VCC ± = ± 15 V φm m – Phase Margin

φm m – Phase Margin

50° 40° VCC = 5 V

ÁÁ ÁÁ ÁÁ

30°

RL = 10 kΩ TA = 25°C See Figure 3

VCC = 5 V 40°

ÁÁ ÁÁ

20°

30°

20°

10°

10°

0 0

20 40 60 80 CL – Load Capacitance – pF



100

0

20

40 60 80 CL – Load Capacitance – pF

Figure 67

50° 48°

TLE2022 AND TLE2024 PHASE MARGIN† vs FREE-AIR TEMPERATURE 54°

RL = 10 kΩ CL = 30 pF See Figure 3

52° VCC ± = ± 15 V

VCC ± = ± 15 V

46° φm m – Phase Margin

50°

44°

ÁÁ ÁÁ

42°

VCC = 5 V

40° 38° 36° – 75

100

Figure 68

TLE2021 PHASE MARGIN† vs FREE-AIR TEMPERATURE

φm m – Phase Margin

ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ

48°

ÁÁ ÁÁÁÁÁ ÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ 46° 44°

42°

– 50

– 25 0 25 50 75 100 TA – Free-Air Temperature – °C

125

VCC = 5 V

40° – 75

RL = 10 kΩ CL = 30 pF See Figure 3

– 50

Figure 69

– 25 0 25 50 75 100 TA – Free-Air Temperature – °C

125

Figure 70

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

53

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

APPLICATION INFORMATION voltage-follower applications The TLE202x circuitry includes input-protection diodes to limit the voltage across the input transistors; however, no provision is made in the circuit to limit the current if these diodes are forward biased. This condition can occur when the device is operated in the voltage-follower configuration and driven with a fast, large-signal pulse. It is recommended that a feedback resistor be used to limit the current to a maximum of 1 mA to prevent degradation of the device. This feedback resistor forms a pole with the input capacitance of the device. For feedback resistor values greater than 10 kΩ, this pole degrades the amplifier phase margin. This problem can be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 71). CF = 20 pF to 50 pF IF ≤ 1 mA RF VCC + – VO VI

+ VCC –

Figure 71. Voltage Follower

Input offset voltage nulling The TLE202x series offers external null pins that further reduce the input offset voltage. The circuit in Figure 72 can be connected as shown if this feature is desired. When external nulling is not needed, the null pins may be left disconnected. –

IN –

OFFSET N2

OFFSET N1

+

IN +

5 kΩ

1 kΩ

VCC – (split supply) GND (single supply)

Figure 72. Input Offset Voltage Null Circuit

54

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

APPLICATION INFORMATION macromodel information Macromodel information provided was derived using Microsim Parts , the model generation software used with Microsim PSpice . The Boyle macromodel (see Note 5) and subcircuit in73, Figure 74, and Figure 75 were generated using the TLE202x typical electrical and operating characteristics at 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

D D D D D D

D D D D D D

Maximum positive output voltage swing Maximum negative output voltage swing Slew rate Quiescent power dissipation Input bias current Open-loop voltage amplification

Unity-gain frequency Common-mode rejection ratio Phase margin DC output resistance AC output resistance Short-circuit output current limit

NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). 99 3

VCC +

egnd 9

rss

iss

2

10

IN – j1

dp

vc j2

IN+ 1

11

dc

12

r2 – 53

hlim



+

C2

6

54

4 +







+

vin

7

gcm

ga

vlim 8

rd2

91 + vip

+

C1 rd1

+ dip

90

ro2

vb

rp

VCC –

92

fb



+

din

+



ro1

de

5

– ve

OUT

Figure 73. Boyle Subcircuit

PSpice and Parts are trademarks of MicroSim Corporation.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

55

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

.SUBCKT TLE2021 1 2 3 4 5 * c1 11 12 6.244E–12 c2 6 7 13.4E–12 c3 87 0 10.64E–9 cpsr 85 86 15.9E–9 dcm+ 81 82 dx dcm– 83 81 dx dc 5 53 dx de 54 5 dx dlp 90 91 dx dln 92 90 dx dp 4 3 dx ecmr 84 99 (2 99) 1 egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5 epsr 85 0 poly(1) (3,4) –60E–6 2.0E–6 ense 89 2 poly(1) (88,0) 120E–6 1 fb 7 99 poly(6) vb vc ve vlp vln vpsr 0 547.3E6 + –50E7 50E7 50E7 –50E7 547E6 ga 6 0 11 12 188.5E–6 gcm 0 6 10 99 335.2E–12 gpsr 85 86 (85,86) 100E–6 grc1 4 11 (4,11) 1.885E–4 grc2 4 12 (4,12) 1.885E–4 gre1 13 10 (13,10) 6.82E–4 gre2 14 10 (14,10) 6.82E–4 hlim 90 0 vlim 1k

hcmr 80 1 poly(2) vcm+ vcm– 0 1E2 1E2 irp 3 4 185E–6 iee 3 10 dc 15.67E–6 iio 2 0 2E–9 i1 88 0 1E–21 q1 11 89 13 qx q2 12 80 14 qx R2 6 9 100.0E3 rcm 84 81 1K ree 10 99 14.76E6 rn1 87 0 2.55E8 rn2 87 88 11.67E3 ro1 8 5 62 ro2 7 99 63 vcm+ 82 99 13.3 vcm– 83 99 –14.6 vb 9 0 dc 0 vc 3 53 dc 1.300 ve 54 4 dc 1.500 vlim 7 8 dc 0 vlp 91 0 dc 3.600 vln 0 92 dc 3.600 vpsr 0 86 dc 0 .model dx d(is=800.0E–18) .model qx pnp(is=800.0E–18 bf=270) .ends

Figure 74. Boyle Macromodel for the TLE2021 .SUBCKT TLE2022 1 2 3 4 5 * c1 11 12 6.814E–12 c2 6 7 20.00E–12 dc 5 53 dx de 54 5 dx dlp 90 91 dx dln 92 90 dx dp 4 3 dx egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5 fb 7 99 poly(5) vb vc ve vlp vln 0 + 45.47E6 –50E6 50E6 50E6 –50E6 ga 6 0 11 12 377.9E–6 gcm 0 6 10 99 7.84E–10 iee 3 10 DC 18.07E–6 hlim 90 0 vlim 1k q1 11 2 13 qx q2 12 1 14 qx r2 6 9 100.0E3

rc1 rc2 ge1 ge2 ree ro1 ro2 rp vb vc ve vlim vlp vln .model .model .ends

4 4 13 14 10 8 7 3 9 3 54 7 91 0 dx qx

11 2.842E3 12 2.842E3 10 (10,13) 31.299E–3 10 (10,14) 31.299E–3 99 11.07E6 5 250 99 250 4 137.2E3 0 dc 0 53 dc 1.300 4 dc 1.500 8 dc 0 0 dc 3 92 dc 3 d(is=800.0E–18) pnp(is=800.0E–18 bf=257.1)

Figure 75. Boyle Macromodel for the TLE2022

56

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

MECHANICAL INFORMATION D (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PIN SHOWN PINS **

0.050 (1,27)

8

14

16

A MAX

0.197 (5,00)

0.344 (8,75)

0.394 (10,00)

A MIN

0.189 (4,80)

0.337 (8,55)

0.386 (9,80)

DIM 0.020 (0,51) 0.014 (0,35) 14

0.010 (0,25) M

8

0.244 (6,20) 0.228 (5,80) 0.008 (0,20) NOM

0.157 (4,00) 0.150 (3,81)

1

Gage Plane

7 A

0.010 (0,25) 0°– 8°

0.044 (1,12) 0.016 (0,40)

Seating Plane 0.069 (1,75) MAX

0.010 (0,25) 0.004 (0,10)

0.004 (0,10) 4040047 / B 03/95

NOTES: A. B. C. D. E.

All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15). Four center pins are connected to die mount pad. Falls within JEDEC MS-012

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

57

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

MECHANICAL INFORMATION DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

28 PIN SHOWN 0,38 0,22

0,65 28

0,15 M

15

0,15 NOM 5,60 5,00

8,20 7,40

Gage Plane 1

14

0,25

A

0°– 8°

1,03 0,63

Seating Plane 2,00 MAX

0,10

0,05 MIN

PINS **

8

14

16

20

24

28

30

38

A MAX

3,30

6,50

6,50

7,50

8,50

10,50

10,50

12,90

A MIN

2,70

5,90

5,90

6,90

7,90

9,90

9,90

12,30

DIM

4040065 / C 10/95 NOTES: A. B. C. D.

58

All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-150

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

MECHANICAL INFORMATION DW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

16 PIN SHOWN

PINS **

0.050 (1,27)

16

20

24

28

A MAX

0.410 (10,41)

0.510 (12,95)

0.610 (15,49)

0.710 (18,03)

A MIN

0.400 (10,16)

0.500 (12,70)

0.600 (15,24)

0.700 (17,78)

DIM 0.020 (0,51) 0.014 (0,35) 16

0.010 (0,25) M 9

0.419 (10,65) 0.400 (10,15) 0.010 (0,25) NOM

0.299 (7,59) 0.293 (7,45)

Gage Plane 0.010 (0,25) 1

8 0°– 8° A

0.050 (1,27) 0.016 (0,40)

Seating Plane 0.104 (2,65) MAX

0.012 (0,30) 0.004 (0,10)

0.004 (0,10) 4040000 / B 03/95

NOTES: A. B. C. D.

All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). Falls within JEDEC MS-013

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

59

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

MECHANICAL INFORMATION FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

18

17

16

15

14

13

NO. OF TERMINALS **

12

19

11

20

10

B

A MIN

MAX

MIN

MAX

20

0.342 (8,69)

0.358 (9,09)

0.307 (7,80)

0.358 (9,09)

28

0.442 (11,23)

0.458 (11,63)

0.406 (10,31)

0.458 (11,63)

21

9

22

8

44

0.640 (16,26)

0.660 (16,76)

0.495 (12,58)

0.560 (14,22)

23

7

52

0.739 (18,78)

0.761 (19,32)

0.495 (12,58)

0.560 (14,22)

24

6 68

25

5

0.938 (23,83)

0.962 (24,43)

0.850 (21,6)

0.858 (21,8)

84

1.141 (28,99)

1.165 (29,59)

1.047 (26,6)

1.063 (27,0)

B SQ A SQ

26

27

28

1

2

3

4 0.080 (2,03) 0.064 (1,63)

0.020 (0,51) 0.010 (0,25) 0.020 (0,51) 0.010 (0,25)

0.055 (1,40) 0.045 (1,14)

0.045 (1,14) 0.035 (0,89)

0.045 (1,14) 0.035 (0,89)

0.028 (0,71) 0.022 (0,54) 0.050 (1,27)

4040140 / D 10/96 NOTES: A. B. C. D. E.

60

All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a metal lid. The terminals are gold plated. Falls within JEDEC MS-004

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

MECHANICAL INFORMATION J (R-GDIP-T**)

CERAMIC DUAL-IN-LINE PACKAGE

14 PIN SHOWN

PINS **

14

16

18

20

22

A MAX

0.310 (7,87)

0.310 (7,87)

0.310 (7,87)

0.310 (7,87)

0.410 (10,41)

A MIN

0.290 (7,37)

0.290 (7,37)

0.290 (7,37)

0.290 (7,37)

0.390 (9,91)

B MAX

0.785 (19,94)

0.785 (19,94)

0.910 (23,10)

0.975 (24,77)

1.100 (28,00)

B MIN

0.755 (19,18)

0.755 (19,18)

C MAX

0.280 (7,11)

0.300 (7,62)

0.300 (7,62)

0.300 (7,62)

C MIN

0.245 (6,22)

0.245 (6,22)

0.245 (6,22)

0.245 (6,22)

DIM

B 14

8

C

1

7 0.065 (1,65) 0.045 (1,14)

0.100 (2,54) 0.070 (1,78)

0.020 (0,51) MIN

0.930 (23,62) 0.388 (9,65)

A

0.200 (5,08) MAX Seating Plane 0.130 (3,30) MIN

0°– 15° 0.100 (2,54) 0.023 (0,58) 0.015 (0,38)

0.014 (0,36) 0.008 (0,20) 4040083 / B 04/95

NOTES: A. B. C. D. E.

All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a ceramic lid using glass frit. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only. Falls within MIL-STD-1835 GDIP1-T14, GDIP1-T16, GDIP1-T18, GDIP1-T20, and GDIP1-T22

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

61

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

MECHANICAL INFORMATION JG (R-GDIP-T8)

CERAMIC DUAL-IN-LINE PACKAGE 0.400 (10,20) 0.355 (9,00) 8

5

0.280 (7,11) 0.245 (6,22)

1

4 0.065 (1,65) 0.045 (1,14)

0.310 (7,87) 0.290 (7,37)

0.020 (0,51) MIN

0.200 (5,08) MAX Seating Plane 0.130 (3,30) MIN

0.063 (1,60) 0.015 (0,38)

0°–15° 0.023 (0,58) 0.015 (0,38)

0.015 (0,38) 0.008 (0,20)

0.100 (2,54)

4040107 / B 04/95 NOTES: A. B. C. D. E.

62

All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a ceramic lid using glass frit. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only Falls within MIL-STD-1835 GDIP1-T8

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

MECHANICAL INFORMATION N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PIN SHOWN PINS **

14

16

18

20

A MAX

0.775 (19,69)

0.775 (19,69)

0.920 (23.37)

0.975 (24,77)

A MIN

0.745 (18,92)

0.745 (18,92)

0.850 (21.59)

0.940 (23,88)

DIM A 16

9

0.260 (6,60) 0.240 (6,10)

1

8 0.070 (1,78) MAX

0.035 (0,89) MAX

0.310 (7,87) 0.290 (7,37)

0.020 (0,51) MIN

0.200 (5,08) MAX Seating Plane 0.125 (3,18) MIN

0.100 (2,54) 0.021 (0,53) 0.015 (0,38)

0.010 (0,25) M

0°– 15° 0.010 (0,25) NOM

14/18 PIN ONLY 4040049/C 08/95 NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Falls within JEDEC MS-001 (20 pin package is shorter then MS-001.)

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

63

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

MECHANICAL INFORMATION P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE 0.400 (10,60) 0.355 (9,02)

8

5

0.260 (6,60) 0.240 (6,10)

1

4 0.070 (1,78) MAX 0.310 (7,87) 0.290 (7,37)

0.020 (0,51) MIN

0.200 (5,08) MAX Seating Plane 0.125 (3,18) MIN

0.100 (2,54) 0.021 (0,53) 0.015 (0,38)

0°– 15°

0.010 (0,25) M 0.010 (0,25) NOM 4040082 / B 03/95

NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Falls within JEDEC MS-001

64

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS SLOS191 – FEBRUARY 1997

MECHANICAL INFORMATION PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PIN SHOWN 0,32 0,19

0,65 14

0,13 M

8

0,15 NOM 4,50 4,30

6,70 6,10 Gage Plane 0,25

1

7

0°– 8° 0,75 0,50

A

Seating Plane 1,20 MAX

0,10

0,10 MIN

PINS ** 8

14

16

20

24

28

A MAX

3,10

5,10

5,10

6,60

7,90

9,80

A MIN

2,90

4,90

4,90

6,40

7,70

9,60

DIM

4040064 / D 10/95 NOTES: A. B. C. D.

All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

65

IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK. In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright  1998, Texas Instruments Incorporated