

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

Automatic Software Verification of BSPlib-programs ... - Julien Tesson

Mar 20, 2017 - Background: Bulk synchronous parallel (2). â–» Invented in the 80's by Leslie Valiant, and several implementations exists, notably: BSPlib ...

 Télécharger le PDF

 2MB taille
 1 téléchargements
 319 vues

 commentaire

 Report

Automatic Software Verication of BSPlib-programs: Replicated Synchronization Arvid Jakobsson 2017-03-20 Supervisors: G. Hains, W. Suijlen, F. Loulergue, F. Dabrowski, W. Bousdira

Context

World-leading provider of ICT-solutions Huawei has an increasing need for embedded parallel software Successful software must be safe and ecient Formal method gives mathematical guarantees of safety and eciency Université d'Orléans (Laboratoire d'Informatique Fondamental): Strong research focus on formal methods and parallel computing

I Huawei: I I I

I

Overview of AVSBSP

I

I

I

Goal of the project: a secure, statically veried basis for ecient BSPlib programming Bulk Synchronous Parallel: simple but powerful model for parallel programming, BSPlib: a library for BSP-programming in C

Overview of AVSBSP

I

Main track: Developing automatic tools for verication of BSPlib based on formal methods. I

Correct synchronization

I

Correct communication

I

Correct API usage

⇒ I

Automatic verication of safety

Side-track: Automatic Cost Analysis I

⇒

Automatic BSP cost formula derivation Automatic verication of performance

Main-track: Verication

I

Main track: Developing automatic tools for verication of BSPlib based on formal methods. I

Correct synchronization

I

Correct communication

I

Correct API usage

⇒

Automatic verication of safety

Motivating example (1)

I I I

Long scientic calculations on cluster in parallel. But come Monday: calculation crashed after 10 hours :(What went wrong? Let's look at the code!

Motivating example (2)

I

Single Program, Multiple data

on p processes: //

: the same program is run in parallel

. . .

double x = 0 . 0 ; f o r (i n t i = 0 ; i < 1 0 0 ; ++i) { x = f (x);

}

//

. . .

Figure: Parallel SPMD program: Iterative calculation

Motivating example (2)

double t 0 = bsp_time () ; double x = 0 . 0 ; f o r (i n t i = 0 ; i < 1 0 0 ; ++i) { x = f (x);

double t 1 = bsp_time () ; i f (t1 - t0 > 1.0) {

}

}

print_progress (x); t0 = t1 ;

Figure: Buggy parallel SPMD program: Harmless printing?

Motivating example (2)

v o i d p r i n t _ p r o g r e s s (double x) { i n t p = b sp _n p ro cs () ; //

Print

progress

for

process

f o r (i n t s = 0 ; s < p ; ++p) { i f (bsp_pid () == s) {

}

}

0,

1,

2,

. . .

p r i n t f (" p r o g r e s s (%d) : %g\n" , s , x) ; } bsp_sync();

Figure: Buggy parallel SPMD program: Harmless printing?

Motivating example (2)

double t 0 = bsp_time () ; double x = 0 . 0 ; f o r (i n t i = 0 ; i < 1 0 0 ; ++i) { x = f (x);

double t 1 = bsp_time () ; i f (t1 - t0 > 1.0) {

}

}

print_progress (x); t0 = t1 ;

//

synchronizing

Figure: Buggy parallel SPMD program: Harmless printing?

Motivating example (2)

double t 0 = bsp_time () ; double x = 0 . 0 ; f o r (i n t i = 0 ; i < 1 0 0 ; ++i) { x = f (x);

double t 1 = bsp_time () ; i f (t1 - t0 > 1.0) { / / P r o c e s s e s

}

}

print_progress (x); t0 = t1 ;

//

agree

on

this

condition ?

synchronizing .

Figure: Buggy parallel SPMD program: Processes agree?

Motivating example (3): Conclusion

I

I

I

Source of bug: Program hangs since choice to synchronize or not (inside print_progress(x)) depends on a value local to each process (bsp_time()). Possible solution: To synchronize or not must only depend on a condition with the same value on all processes. Goal: Enforce this solution statically.

Background: Bulk synchronous parallel (1) I I

I

Bulk synchronous parallel (BSP): model of parallel computing BSP computation: a sequence of super-steps executed by a xed number of p processes. Each super-step is composed of: 1. Local computation by each process, followed by 2. Communication between processes, followed by 3. A synchronization barrier. Go back to Step 1 or terminate.

Background: Bulk synchronous parallel (2)

I

I

Invented in the 80's by Leslie Valiant, and several implementations exists, notably: BSPlib, Pregel, MapReduce, most linear algebra packages. . . Benets of BSP compared to other models of parallel computation: I

Deadlock and data race free

I

Simple but realistic cost model

I

Simplies algorithm design

Background: BSPlib

I I I

BSPlib: library and interface specication for BSP in C. BSPlib follows the Single Program Multiple Data-model (SPMD). Small set of primitives (20): I

I

bsp_begin, bsp_end, bsp_pid, bsp_nprocs, bsp_get, bsp_put, bsp_sync, . . .

Several implementations exists: The Oxford BSP Toolset, Paderborn University BSP, MulticoreBSP, Epiphany BSP. . .

BSPlite

I I

Toy-language "BSPlite". Grammar of BSPlite:

expr bexpr

cmd

I

3 e 3 b 3 c

::= nprocs | pid | x | n | e + e | e − e | e × e ::= true | false | e < e | e = e | b or b | b and b | !b ::= x := e | skip | sync | c; c | if b then c else c end | while b do c end

, returns local processor id from P: it introduces variation in evaluation between processes. pid

BSPlite local semantics

I

Local semantics for local computation in each process: →i : cmd × Σ → T × Σ Σ=X→N T = {Ok} ∪ {Wait(c) | c ∈ cmd }

I

I

hc, σi →i ht, σ 0 i denotes one step of local-computation with termination state t by processor with id i .

Local semantics are standard (big-step, operational), except sync which stops local computation and returns the rest of the program as a continuation.

BSPlite global semantics

I

Global semantics moves the computation forward globally from one super-step to the next when all p local processes has completed: → : cmd p × Σp × (Σp ∪ {Ω})

I

One step of global computation either: hC , E i → E 0 incorrectly: hC , E i → Ω

1. terminates correctly: 2. synchronization

I

The BSP meaning of program c in a Single Program Multiple Data (SPMD) context: h[c]i∈P , E i → E 0 .

BSPlite example programs Buggy program from the introduction

cnok = [I := 0]1 ;

Correct program

cok = [I := 0]1 ;

[X := pid]2 ;

while [I < 100]2 do

while [I < 100]3 do

[sync]3 ;

[sync]4 ;

if [X = 0]5 then [sync]6

else [skip]7 [end]

;

[I := I + 1]8 ;

end

[I := I + 1]4 ;

end

Problem formulation

I

A program c is

, if

synchronization error free

6 ∃E , h[c]i∈P , E i → Ω I I

Goal: guarantee that BSPlib programs are synchronization error free. cok synchronization error free, cnok is not.

Replicated synchronization

I

I

Textually aligned synchronization : in each super-step, all local processors stop at the same instance of the same sync-primitive. A program with textually aligned synchronization has no synchronization errors.

Replicated synchronization

I

I

I

I

Textually aligned synchronization : in each super-step, all local processors stop at the same instance of the same sync-primitive. A program with textually aligned synchronization has no synchronization errors. Replicated synchronization: statically veried condition for having textually aligned synchronization. Program has replicated synchronization if all conditionals and loops with bodies which contains sync are pid-independent.

Replicated synchronization

I

I

I

I

I

I

Textually aligned synchronization : in each super-step, all local processors stop at the same instance of the same sync-primitive. A program with textually aligned synchronization has no synchronization errors. Replicated synchronization: statically veried condition for having textually aligned synchronization. Program has replicated synchronization if all conditionals and loops with bodies which contains sync are pid-independent. A variable is pid-independent when it has no data- nor control-dependency on pid. Pid-independent variables goes through the same series of values on all processors

BSPlite example programs Buggy program from the introduction

cnok = [I := 0]1 ;

Correct program

cok = [I := 0]1 ;

[X := pid]2 ;

while [I < 100]2 do

while [I < 100]3 do

[sync]3 ;

[sync]4 ;

if [X = 0]5 then [sync]6

else [skip]7 [end]

;

[I := I + 1]8 ;

end

[I := I + 1]4 ;

end

Replicated synchronization: Good software engineering practice

I

I I I I

Replicate synchronization codies good parallel software engineering practices The condition is simple to understand Makes parallel code easier to understand All programs we have surveyed are implicitly written in this style Our analysis statically veries that BSPlib code meets this condition, and so is synchronization error free

Statical analysis for nding pid -independent variables

I

I

I

I

Reformulation of type system of Barrier Inference [Aiken & Gay '98] as a data-ow analysis We impose stronger requirements on the analyzed program: no synchronization in branches where guard-expression is not pid -independent. Idea is to nd variables and program locations which does not have a data- or control-dependency on pid The abstract state in the data-ow analysis for each program location contains (1) the set of variables statically guaranteed to be pid -independent at that point (2) the pid -independence of each guard-expression in which the point is nested.

Statically verifying "Replicated synchronization"

I

With data-ow analysis, simple to verify that a program has replicated synchronization: all guard-conditions for if- and while-statements which contains sync has a replicated guard-conditions: RS] (c) =

^

[sync] 6∈ c 0 ∨ (FV (b) ⊆ PI (l) ∧ pid 6∈ b)

(l,b,c 0)∈guards(c)

Conclusion and future work

I

Contributions: I

Formulating the correctness criterion Replicated synchronization

I

Formalized and proved static analysis for detecting Replicated synchronization as a data-ow analysis for BSPlite

I

I

Implementation as a Frama-C plugin,

∼2000

lines of OCaml-code

Future work includes: I

Use as a building block for further analyses: communication, cost-analysis, . . .

I

Extend target language: pointers, functions, communication, . . .

I

Coq formalization

des documents recommandant

[image: alt]

Verification of imperative BSP programs: application to ... - Julien Tesson

WHY: an intermediate language. For program verification (deductive) Useful in many calculations (FFT, n-body, graph algorithms etc.) F. Gava and J. Fortin ...

[image: alt]

let@token Verification of @let@token Concurrent ... - Julien Tesson

Oct 11, 2017 - proof of absence of arithmetic overflow, invalid operation, illegal memory access, etc. very common pattern in control-command software.

[image: alt]

Automatic Cost Analysis for Imperative BSP programs - Julien Tesson

2/21. Bulk Synchronous Parallel (1). â–» Bulk Synchronous Parallel (BSP): simple but powerful model for semi-synchronous data-parallelism. â–» BSP computer: ...

[image: alt]

Automated generation of BSP Automata - Julien Tesson

BSP code (well structured). DSL for queries. â€¢ based on BSPRE. â€¢ computed by a BSPA. Limitations. â€¢ regular expressions expressiveness. â€¢ output is a boolean ...

[image: alt]

Constructive algorithmic in Coq - Julien Tesson

Algorithmic Skeletons. Roots. â–· Cole 1989. â–· Patterns of parallel programs. Data Parallelism. â–· Distributed data structures. â–· Collectives operations (map).

[image: alt]

Software Architecture of Code Analysis ... - Julien Signoles

aim to be used in industrial settings, requires a well-engineered software ... may develop plug-ins collaborating with each other, such a well designed.

[image: alt]

Proofs of pointer algorithms by inductive ... - Julien Tesson

May 15, 2012 - In LICS '02: Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science, pages 55â€“74, Washington, DC,. USA, 2002.

[image: alt]

A Skeletal-based Approach for the Development of ... - Julien Tesson

Dec 14, 2010 - Research Context. Extensible Machines ... Uncertain termination of long-running applications. Miss of ... computation intensive pieces of code â†’ heavy operations Combines MoLOToF with parallel algorithms families.

[image: alt]

Mechanised Semantics of BSP Routines with ... - Julien Tesson

BSP Programming. Semantics. Conclusion. Bridging Model: Bulk Synchronous Parallelism (BSP). The BSP computer. Defined by: p pairs CPU/memory.

[image: alt]

Systematic Development of Correct Bulk Synchronous ... - Julien Tesson

5 Conclusions and Future Work. F. Loulergue. Systematic Development of Correct Bulk Synchronous Parallel Programs December 10, 2010 â€“ PDCAT. 2 / 26 ...

[image: alt]

Design, Implementation and Applications of the SkeTo ... - Julien Tesson

A Short Introduction to. Constructive ... â€œMethods for calculating programs from their Yicho system ... http://research.nii.ac.jp/~hu/pub/teach/pm06/CA[1-4].pdf.

[image: alt]

Implementing Powerlists with Bulk Synchronous ... - Julien Tesson

Bulk Synchronous Parallel ML ... the parallel functional programming library Bulk Synchronous ... [2], [3], which should not only be based on an abstraction.

[image: alt]

Program Calculation in Coq - Julien Tesson

Program calculation, being a programming technique that derives programs ... Different from many existing systems, we show in this paper that Coq, a popular theorem Appendix A provides a very short introduction to Coq. Although little.

[image: alt]

Profiling High-Level Heterogeneous Programs - Julien Tesson

Cuda (NVidia). OpenCL (Consortium ... Kernel : small example using OpenCL targets. Hardware. GPU. Multicore. CPU. OpenCL. Cuda. Mathias Bourgoin.

[image: alt]

Remarks on cost analysis for patterns of parallelism - Julien Tesson

May 15, 2012 - Research programme. Preliminary ... Research programme. Research ... Develop an algorithm for cost-driven optimal refinement search. Vladimir The functor MÎ¸ = Î¸Ã—(H â†’ cost) with pointwise operations is a ... application.

[image: alt]

Compilation and Real-Time Analysis of a ... - Julien Tesson

3 Models Definition. 4 Multicore Response Time Analysis of SDF Programs ... Lots of simple cores. Kalray MPPA (Massively Parallel Processor Array): http://www-verimag.imag.fr/TR/TR-2016-1.pdf memory access pattern memory ...

[image: alt]

Formal Semantics of DRMA-Style Programming in ... - Julien Tesson

2 An Overview of BSPlib and BSP-IMP. BSPlib [6] is a library for bulk synchronous parallel (BSP) programming. In the. BSP model, a computer is a set of uniform ...

[image: alt]

Systematic Development of Correct Bulk Synchronous ... - Julien Tesson

Bulk Synchronous Parallelism (BSP) is a model of computation which offers a high ... to low level BSP parallel programs; (2) we develop a set of useful theories ...

[image: alt]

Verification of IoT Software with Frama-C - Tutorial ... - Nikolai Kosmatov

Jul 16, 2018 - Introduction. Verification of absence of runtime errors using EVA Advanced Encryption Standard (AES): a symmetric encryption algo. â–· AES ...

[image: alt]

Verification of IoT Software with Frama-C - Tutorial ... - Nikolai Kosmatov

May 30, 2018 - Introduction. Security in the IoT. Internet of Things. (c) Internet Security Buzz. â–· connect all devices and services. â–· 46 billions devices by.

[image: alt]

A Lesson on Verification of IoT Software with Frama-C

verification of software using FRAMA-C and in particular its. EVA, WP, and co-located with the International Conference on Embedded Wireless. Systems and ... assertion checking in software development,â€� SIGSOFT Softw. Eng. Notes, vol.

[image: alt]

Automatic tuning via Kriging-based optimization of ... - Julien Marzat

Oct 7, 2010 - Tuning viewed as a Computer Experiment. Kriging, surrogate approximation of the complex simulation. Efficient Global Optimization, iterative ...

[image: alt]

Enumerated BSP automata GaÃ©tan Hains GDR-GPL ... - Julien Tesson

Bulk-synchronous automata. Definition 2. BSP automaton A = ({Qi}iâˆˆ[p],Î£,{Î´i}iâˆˆ[p],{qi. 0. }iâˆˆ[p],{Fi}iâˆˆ[p],âˆ†) with. (Qi,Î£,Î´i,qi. 0. ,Fi.) a DFA, and âˆ† : Q â†’ Q is ...

[image: alt]

Skeletons and the Parallel Programming Challenge - Julien Tesson

Single Chip Cloud Computer). â—‹ We may ... Source program S, including a number of tuning knobs (eg ... program space implied by the tuning knobs, and pick ...

×
Report Automatic Software Verification of BSPlib-programs ... - Julien Tesson

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

