

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

Skeletons and the Parallel Programming Challenge - Julien Tesson

Single Chip Cloud Computer). â—‹ We may ... Source program S, including a number of tuning knobs (eg ... program space implied by the tuning knobs, and pick ...

 Télécharger le PDF

 441KB taille
 10 téléchargements
 324 vues

 commentaire

 Report

Skeletons and the Parallel Programming Challenge Murray Cole

Overview

●

The Parallel Programming Challenge

●

Skeletons to the Rescue?

●

Current work in Edinburgh

Parallel Programming Challenge

Mainstream Parallelism ●

Parallelism is now a mainstream reality –

Chip manufacturers' roadmaps now look to increase core count rather than clock rate (clocks may slow down to save energy)

–

GPGPU devices offer massive on-die parallelism (with SIMD-like constraints)

–

Soon even on-chip manycore will take on aspects of “distributed” parallelism (eg Intel's Single Chip Cloud Computer)

●

We may have three or four layers of parallelism

Haven't we heard this before? ●

HPC parallelism has sought a solution for many years, but has ended up “making do” with MPI, OpenMP (and now OpenCL/CUDA). –

These are expert-labour-intensive, awkward to interface and produce code which is not very performance portable.

●

This time we are in the mainstream. This makes it a big deal! –

Without a productive solution, we will not be able to use the available resources effectively.

–

Intel and Microsoft may go bust....

Skeletons to the Rescue?

Skeletons to the Rescue? ●

Key observation: Many parallel applications involve customised instances of generic algorithmic patterns. Let's abstract and package these. –

●

Farm, Pipe, D&C, Stencil, DSLs...

Separate software productivity layer (instantiation and composition of skeletons) from expert performance programming layer (skeleton implementation, exploiting knowledge of constrained computational structure and target architecture).

Skeletons to the Rescue? ●

This approach becomes even more appealing in the era of multilayer parallelism: –

Application programmer is happy not to have to write the coordination glue (in different models!)

–

Expert programmer is happy that the application programmer has been prevented from writing the coordination glue and overspecifying the implementation.

●

If we can demonstrate that this works and is widely applicable, then we win a very big prize.

Status Report ●

●

Skeletons research has been active for 20+ years. Are we having any impact? Is the wider world starting to think the same way?

How can we achieve greater impact?

Is anybody listening? ●

In a broad sense, yes –

MapReduce

–

Intel TBB / Microsoft Task Parallel Library

–

MPI collectives? OpenMP loop directives?

–

DSLs like StreamIt?

–

Mattson et al book on Patterns, Our Pattern Library ...

●

But these cover a rather small set of patterns. Is that it?

Achieving Greater Impact ●

Look at Parallel Benchmarks? –

Splash, NAS PB, SPEC OMP, SPEC MPI, Parsec, Lonestar, Mediabench

–

Non-trivial to convince, since we rewrite the source, but greater credibility if we achieve it?

–

Do these exhibit skeletal structure? Lots of farms, bag-of-tasks, stencils, some simple D&C, some pipelines, lots of irregularity.

●

Demonstrate multi-layer performance portability

Current Work in Edinburgh

Current Work in Edinburgh ●

●

●

We are trying to exploit the “skeletons as providers of structural information” angle, to demonstrate skeleton-enabled performance optimisations. We plan to combine this work with that of our machine-learning-led autotuning group, to improve transparent performance portability. Initial case studies: a worklist skeleton (on NUMA transactional memory) and a stencil skeleton (exploiting OpenCL for GPUs).

Forget about parallelism

Autotuning – Basic Idea ●

●

Assumption: If a program will run for a very long time, or very many times, it is worth spending a long time optimising it. Given –

Source program S, including a number of tuning knobs (eg tiling controls, block sizes, loop reorderings, alternative algorithms ...);

– ●

A target machine M and compiler C

Find settings for each knob which optimise the performance of S when compiled by C for M.

Autotuning – Basic Idea

Source

Autotuner (M)

Tuned Source

Compiler M

Autotuning – Basic Idea ●

●

Principle: If a program will run for a very long time, or very many times, it is worth spending a long time optimising it. Given –

Source program S, including a number of tuning knobs (eg tiling controls, block sizes, loop reorderings, alternative algorithms ...);

– ●

A target machine M and compiler C

Find settings for each knob which optimise the performance of S when compiled by C for M.

Autotuning – Basic Idea ●

●

Principle: If a program will run for a very long time, or very many times, Where it is do worth spending a these come from ? long time optimising its compilation. Given –

Source program S, including a number of tuning knobs (eg tiling controls, block sizes, loop reorderings, alternative algorithms ...);

– ●

A target machine M and compiler C

Find settings for each knob which optimise the performance of S when compiled by C to M.

Autotuning – Basic Idea ●

●

Principle: If a program will run for a very long time, or very many times, Where it is do worth spending a these come from ? long time optimising its compilation. Given –

Source program S, including a number of tuning knobs (eg tiling controls, block sizes, loop reorderings,How alternative algorithms ...); do we search for these?

– ●

A target machine M and compiler C

Find settings for each knob which optimise the performance of S when compiled by C to M.

Simplistic Autotuning ●

●

Application programmer (or for a library, the expert library programmer) explicitly indicates the tuning knobs. Enumerate, compile and run all points in the program space implied by the tuning knobs, and pick the best.

●

Repeat every time the architecture changes.

●

This is what libraries like ATLAS and FFTW do.

●

But what if the search space gets too big? (some knobs may be numeric)

Avoiding the Search Space ●

One approach is for the programmer to embed heuristics which capture the right decisions explicitly within the source code: if (someSize > THRESHOLD) { techniqueA; } else { techniqueB; }

●

This is difficult, particularly if we need to capture relationships between tuning knobs, and heuristics are probably machine-specific.

Pruning the Search Space ●

An alternative is to try a “Machine Learning” approach, in which we try to learn (ie statistically correlate) the correct tuning decisions for a given C and M if (CONDITION TO BE LEARNED) { techniqueA; } else { techniqueB; }

●

Principle: source S will respond well to knob settings which produced good results for other previous programs which are “similar” to S.

Autotuning – Basic Idea

Source

Autotuner (M)

Tuned Source

Compiler M

Database Of Previous Programs

Pruning the Search Space ●

An alternative is to try a “Machine Learning” approach, in which we try to learn the correct tuning decisions if (CONDITION TO BE LEARNED) { How do we capture similarity? techniqueA; } else { techniqueB; }

●

Premise: program S will respond well to knob settings which produced good results for other previous programs which are “similar” to S.

Features ●

●

●

●

In Machine Learning terms, we have a classification task, requiring us to partition the set of programs (possibly + input/size) by responsiveness to tuning knob settings. We choose a set of “features” whose values will act as abstract representations of programs. Typically we will use a mixture of static and dynamic features, eg basic block size, branch complexity, data sizes, loop counts, cache behaviour.... Finding a good feature set is hard.

Machine Learning Autotuner

S

A A N N A A LL Y Y S S E E

(f1, f2, f3, … fn)

Feature Vector

A S S O C I A T E

DB

(k1, k2, … km)

Tuning Settings

S P E C I A L I S E

S'

The Box of Tricks ●

●

Various techniques, all of the form –

Learning phase: take a collection of programs and compile and run these at length on the target machine, gathering statistics relating features and tuning settings to quality of outcome. (Slow, but one-off and automated)

–

Application phase: take a new program P, deduce its feature vector, classify it against learned data and select tuning settings. (Fast!)

New machine? Learn again.....automated!

Success Stories ●

Rapidly Selecting Good Compiler Optimizations using Performance Counters, Cavazos, O'Boyle et al, CGO 2007. –

Sequential C programs from SPEC

–

Knobs: gcc flags

–

Features: various hardware performance counters (ie dynamic), cache hits, loop counts, branch predictions

●

17% improvement over “highest” opt. setting

Success Stories ●

Mapping Parallelism to Multi-cores: a Machine Learning Based Approach, Wang and O'Boyle, PPoPP09. –

OpenMP programs (parallel for) targeting Xeon/Cell multicore

–

Knobs: loop scheduling policy, #threads

–

Features: (Static) instruction type counts, Dynamic) profile counters as above

–

37% improvement over OpenMP default

Success Stories ●

A Case for Machine Learning to Optimize Multicore Performance. Ganapathi et al, HotPar09. –

Hand annotated stencil codes on multicore

–

Knobs: #threads, blocking, prefetching

–

Features: The usual suspects....

–

“up to” 18% improvement (run time) over expert

Now consider parallelism

Autotuning Parallel Programs ●

If we were to consider Machine Learning autotuning of general parallel programs there would be two big issues: –

How do we find appropriate tuning knobs?

–

How do we find a relevant features?

Skeletons to the Rescue (we hope)

Skeletons and Autotuning ●

How do we find appropriate tuning knobs? –

This becomes the expert programmer’s task. The tuning knobs are embedded in the implementation of the skeleton.

●

How do we find relevant features? –

This is still hard. The constrained nature of skeletons may make it easier, but the fact that we are now dealing with classes of program may make it harder.

Case Study: A Worklist Skeleton ●

Derived from transactional memory, irregular parallelism oriented benchmarks STAMP and Lonestar, (by PhD student Fabricio Goes) –

A bag of tasks (the worklist).

–

An irregular, dynamic graph of data points.

–

Execute tasks in parallel (any order), possibly generating new tasks, until all done

–

Task may update point and its neighbours.

–

Suitable for Transactional Memory: tasks may but typically don’t conflict, need to be careful

Case Study: A Worklist Skeleton ●

Tuning knobs (multicore implementation) –

Privatized Worklists with stealing (or not) (reduce contention, reduce abort ratio?)

–

Helper threads to enable prefetching (more productive use of cores once natural parallelism is exhausted)

–

Transactional granularity (how many tasks per transaction?)

–

Abort policy (can choose whether to retry with a different task)

Case Study: A Worklist Skeleton ●

Search space exploration –

16 core SMP, various STM systems

–

Four applications from the STAMP set

–

Distributed work pool is a good idea in general

–

Other optimizations vary in their effectiveness (both alone and in combination) from app to app

–

Next challenge will be to learn which features can determine the right choice

Case Study: A Stencil Skeleton ●

(PDRA Chris Fensch)

●

Applications in Simulation, Image Processing ... –

Multi-dimensional cartesian data space

–

Each point hosts the same typed fields

–

Use a “stencil” defining a fixed neighbourhood of “close” points which will contribute to local computations

–

Iteratively, and in lockstep, apply stencil ops at every point in the space

–

Terminate after some number of iterations, or upon reaching some condition, determined by combining state at each point.

Case Study: A Stencil Skeleton ●

Initial goal: allow targeting of both multicore and GPU architectures –

Using OpenCL as the implementation medium allows us to target both models: the skeleton hides the memory management code which complicates OpenCL

–

Using OpenCL for the app programmer’s interface (but only sequential pointwise code) allowed the OpenCL compiler to generate good SSE aware object code

Case Study: A Stencil Skeleton ●

Next challenge: tuning knobs –

Data layout (“array of structs”, “struct of arrays”, other communication/cache/GPU friendly layouts)

–

Tiling factors (how to distribute and traverse the implied iteration space)

–

Layers of parallelism (use/don't use multiple nodes, multiple cores, GPU)

–

Numbers of processes, threads

Summary ●

●

●

Any technology which makes a contribution to the provision of productive parallelism which is transparently performance portable across multiple layers can make a big impact. Skeletons, or at least skeleton principles, may be such a technology, but we need to push forward now, demonstrating applicability to real problems, or at least credible benchmarks. Slogan: “abstraction + specialisation = performance”

des documents recommandant

[image: alt]

Formal Semantics of DRMA-Style Programming in ... - Julien Tesson

2 An Overview of BSPlib and BSP-IMP. BSPlib [6] is a library for bulk synchronous parallel (BSP) programming. In the. BSP model, a computer is a set of uniform ...

[image: alt]

Design, Implementation and Applications of the SkeTo ... - Julien Tesson

A Short Introduction to. Constructive ... â€œMethods for calculating programs from their Yicho system ... http://research.nii.ac.jp/~hu/pub/teach/pm06/CA[1-4].pdf.

[image: alt]

Programming on Parallel Machines

in Silicon Valley, and has been a statistical consultant for firms such as the ... The main programming language used is C (C++ if you prefer), but some of the ...

[image: alt]

Constructive algorithmic in Coq - Julien Tesson

Algorithmic Skeletons. Roots. â–· Cole 1989. â–· Patterns of parallel programs. Data Parallelism. â–· Distributed data structures. â–· Collectives operations (map).

[image: alt]

MapReduce and Pregel limits in BigData processing - Julien Tesson

Mar 27, 2017 - Randomised keys: A solution for data skew in Join queries using. MapReduce. Tests of performance of Join and GroupBy-Join queries.

[image: alt]

A Skeletal-based Approach for the Development of ... - Julien Tesson

Dec 14, 2010 - Research Context. Extensible Machines ... Uncertain termination of long-running applications. Miss of ... computation intensive pieces of code â†’ heavy operations Combines MoLOToF with parallel algorithms families.

[image: alt]

A Multi-level Optimization Strategy to Improve the ... - Julien Tesson

Our computing plaforms are able to compute 8 floats of 32bits by AVX instruction. SISD add (not vectorized instructions) : SIMD add (vectorized instructions) :.

[image: alt]

Compilation and Real-Time Analysis of a ... - Julien Tesson

3 Models Definition. 4 Multicore Response Time Analysis of SDF Programs ... Lots of simple cores. Kalray MPPA (Massively Parallel Processor Array): http://www-verimag.imag.fr/TR/TR-2016-1.pdf memory access pattern memory ...

[image: alt]

High Level Transforms for SIMD and low-level ... - Julien Tesson

Benchmarks of Intel, IBM and ARM machines cache overflow area. 400. 800. 1200 ... to avoir memory access to temporary array (less stress on memory buses).

[image: alt]

Implementing Powerlists with Bulk Synchronous ... - Julien Tesson

Bulk Synchronous Parallel ML ... the parallel functional programming library Bulk Synchronous ... [2], [3], which should not only be based on an abstraction.

[image: alt]

Program Calculation in Coq - Julien Tesson

Program calculation, being a programming technique that derives programs ... Different from many existing systems, we show in this paper that Coq, a popular theorem Appendix A provides a very short introduction to Coq. Although little.

[image: alt]

Profiling High-Level Heterogeneous Programs - Julien Tesson

Cuda (NVidia). OpenCL (Consortium ... Kernel : small example using OpenCL targets. Hardware. GPU. Multicore. CPU. OpenCL. Cuda. Mathias Bourgoin.

[image: alt]

Automated generation of BSP Automata - Julien Tesson

BSP code (well structured). DSL for queries. â€¢ based on BSPRE. â€¢ computed by a BSPA. Limitations. â€¢ regular expressions expressiveness. â€¢ output is a boolean ...

[image: alt]

Real-Time Dense and Accurate Parallel Optical Flow ... - Julien Marzat

Real-Time Dense and Accurate Parallel Optical Flow using ... accuracy is hard to achieve with standard integrations. But an efficient implementation allows.

[image: alt]

skeletons in the cupboard - Hussonet

6 Albanese, Jay S., What Lockheed and La Cosa Nostra have in common, ... and obliged the companies to maintain strict accounting standards over their ... the Cold War, the Western world, and in particular the United States, had ... disaster because o

[image: alt]

Programming on Parallel Machines - Last modified

This book is often revised and updated, latest edition available at http://heather.cs.ucdavis.edu/ mat- ... ~matloff/158/PLN/ParProcBook.pdf, rather than to copy it.

[image: alt]

Enumerated BSP automata GaÃ©tan Hains GDR-GPL ... - Julien Tesson

Bulk-synchronous automata. Definition 2. BSP automaton A = ({Qi}iâˆˆ[p],Î£,{Î´i}iâˆˆ[p],{qi. 0. }iâˆˆ[p],{Fi}iâˆˆ[p],âˆ†) with. (Qi,Î£,Î´i,qi. 0. ,Fi.) a DFA, and âˆ† : Q â†’ Q is ...

[image: alt]

Automatic Software Verification of BSPlib-programs ... - Julien Tesson

Mar 20, 2017 - Background: Bulk synchronous parallel (2). â–» Invented in the 80's by Leslie Valiant, and several implementations exists, notably: BSPlib ...

[image: alt]

Proofs of pointer algorithms by inductive ... - Julien Tesson

May 15, 2012 - In LICS '02: Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science, pages 55â€“74, Washington, DC,. USA, 2002.

[image: alt]

Hybrid Bulk Synchronous Parallelism Library for ... - Julien Tesson

Dec 14, 2010 - BSML Library [gava:09] in C++. â€¢ Notion of Parallel vector. â€¢ Functional programming support. Boost.Phoenix and C++ lambda-function.

[image: alt]

Mechanised Semantics of BSP Routines with ... - Julien Tesson

BSP Programming. Semantics. Conclusion. Bridging Model: Bulk Synchronous Parallelism (BSP). The BSP computer. Defined by: p pairs CPU/memory.

[image: alt]

Profiling High Level Heterogeneous Programs - Using ... - Julien Tesson

Jan 24, 2017 - GPU. Multicore. CPU. OpenCL. Cuda. M. Bourgoin E. Chailloux A. ... A small example. CPU RAM. GPU1 RAM. GPU0 RAM. Example. l e t dev ...

[image: alt]

Verification of imperative BSP programs: application to ... - Julien Tesson

WHY: an intermediate language. For program verification (deductive) Useful in many calculations (FFT, n-body, graph algorithms etc.) F. Gava and J. Fortin ...

[image: alt]

Systematic Development of Correct Bulk Synchronous ... - Julien Tesson

5 Conclusions and Future Work. F. Loulergue. Systematic Development of Correct Bulk Synchronous Parallel Programs December 10, 2010 â€“ PDCAT. 2 / 26 ...

×
Report Skeletons and the Parallel Programming Challenge - Julien Tesson

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

