

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

Verification of imperative BSP programs: application to ... - Julien Tesson

WHY: an intermediate language. For program verification (deductive) Useful in many calculations (FFT, n-body, graph algorithms etc.) F. Gava and J. Fortin ...

 Télécharger le PDF

 2MB taille
 2 téléchargements
 294 vues

 commentaire

 Report

Introduction

BSP-Why

Examples

Conclusion

Verification of imperative BSP programs: application to cost and model-checking Frédéric Gava and Jean Fortin Laboratory of Algorithms, Complexity and Logic (LACL) University of Paris-East

F. Gava and J. Fortin — FraDeCopp 2012

1 / 45

Introduction

BSP-Why

Examples

Conclusion

Do you trust you programs ? Is there a bug ?

F. Gava and J. Fortin — FraDeCopp 2012

2 / 45

Introduction

BSP-Why

Examples

Conclusion

Introduction A need to prove parallel programs : cost of the crash of massively parallel computations more and more parallel programs

Additional difficulties : Communication procedures Synchronization mechanisms Interleaving of instructions

Use of Hoare semantics Annotated programs (verification a posteriori/deductive) partial correcteness other properties more automatic than Coq/Isabelle ? less difficult than Coq/Isabelle ?

Generation of proof obligations

F. Gava and J. Fortin — FraDeCopp 2012

3 / 45

Introduction

BSP-Why

Examples

Conclusion

Introduction A need to prove parallel programs : cost of the crash of massively parallel computations more and more parallel programs

Additional difficulties : Communication procedures Synchronization mechanisms Interleaving of instructions

Use of Hoare semantics Annotated programs (verification a posteriori/deductive) partial correcteness other properties more automatic than Coq/Isabelle ? less difficult than Coq/Isabelle ?

Generation of proof obligations

F. Gava and J. Fortin — FraDeCopp 2012

3 / 45

Introduction

BSP-Why

Examples

Conclusion

Introduction A need to prove parallel programs : cost of the crash of massively parallel computations more and more parallel programs

Additional difficulties : Communication procedures Synchronization mechanisms Interleaving of instructions

Use of Hoare semantics Annotated programs (verification a posteriori/deductive) partial correcteness other properties more automatic than Coq/Isabelle ? less difficult than Coq/Isabelle ?

Generation of proof obligations

F. Gava and J. Fortin — FraDeCopp 2012

3 / 45

Introduction

BSP-Why

Examples

Conclusion

Introduction A need to prove parallel programs : cost of the crash of massively parallel computations more and more parallel programs

Additional difficulties : Communication procedures Synchronization mechanisms Interleaving of instructions

Use of Hoare semantics Annotated programs (verification a posteriori/deductive) partial correcteness other properties more automatic than Coq/Isabelle ? less difficult than Coq/Isabelle ?

Generation of proof obligations

F. Gava and J. Fortin — FraDeCopp 2012

3 / 45

Introduction

BSP-Why

Examples

Conclusion

Introduction A need to prove parallel programs : cost of the crash of massively parallel computations more and more parallel programs

Additional difficulties : Communication procedures Synchronization mechanisms Interleaving of instructions

Use of Hoare semantics Annotated programs (verification a posteriori/deductive) partial correcteness other properties more automatic than Coq/Isabelle ? less difficult than Coq/Isabelle ?

Generation of proof obligations

F. Gava and J. Fortin — FraDeCopp 2012

3 / 45

Introduction

BSP-Why

Examples

Conclusion

BSPlib/PUB

Library for the BSP model: C Language Send/Receive routines DRMA routines

F. Gava and J. Fortin — FraDeCopp 2012

4 / 45

Introduction

BSP-Why

Examples

Conclusion

BSPlib/PUB

Library for the BSP model: C Language Send/Receive routines DRMA routines

F. Gava and J. Fortin — FraDeCopp 2012

4 / 45

Introduction

BSP-Why

Examples

Conclusion

BSPlib/PUB

Library for the BSP model: C Language Send/Receive routines DRMA routines

F. Gava and J. Fortin — FraDeCopp 2012

4 / 45

Introduction

BSP-Why

Examples

Conclusion

PUB Communications

Two kinds of communications: Message Passing (BSMP) void bsp_send(int dest,void∗ buffer, int size) t_bspmsg∗ bsp_findmsg(int proc_id,int index)

Remote Memory Access (DRMA) void bsp_push_reg (t_bsp∗ bsp, void∗ ident, int size) void bsp_get (t_bsp∗ bsp, int srcPID, void∗ src,int offset, void∗ dest, int nbytes)

Synchronisation : void bsp_sync(t_bsp∗ bsp)

F. Gava and J. Fortin — FraDeCopp 2012

5 / 45

Introduction

BSP-Why

Examples

Conclusion

PUB Communications

Two kinds of communications: Message Passing (BSMP) void bsp_send(int dest,void∗ buffer, int size) t_bspmsg∗ bsp_findmsg(int proc_id,int index)

Remote Memory Access (DRMA) void bsp_push_reg (t_bsp∗ bsp, void∗ ident, int size) void bsp_get (t_bsp∗ bsp, int srcPID, void∗ src,int offset, void∗ dest, int nbytes)

Synchronisation : void bsp_sync(t_bsp∗ bsp)

F. Gava and J. Fortin — FraDeCopp 2012

5 / 45

Introduction

BSP-Why

Examples

Conclusion

PUB Communications

Two kinds of communications: Message Passing (BSMP) void bsp_send(int dest,void∗ buffer, int size) t_bspmsg∗ bsp_findmsg(int proc_id,int index)

Remote Memory Access (DRMA) void bsp_push_reg (t_bsp∗ bsp, void∗ ident, int size) void bsp_get (t_bsp∗ bsp, int srcPID, void∗ src,int offset, void∗ dest, int nbytes)

Synchronisation : void bsp_sync(t_bsp∗ bsp)

F. Gava and J. Fortin — FraDeCopp 2012

5 / 45

Introduction

BSP-Why

Examples

Conclusion

PUB Communications

Two kinds of communications: Message Passing (BSMP) void bsp_send(int dest,void∗ buffer, int size) t_bspmsg∗ bsp_findmsg(int proc_id,int index)

Remote Memory Access (DRMA) void bsp_push_reg (t_bsp∗ bsp, void∗ ident, int size) void bsp_get (t_bsp∗ bsp, int srcPID, void∗ src,int offset, void∗ dest, int nbytes)

Synchronisation : void bsp_sync(t_bsp∗ bsp)

F. Gava and J. Fortin — FraDeCopp 2012

5 / 45

Introduction

BSP-Why

Examples

Conclusion

PUB Communications

Two kinds of communications: Message Passing (BSMP) void bsp_send(int dest,void∗ buffer, int size) t_bspmsg∗ bsp_findmsg(int proc_id,int index)

Remote Memory Access (DRMA) void bsp_push_reg (t_bsp∗ bsp, void∗ ident, int size) void bsp_get (t_bsp∗ bsp, int srcPID, void∗ src,int offset, void∗ dest, int nbytes)

Synchronisation : void bsp_sync(t_bsp∗ bsp)

F. Gava and J. Fortin — FraDeCopp 2012

5 / 45

Introduction

BSP-Why

Examples

Conclusion

PUB Communications

Two kinds of communications: Message Passing (BSMP) void bsp_send(int dest,void∗ buffer, int size) t_bspmsg∗ bsp_findmsg(int proc_id,int index)

Remote Memory Access (DRMA) void bsp_push_reg (t_bsp∗ bsp, void∗ ident, int size) void bsp_get (t_bsp∗ bsp, int srcPID, void∗ src,int offset, void∗ dest, int nbytes)

Synchronisation : void bsp_sync(t_bsp∗ bsp)

F. Gava and J. Fortin — FraDeCopp 2012

5 / 45

Introduction

BSP-Why

Examples

Conclusion

The WHY Language

WHY: an intermediate language

For program verification (deductive) Annotated programs (pre- post conditions) Several back-end provers (Coq, Alt-ergo, Simplify, Z3 . . .) need axiomatisation for set/list etc. ’invariant’ and ’variant’ for each loop need sometime ’ghost codes’ Provers can generate certificates (Isabelle/Coq)

F. Gava and J. Fortin — FraDeCopp 2012

6 / 45

Introduction

BSP-Why

Examples

Conclusion

The WHY Language

WHY: an intermediate language

For program verification (deductive) Annotated programs (pre- post conditions) Several back-end provers (Coq, Alt-ergo, Simplify, Z3 . . .) need axiomatisation for set/list etc. ’invariant’ and ’variant’ for each loop need sometime ’ghost codes’ Provers can generate certificates (Isabelle/Coq)

F. Gava and J. Fortin — FraDeCopp 2012

6 / 45

Introduction

BSP-Why

Examples

Conclusion

The WHY Language

WHY: an intermediate language

For program verification (deductive) Annotated programs (pre- post conditions) Several back-end provers (Coq, Alt-ergo, Simplify, Z3 . . .) need axiomatisation for set/list etc. ’invariant’ and ’variant’ for each loop need sometime ’ghost codes’ Provers can generate certificates (Isabelle/Coq)

F. Gava and J. Fortin — FraDeCopp 2012

6 / 45

Introduction

BSP-Why

Examples

Conclusion

The WHY Language

WHY: an intermediate language

For program verification (deductive) Annotated programs (pre- post conditions) Several back-end provers (Coq, Alt-ergo, Simplify, Z3 . . .) need axiomatisation for set/list etc. ’invariant’ and ’variant’ for each loop need sometime ’ghost codes’ Provers can generate certificates (Isabelle/Coq)

F. Gava and J. Fortin — FraDeCopp 2012

6 / 45

Introduction

BSP-Why

Examples

Conclusion

The WHY Language

WHY: an intermediate language

For program verification (deductive) Annotated programs (pre- post conditions) Several back-end provers (Coq, Alt-ergo, Simplify, Z3 . . .) need axiomatisation for set/list etc. ’invariant’ and ’variant’ for each loop need sometime ’ghost codes’ Provers can generate certificates (Isabelle/Coq)

F. Gava and J. Fortin — FraDeCopp 2012

6 / 45

Introduction

BSP-Why

Examples

Conclusion

The WHY Language

WHY: an intermediate language

For program verification (deductive) Annotated programs (pre- post conditions) Several back-end provers (Coq, Alt-ergo, Simplify, Z3 . . .) need axiomatisation for set/list etc. ’invariant’ and ’variant’ for each loop need sometime ’ghost codes’ Provers can generate certificates (Isabelle/Coq)

F. Gava and J. Fortin — FraDeCopp 2012

6 / 45

Introduction

BSP-Why

Examples

Conclusion

The WHY Language

WHY: an intermediate language

For program verification (deductive) Annotated programs (pre- post conditions) Several back-end provers (Coq, Alt-ergo, Simplify, Z3 . . .) need axiomatisation for set/list etc. ’invariant’ and ’variant’ for each loop need sometime ’ghost codes’ Provers can generate certificates (Isabelle/Coq)

F. Gava and J. Fortin — FraDeCopp 2012

6 / 45

Introduction

BSP-Why

Examples

Conclusion

The WHY tools

JML-Annotated Java program

Annotated C program

Frama-C

Why program

Krakatoa

Why

Interactive provers (Coq, PVS, Isabelle/HOL, etc.)

Verification Conditions

F. Gava and J. Fortin — FraDeCopp 2012

Automatic provers (Z3, Simplify, Yices, Alt-Ergo, CVC3, etc.)

7 / 45

Introduction

BSP-Why

Examples

Conclusion

Language definition

BSP-WHY is extended from WHY

Additional instructions for parallel operations Additional notations in assertions about parallelism Automatic transformation to Why code (sequentialisation)

F. Gava and J. Fortin — FraDeCopp 2012

8 / 45

Introduction

BSP-Why

Examples

Conclusion

Language definition

BSPWhy

::= Why |

sync

synchronisation

|

push(x)

Register x for global access

|

put(e, x, y) Distant writing

|

send(x, e)

Message passing

now a ’Parameter’ with a ’sync’ side-effect can be used instead of a sync (MPI collective operations)

F. Gava and J. Fortin — FraDeCopp 2012

9 / 45

Introduction

BSP-Why

Examples

Conclusion

Logic extensions

x is used to represent the value of x on the current processor x < i > is used to represent the value of x on the processor i < x > is used to represent the parallel variable x as an array t => is a syntaxic sugar to ∀i. proc(i) → t[i] = f (i)

F. Gava and J. Fortin — FraDeCopp 2012

10 / 45

Introduction

BSP-Why

Examples

Conclusion

Trying to prove its correctness BSP-WHY, an extension of WHY for BSP algorithms: JML-Annotated BSP Java program

Annotated BSP C program

BSP-Why program

Frama-C+lib

BSP-Why

Krakatoa+lib

Why program

Why

Interactive provers (Coq, PVS, Isabelle/HOL, etc.)

Verification Conditions

F. Gava and J. Fortin — FraDeCopp 2012

Automatic provers (Z3, Simplify, Yices, Alt-Ergo, CVC3, etc.)

11 / 45

Introduction

BSP-Why

Examples

Conclusion

General idea of the transformation BSP-WHY ⇒ WHY

Simulation of the parallel execution by a sequential execution

P1

P2

P3

SYNC

F. Gava and J. Fortin — FraDeCopp 2012

SYNC

12 / 45

Introduction

BSP-Why

Examples

Conclusion

Decomposition into blocks (1/3)

We extract the biggest blocks of code without synchronization:

F. Gava and J. Fortin — FraDeCopp 2012

13 / 45

Introduction

BSP-Why

Examples

Conclusion

Decomposition into blocks (2/3)

Each block is transformed into a for loop:

F. Gava and J. Fortin — FraDeCopp 2012

14 / 45

Introduction

BSP-Why

Examples

Conclusion

Decomposition into blocks (3/3)

Need to check that the sync instruction match: no code such as if pid=0 then sync else p or even if pid=0 then p1;sync else p2;sync

F. Gava and J. Fortin — FraDeCopp 2012

15 / 45

Introduction

BSP-Why

Examples

Conclusion

Decomposition into blocks (3/3)

Need to check that the sync instruction match: no code such as if pid=0 then sync else p or even if pid=0 then p1;sync else p2;sync

F. Gava and J. Fortin — FraDeCopp 2012

15 / 45

Introduction

BSP-Why

Examples

Conclusion

Memory management

p processors → 1 processor : need to simulate p memories in one. variable x → p-array x Special arrays to store communications

F. Gava and J. Fortin — FraDeCopp 2012

16 / 45

Introduction

BSP-Why

Examples

Conclusion

Transformation of variables

BSP-WHY term

WHY term

x x

x[i] x x[j]

F. Gava and J. Fortin — FraDeCopp 2012

17 / 45

Introduction

BSP-Why

Examples

Conclusion

Variable not transformed into arrays

Some special cases : A variable which lives only in a sequential block A variable used with remote access communications

F. Gava and J. Fortin — FraDeCopp 2012

18 / 45

Introduction

BSP-Why

Examples

Conclusion

Send communications

Communications are defined in a WHY prelude file: Messages are stored in lists The bsp_send function is defined as a parameter Send communications are done with a predicate The synchronisation calls each communication predicate

F. Gava and J. Fortin — FraDeCopp 2012

19 / 45

Introduction

BSP-Why

Examples

Conclusion

Send communications

Communications are defined in a WHY prelude file: Messages are stored in lists The bsp_send function is defined as a parameter Send communications are done with a predicate The synchronisation calls each communication predicate

F. Gava and J. Fortin — FraDeCopp 2012

19 / 45

Introduction

BSP-Why

Examples

Conclusion

Send communications

Communications are defined in a WHY prelude file: Messages are stored in lists The bsp_send function is defined as a parameter Send communications are done with a predicate The synchronisation calls each communication predicate

F. Gava and J. Fortin — FraDeCopp 2012

19 / 45

Introduction

BSP-Why

Examples

Conclusion

Send communications

Communications are defined in a WHY prelude file: Messages are stored in lists The bsp_send function is defined as a parameter Send communications are done with a predicate The synchronisation calls each communication predicate

F. Gava and J. Fortin — FraDeCopp 2012

19 / 45

Introduction

BSP-Why

Examples

Conclusion

Remote Memory Access: put/get operations (1/2)

Memory model more complex A table of variables is stored An association table keeps records of push associations Queues for push, pop, put and get operations

F. Gava and J. Fortin — FraDeCopp 2012

20 / 45

Introduction

BSP-Why

Examples

Conclusion

Remote Memory Access: put/get operations (1/2)

Memory model more complex A table of variables is stored An association table keeps records of push associations Queues for push, pop, put and get operations

F. Gava and J. Fortin — FraDeCopp 2012

20 / 45

Introduction

BSP-Why

Examples

Conclusion

Remote Memory Access: put/get operations (1/2)

Memory model more complex A table of variables is stored An association table keeps records of push associations Queues for push, pop, put and get operations

F. Gava and J. Fortin — FraDeCopp 2012

20 / 45

Introduction

BSP-Why

Examples

Conclusion

Remote Memory Access: put/get operations (1/2)

Memory model more complex A table of variables is stored An association table keeps records of push associations Queues for push, pop, put and get operations

F. Gava and J. Fortin — FraDeCopp 2012

20 / 45

Introduction

BSP-Why

Examples

Conclusion

Remote Memory Access: put/get operations (2/2)

The association table is needed : Proc 1

Proc 2

Push(x) Push(y) sync

Push(y) Push(x) sync P1 P2 x y y x

F. Gava and J. Fortin — FraDeCopp 2012

21 / 45

Introduction

BSP-Why

Examples

Conclusion

Remote Memory Access: put/get operations (2/2)

The association table is needed : Proc 1

Proc 2

Push(x) Push(y) sync

Push(y) Push(x) sync P1 P2 x y y x

F. Gava and J. Fortin — FraDeCopp 2012

21 / 45

Introduction

BSP-Why

Examples

Conclusion

Subgroup synchronization

S = {0,1,2,3,4} S1 = {0,1} S2 = {2,3,4}

F. Gava and J. Fortin — FraDeCopp 2012

22 / 45

Introduction

BSP-Why

Examples

Conclusion

Subgroup synchronization : example in C/PUB t_bsp subbsp; int part[2]; part[0] = 2; part[1] = bsp_nprocs(bsp); bsp_partition (bsp, &subbsp, 2, part); if(bsp_pid()0: tosend=local_successor(known,todo,pastsend) exchange(total,todo,known,tosend,pastsend) return known

F. Gava and J. Fortin — FraDeCopp 2012

36 / 45

Introduction

BSP-Why

Examples

Conclusion

local computations

1 2 3 4 5 6 7 8 9 10 11

def local_successors (known, todo, pastsend): while todo: s=todo.pop() known.add(s) for new_s in succ(s)−known−pastsend: tgt =cpu(new_s) if tgt ==my_pid: todo.add(new_s) else: tosend[tgt].add(new_s) return tosend

F. Gava and J. Fortin — FraDeCopp 2012

37 / 45

Introduction

BSP-Why

Examples

Conclusion

Exchange of data and new todo/total/pastsend

1 2 3 4 5

def exchange (total, todo, known, tosend, pastsend) : total , received=BSP_EXCHANGE(tosend) todo=received−known for i in xrange(0,nprocs) pastsend.update(tosend[i])

F. Gava and J. Fortin — FraDeCopp 2012

38 / 45

Introduction

BSP-Why

Examples

Conclusion

local computations (only pre- and post-conditions)

1 2 3 4 5 6 7 8 9 10 11 12

local_successors: known: state set ref → todo:state set ref → pastsend: state set ref → { (known ⊆ StSpace) and (todo ⊆ StSpace) and (pastsend ⊆ StSpace) and (known ∩ todo)=∅ and (∀ s:state. s ∈(known ∪ todo) → cpu(s)=my_pid) and (∀ s:state. s ∈past_send → cpu(s)6= my_pid) } state set fparray writes known, todo { (todo=∅) S and (known ⊆ StSpace) and (∀ s:state. s ∈known → cpu(s)=my_pid) and ((result) ⊆ StSpace) and ((result ∩ pastsend)=∅) and (∀ i:int. isproc(i) → ∀s:state. s ∈result → cpu(s)6= my_pid) and ((known@ ∪ todo@) ⊆ known) S and (∀ s:state. s ∈known → succ(s) ⊆ (known ∪ (result) ∪ pastsend)) S and (todo@=∅ → (result)=∅) }

F. Gava and J. Fortin — FraDeCopp 2012

39 / 45

Introduction

BSP-Why

Examples

Conclusion

Main BSP loop 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

while total>0 do { S S invariant S() ∪ S() ⊆ StSpace and (() ∩ ())=∅ and GoodPar() and GoodPart() and (∀ i,j:int. isproc(i) S → isproc(j) → total = total) and total S ≥ | ()| S and s0 ∈(() S ∪ ()) S S and S (∀ e:state. e ∈ () → succ(e) ⊆ (() ∪ ())) and () ⊆ StSpace and (∀ e ∈pastsend → cpu(e)6= i) S i:int. isproc(i) → ∀e:state. S S and () ⊆ (() ∪ ()) S variant pair(paccess(total,0),| S \ (known) |) for lexico_order } let tosend=(local_successors known todo pastsend) in exchange todo total !known !tosend done; !known S {StSpace= () and GoodPart()}

F. Gava and J. Fortin — FraDeCopp 2012

40 / 45

Now using BSP-WHY !

Introduction

BSP-Why

Examples

Conclusion

Conclusion

BSP-WHY is an extension of the WHY language for BSP

programs BSP-WHY programs are transformed into WHY programs

The proof obligations are generated by WHY Examples: cost or BSP algorithms for state space computation

F. Gava and J. Fortin — FraDeCopp 2012

42 / 45

Introduction

BSP-Why

Examples

Conclusion

Conclusion

BSP-WHY is an extension of the WHY language for BSP

programs BSP-WHY programs are transformed into WHY programs

The proof obligations are generated by WHY Examples: cost or BSP algorithms for state space computation

F. Gava and J. Fortin — FraDeCopp 2012

42 / 45

Introduction

BSP-Why

Examples

Conclusion

Conclusion

BSP-WHY is an extension of the WHY language for BSP

programs BSP-WHY programs are transformed into WHY programs

The proof obligations are generated by WHY Examples: cost or BSP algorithms for state space computation

F. Gava and J. Fortin — FraDeCopp 2012

42 / 45

Introduction

BSP-Why

Examples

Conclusion

Conclusion

BSP-WHY is an extension of the WHY language for BSP

programs BSP-WHY programs are transformed into WHY programs

The proof obligations are generated by WHY Examples: cost or BSP algorithms for state space computation

F. Gava and J. Fortin — FraDeCopp 2012

42 / 45

Introduction

BSP-Why

Examples

Conclusion

Perspectives (ongoing work)

Use BSP-WHY for our own BSP algoriths for checking security protocols Semantics and proof of the transformation of BSP-WHY using Coq Verified BSP implementation of data-parallel skeletons Proof of a subset synchronisation example Use this work to prove MPI programs with only global operations

F. Gava and J. Fortin — FraDeCopp 2012

43 / 45

Introduction

BSP-Why

Examples

Conclusion

Perspectives (ongoing work)

Use BSP-WHY for our own BSP algoriths for checking security protocols Semantics and proof of the transformation of BSP-WHY using Coq Verified BSP implementation of data-parallel skeletons Proof of a subset synchronisation example Use this work to prove MPI programs with only global operations

F. Gava and J. Fortin — FraDeCopp 2012

43 / 45

Introduction

BSP-Why

Examples

Conclusion

Perspectives (ongoing work)

Use BSP-WHY for our own BSP algoriths for checking security protocols Semantics and proof of the transformation of BSP-WHY using Coq Verified BSP implementation of data-parallel skeletons Proof of a subset synchronisation example Use this work to prove MPI programs with only global operations

F. Gava and J. Fortin — FraDeCopp 2012

43 / 45

Introduction

BSP-Why

Examples

Conclusion

Perspectives (ongoing work)

Use BSP-WHY for our own BSP algoriths for checking security protocols Semantics and proof of the transformation of BSP-WHY using Coq Verified BSP implementation of data-parallel skeletons Proof of a subset synchronisation example Use this work to prove MPI programs with only global operations

F. Gava and J. Fortin — FraDeCopp 2012

43 / 45

Introduction

BSP-Why

Examples

Conclusion

Perspectives (ongoing work)

Use BSP-WHY for our own BSP algoriths for checking security protocols Semantics and proof of the transformation of BSP-WHY using Coq Verified BSP implementation of data-parallel skeletons Proof of a subset synchronisation example Use this work to prove MPI programs with only global operations

F. Gava and J. Fortin — FraDeCopp 2012

43 / 45

Introduction

BSP-Why

Examples

Conclusion

Perspectives (future work)

The aim is to generate BSP-WHY code from a BSP/MPI-C program Use of Frama-C with the Jessie plugin a true tool for costing analaysis LTL/CTL* machine-checked model checking algorithms P adding tactics and theories for helping provers (pi=0)

F. Gava and J. Fortin — FraDeCopp 2012

44 / 45

Introduction

BSP-Why

Examples

Conclusion

Perspectives (future work)

The aim is to generate BSP-WHY code from a BSP/MPI-C program Use of Frama-C with the Jessie plugin a true tool for costing analaysis LTL/CTL* machine-checked model checking algorithms P adding tactics and theories for helping provers (pi=0)

F. Gava and J. Fortin — FraDeCopp 2012

44 / 45

Introduction

BSP-Why

Examples

Conclusion

Perspectives (future work)

The aim is to generate BSP-WHY code from a BSP/MPI-C program Use of Frama-C with the Jessie plugin a true tool for costing analaysis LTL/CTL* machine-checked model checking algorithms P adding tactics and theories for helping provers (pi=0)

F. Gava and J. Fortin — FraDeCopp 2012

44 / 45

Introduction

BSP-Why

Examples

Conclusion

Perspectives (future work)

The aim is to generate BSP-WHY code from a BSP/MPI-C program Use of Frama-C with the Jessie plugin a true tool for costing analaysis LTL/CTL* machine-checked model checking algorithms P adding tactics and theories for helping provers (pi=0)

F. Gava and J. Fortin — FraDeCopp 2012

44 / 45

Introduction

BSP-Why

Examples

Conclusion

Perspectives (future work)

The aim is to generate BSP-WHY code from a BSP/MPI-C program Use of Frama-C with the Jessie plugin a true tool for costing analaysis LTL/CTL* machine-checked model checking algorithms P adding tactics and theories for helping provers (pi=0)

F. Gava and J. Fortin — FraDeCopp 2012

44 / 45

Merci !

des documents recommandant

[image: alt]

Automatic Cost Analysis for Imperative BSP programs - Julien Tesson

2/21. Bulk Synchronous Parallel (1). â–» Bulk Synchronous Parallel (BSP): simple but powerful model for semi-synchronous data-parallelism. â–» BSP computer: ...

[image: alt]

Automatic Software Verification of BSPlib-programs ... - Julien Tesson

Mar 20, 2017 - Background: Bulk synchronous parallel (2). â–» Invented in the 80's by Leslie Valiant, and several implementations exists, notably: BSPlib ...

[image: alt]

Automated generation of BSP Automata - Julien Tesson

BSP code (well structured). DSL for queries. â€¢ based on BSPRE. â€¢ computed by a BSPA. Limitations. â€¢ regular expressions expressiveness. â€¢ output is a boolean ...

[image: alt]

Mechanised Semantics of BSP Routines with ... - Julien Tesson

BSP Programming. Semantics. Conclusion. Bridging Model: Bulk Synchronous Parallelism (BSP). The BSP computer. Defined by: p pairs CPU/memory.

[image: alt]

Profiling High-Level Heterogeneous Programs - Julien Tesson

Cuda (NVidia). OpenCL (Consortium ... Kernel : small example using OpenCL targets. Hardware. GPU. Multicore. CPU. OpenCL. Cuda. Mathias Bourgoin.

[image: alt]

let@token Verification of @let@token Concurrent ... - Julien Tesson

Oct 11, 2017 - proof of absence of arithmetic overflow, invalid operation, illegal memory access, etc. very common pattern in control-command software.

[image: alt]

Active objects for BSP (Work in Progress) - Julien Tesson

Oct 11, 2017 - 2. Context. 1st year industrial PhD as French CIFRE contract between Huawei and I3S. Company ... Bulk Synchronous Parallel. â–« BSP active ...

[image: alt]

Enumerated BSP automata GaÃ©tan Hains GDR-GPL ... - Julien Tesson

Bulk-synchronous automata. Definition 2. BSP automaton A = ({Qi}iâˆˆ[p],Î£,{Î´i}iâˆˆ[p],{qi. 0. }iâˆˆ[p],{Fi}iâˆˆ[p],âˆ†) with. (Qi,Î£,Î´i,qi. 0. ,Fi.) a DFA, and âˆ† : Q â†’ Q is ...

[image: alt]

Profiling High Level Heterogeneous Programs - Using ... - Julien Tesson

Jan 24, 2017 - GPU. Multicore. CPU. OpenCL. Cuda. M. Bourgoin E. Chailloux A. ... A small example. CPU RAM. GPU1 RAM. GPU0 RAM. Example. l e t dev ...

[image: alt]

A BSP algorithm for the state space construction of ... - Julien Tesson

Python ? Are you serious ? Advantages of Python: untyped and interpreted many efficient ... Do you truth me ? ... each processor i computes succ(s) iff cpu(s) = i.

[image: alt]

A Multi-level Optimization Strategy to Improve the ... - Julien Tesson

Our computing plaforms are able to compute 8 floats of 32bits by AVX instruction. SISD add (not vectorized instructions) : SIMD add (vectorized instructions) :.

[image: alt]

Constructive algorithmic in Coq - Julien Tesson

Algorithmic Skeletons. Roots. â–· Cole 1989. â–· Patterns of parallel programs. Data Parallelism. â–· Distributed data structures. â–· Collectives operations (map).

[image: alt]

Proofs of pointer algorithms by inductive ... - Julien Tesson

May 15, 2012 - In LICS '02: Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science, pages 55â€“74, Washington, DC,. USA, 2002.

[image: alt]

A Skeletal-based Approach for the Development of ... - Julien Tesson

Dec 14, 2010 - Research Context. Extensible Machines ... Uncertain termination of long-running applications. Miss of ... computation intensive pieces of code â†’ heavy operations Combines MoLOToF with parallel algorithms families.

[image: alt]

Systematic Development of Correct Bulk Synchronous ... - Julien Tesson

5 Conclusions and Future Work. F. Loulergue. Systematic Development of Correct Bulk Synchronous Parallel Programs December 10, 2010 â€“ PDCAT. 2 / 26 ...

[image: alt]

Design, Implementation and Applications of the SkeTo ... - Julien Tesson

A Short Introduction to. Constructive ... â€œMethods for calculating programs from their Yicho system ... http://research.nii.ac.jp/~hu/pub/teach/pm06/CA[1-4].pdf.

[image: alt]

Implementing Powerlists with Bulk Synchronous ... - Julien Tesson

Bulk Synchronous Parallel ML ... the parallel functional programming library Bulk Synchronous ... [2], [3], which should not only be based on an abstraction.

[image: alt]

Program Calculation in Coq - Julien Tesson

Program calculation, being a programming technique that derives programs ... Different from many existing systems, we show in this paper that Coq, a popular theorem Appendix A provides a very short introduction to Coq. Although little.

[image: alt]

Remarks on cost analysis for patterns of parallelism - Julien Tesson

May 15, 2012 - Research programme. Preliminary ... Research programme. Research ... Develop an algorithm for cost-driven optimal refinement search. Vladimir The functor MÎ¸ = Î¸Ã—(H â†’ cost) with pointwise operations is a ... application.

[image: alt]

Compilation and Real-Time Analysis of a ... - Julien Tesson

3 Models Definition. 4 Multicore Response Time Analysis of SDF Programs ... Lots of simple cores. Kalray MPPA (Massively Parallel Processor Array): http://www-verimag.imag.fr/TR/TR-2016-1.pdf memory access pattern memory ...

[image: alt]

Formal Semantics of DRMA-Style Programming in ... - Julien Tesson

2 An Overview of BSPlib and BSP-IMP. BSPlib [6] is a library for bulk synchronous parallel (BSP) programming. In the. BSP model, a computer is a set of uniform ...

[image: alt]

From Concurrent Programs to Simulating Sequential Programs

Frama-C. Invited Tutorial Paper. In: TAP, LNCS 7942, Springer, pp. 168â€“177, doi:10.1007/978- ... In J.-P. Finance, editor: Fundamental Approaches to Software ...

[image: alt]

Systematic Development of Correct Bulk Synchronous ... - Julien Tesson

Bulk Synchronous Parallelism (BSP) is a model of computation which offers a high ... to low level BSP parallel programs; (2) we develop a set of useful theories ...

[image: alt]

Instrumentation of Annotated C Programs for Test ... - Julien Signoles

and before providing all loop invariants, contracts of called functions etc. ... The status can indicate that the annotation is valid, valid under conditions, invalid or ... constraints, and is complete in the following sense: when the tool manages t

×
Report Verification of imperative BSP programs: application to ... - Julien Tesson

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

