

[image: PDFHALL.COM]

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

Enumerated BSP automata GaÃ©tan Hains GDR-GPL ... - Julien Tesson

Bulk-synchronous automata. Definition 2. BSP automaton A = ({Qi}iâˆˆ[p],Î£,{Î´i}iâˆˆ[p],{qi. 0. }iâˆˆ[p],{Fi}iâˆˆ[p],âˆ†) with. (Qi,Î£,Î´i,qi. 0. ,Fi.) a DFA, and âˆ† : Q â†’ Q is ...

 Télécharger le PDF

 580KB taille
 1 téléchargements
 59 vues

 commentaire

 Report

Enumerated BSP automata Gaétan Hains Huawei France R&D Center (FRC)

GDR-GPL/LAMHA, Paris, Novembre 2015

1

• BSP automata are finitely-defined systems, but • finite alphabet → regular alphabet ... • two-level nature of BSP computation 1. BSP words and automata 2. Sequentialization and parallelization 3. BSP regular expressions 4. Minimization and cost model 5. Parallel acceleration 6. Intensional BSP automata 2

3

Bulk-synchronous words and languages

Definition 1. Elements of (Σ∗)p are called word-vectors. A BSP word over Σ is a sequence of word-vectors i.e. a sequence of ((Σ∗)p)∗. A BSP language over Σ is a set of BSP words over Σ.

4

Figure 1:

A BSP superstep

5

Bulk-synchronous automata ~ = ({Qi}i∈[p], Σ, {δ i}i∈[p], {q i }i∈[p], {F i}i∈[p], ∆) with Definition 2. BSP automaton A 0 ~ → Q ~ is called the synchronization function where (Qi, Σ, δ i, q0i , F i) a DFA, and ∆ : Q ~ = (Q0 × ... × Q(p−1)) is the set of global states. Q 1. If the sequence of word vectors is empty, stop; otherwise continue. 2. If < w0, . . . , wp−1 > is the first word vector. Local automaton i applies wi to its initial state and transition function to reach some state q i, not necessarily an accepting. 3. The synchronization function maps ∆ :< q 0, . . . , q p−1 >→< q 00, . . . , q 0p−1 >. 4. If there are no more word vectors, and ∀i. q 0i ∈ F i, the BSP word is accepted. 5. If there are no more word vectors, and ∃i. q 0i 6∈ F i, the BSP word is rejected. 6. If there are more word vectors, control returns to step 2. but with local automaton i in state q 0i, for every location i. Proposition 1. A BSP automaton is equivalent to a deterministic automaton over (the infinite alphabet of) word-vectors. 6

Figure 2:

A BSP automaton

7

Non-determinism and empty transitions

Definition 3. A non-deterministic BSP automaton (NBSPA) is a BSP automaton whose local automata are of type Q × Σ → P(Q) ~ → P(Q). ~ and whose synchronization function ∆ : Q Definition 4. A non-deterministic BSP automaton with empty transitions (-NBSPA) is a NBSPA with local -NFA . Proposition 2. The language of a NBSPA can be accepted by a deterministic BSP automaton. Proposition 3. The language of an -NBSPA can be recognized by a NBSPA. 8

Figure 3:

An -NBSPA

9

Sequentialization

Definition 5. Word vectors sequentialization, add locations Seq : (Σ∗)p → (Σ × [p])∗ BSP words, add semicolons for barriers: Seq() = Seq(~v1 . . . ~vn) = Seq(~v1); . . . ; Seq(~vn); NOTE: ~ =< , . . . , >6= Seq < , . . . , >= (;) (one barrier) Proposition 4. ∀ BSP automaton A, ∃ DFA Seq(A) on (Σ × [p]) ∪ {; } such that Seq(L(A)) = L(Seq(A)). 10

BSP element: type −→ local / sequential element @i : Σ∗ −→ @i a : Σ∗ −→ (a, i) @i abaa : Σ∗ −→ (a, i)(b, i)(a, i)(a, i) Seq ~ =< , , , >: (Σ∗)p −→ Seq ~v1 =< aba, b, bbb, a >: (Σ∗)p −→ (a, 0)(b, 0)(a, 0)(b, 1)(b, 2)(b, 2)(b, 2)(a, 3) Seq ~v2 =< a, , bbb, >: (Σ∗)p −→ (a, 0)(b, 2)(b, 2)(b, 2) Seq ~ =< , , , >: (Σ∗)p −→ Seq : ((Σ∗)p)∗ −→ Seq ~ =< , , , >: ((Σ∗)p)∗ −→ (;) = ; Seq ~v2 ~ : ((Σ∗)p)∗ −→ (a, 0)(b, 2)(b, 2)(b, 2); ; Seq ~ ~v2 : ((Σ∗)p)∗ −→ ; (a, 0)(b, 2)(b, 2)(b, 2); Seq < , a, , a >< b, b, b, b >: ((Σ∗)p)∗ −→ (a, 1)(a, 3); (b, 0)(b, 1)(b, 2)(b, 3);

11

Parallelization Lemma 1. Parallelization is the left-inverse of sequentialization on word-vectors (Σ∗)p: Par(Seq(~v)) = ~v . • To parallelize localized letters Par : (Σ × [p]) → (Σ∗)p. • To parallelize semicolon-free words Par : (Σ × [p])∗ → (Σ∗)p. • To parallelize localized words with semicolons Par : ((Σ × [p]) ∪ {; })∗ → ((Σ∗)p)∗. local / sequential element: type −→ vector/BSP element: type

Par < , a, , >: (Σ∗)p (a, 1) : Σ × [p] −→ Par < , , , >: (Σ∗)p : (Σ × [p])∗ −→ Par < , aa, , b >: (Σ∗)p (a, 1)(b, 3)(a, 1) : (Σ × [p])∗ −→ Par < aba, b, bbb, a >: (Σ∗)p (a, 0)(b, 0)(a, 0)(b, 1)(b, 2)(b, 2)(b, 2)(a, 3) −→ Par < ab, , b, a >< a, b, bb, >: ((Σ∗)p)∗ (a, 0)(b, 0)(b, 2)(a, 3); (a, 0)(b, 1)(b, 2)(b, 2); −→ 12

Definition 6. Σp; = (((Σ × [p])∗);) Σ∗p; = sequential localized words, without non-empty semicolonfree words. Definition 7. For w ∈ ((Σ×[p])∗)∪{; }, w0 over-sychronizes w (w ≤; w0) if w0 is w with interleaved semicolons. Lift the same definition to languages and automata. Theorem 1. ∀ automaton A on (Σ×[p])∪{; } ∃ DFA A0 ≥; A, such that L(Par(A)) = Par(L(A0)).

13

Bulk-synchronous regular expressions

A BSP regular expression is an expression R from the following grammar: R ::= ∅ | |< r0, . . . , rp−1 >| R; R | R∗ | R + R where ri is any (scalar) regular expression. R L(R) ∅ {} {} < r0, . . . , rp−1 > L(r0) × . . . × L(rp−1) R1; R2 L(R1)L(R2) R∗ L(R)∗ R1 + R2 L(R1) ∪ L(R2) 14

Theorem 2. For R ∈ BSPRE ∃ a BSP automaton AR such that L(AR) = L(R). Theorem 3. For A a BSP automaton ∃ RA ∈ BSPRE such that L(RA) = L(A).

15

Minimization

Proposition 5. If A is a deterministic BSP automaton on Σ then there exists a sequential automaton Min(Seq(A)) that accepts the same Seq(L(A)) and is of minimal size.

16

Figure 4:

~a Automaton A

17

Figure 5:

Locally minimal automaton Min(Aa)

18

Figure 6:

~a Sequential minimization of BSP automaton A

19

Cost-model

Definition 8. A factorization function on Σ words is a function Φ : Σ∗ → (Σ+)∗ such that Φ() = |w| > 0 ⇒ |Φ(w)| > 0 Φ(w) = w1, w2 . . . , wn ⇒ w1w2 . . . wn = w Definition 9. Given a factorization function Φ on Σ words, a distribution function based on Φ is a DΦ : Σ∗ → (Σp;)∗ such that DΦ() = Φ(w) = w1, w2 . . . , wn ⇒ DΦ(w) = w10 ; w20 ; . . . wn0 ; wt = a1 . . . ak ⇒ wt0 = (a1, i1) . . . (ak , ik) i1, . . . , ik ∈ [p] 20

Definition 10. Let ~v ∈ (Σ∗)p be a word vector. Its BSP cost i cost(~v) = maxi v is the length of its longest element. Define also l ∈ N+, the barrier synchronization cost constant. For a BSP word w = ~v1 . . . ~vS ∈ ((Σ∗)p)∗, its BSP cost is S cost(~ cost(w) = ΣS (cost(~ v) + l) = Sl + Σ vt). t t=1 t=1

Definition 11. For a given distribution function DΦ of factorization Φ, the BSP cost of a sequential word w ∈ Σ∗ with respect to DΦ is defined as the BSP cost of the parallelization of its distribution: costDΦ (w) = cost(Par(DΦ(w)))

21

Problem 1. BSP-PARALLELIZE-WORDWISE Input: A regular language L given by a regular expression r or DFA A. Goal: Find a distribution DΦ and BSP automaton AD such that L(A) = Par(DΦ(L)) and |AD | ∈ O(|A|). Subject to: ∀w ∈ Σ∗. costDΦ (w) is minimal over {(Φ, DΦ, AD) | L(A) = Par(DΦ(L))}.

22

Problem 2. BSP-PARALLELIZE Input: A regular language L given by a regular expression or DFA. Goal: Find a distribution DΦ and BSP automaton AD such that L(A) = Par(DΦ(L)) and |AD | ∈ O(|A|). Subject to: TDΦ (n) = max{costDΦ (w) | |w| = n} is minimal over {(Φ, DΦ, AD) | L(A) = Par(DΦ(L))}, for all n ≥ 0.

23

Parallel acceleration

Definition 12. Let L be a regular language and (Φ, DΦ, AD) a factorization, distribution and BSP automaton for L i.e. Par(DΦ(L)). The parallel speedup obtained by (Φ, DΦ, AD) on a given word size n is the ratio speedup(Φ, DΦ, AD , n) = min{n/costDΦ (w) | |w| = n} L1 = L(a∗), L2 = L(a∗b∗), L3 = L((a + b)∗bbb(a + b)∗) Parallel recognition of L1, L2, L3 ... Problem 3. OPEN PROBLEM: does every instance of BSPPARALLELIZE have a one-superstep solution ?

24

Answer "yes" if the number of states in the BSP automaton solution allowed to grow exponentially. Construction for showing this is very different from that of our above examples. Proposition 6. Every regular language L of regular expression r has a one-superstep parallelization (Φ1, D÷p, A) that can be constructed in time exponential in |r| and such that |A| is also exponential in |r|.

25

Intensional notations for BSP automata

Write locations numbers i ∈ [p] in binary. Encode sets of locations with binary regular expressions. e.g. (0 + 1)∗1 = odd-rank locations, 0(0 + 1)(0 + 1) = four first locations when p = 8 etc. Define ~r ::= [pid ∈ b] r | ~r + ~r where r is a normal reg.exp. [pid ∈ b] r is the vector of regular expressions s.t. value r at locations i ∈ L(b) and elsewhere. ~r + ~r = pointwise (location by location) sum of regular expressions. 26

Intensional BSP regular expressions: R ::= ∅ | | ~r | R; R | R∗ | R + R. Assume a BSPRE of the form R = ~r = [pid ∈ b] r1 and a location i that wishes to communication with a subset of locations. Process i computes b0 = complement of b and also r1+ = r1 ∩ (a + b)(a + b)∗ The required set of locations is ([pid ∈ b0] (a + b)+) + [pid ∈ b] r1+. The automates the conversion of get operations into more efficient put operations. 27

Conclusions and future work

BSP automata and BSP langages preserve all the classical closure properties: non-determinism, -transitions and determinization, but break the classical properties of minimization. The interaction between state-minimization and BSP cost optimization remains to be understood. Future work 1. BSP regular grammars and generalization to BSP contextfree languages 2. parallel text processing and parsing, 3. pattern matching and data structure parallelization (tries etc). 28

des documents recommandant

[image: alt]

Automated generation of BSP Automata - Julien Tesson

BSP code (well structured). DSL for queries. â€¢ based on BSPRE. â€¢ computed by a BSPA. Limitations. â€¢ regular expressions expressiveness. â€¢ output is a boolean ...

[image: alt]

Mechanised Semantics of BSP Routines with ... - Julien Tesson

BSP Programming. Semantics. Conclusion. Bridging Model: Bulk Synchronous Parallelism (BSP). The BSP computer. Defined by: p pairs CPU/memory.

[image: alt]

Verification of imperative BSP programs: application to ... - Julien Tesson

WHY: an intermediate language. For program verification (deductive) Useful in many calculations (FFT, n-body, graph algorithms etc.) F. Gava and J. Fortin ...

[image: alt]

Automatic Cost Analysis for Imperative BSP programs - Julien Tesson

2/21. Bulk Synchronous Parallel (1). â–» Bulk Synchronous Parallel (BSP): simple but powerful model for semi-synchronous data-parallelism. â–» BSP computer: ...

[image: alt]

Active objects for BSP (Work in Progress) - Julien Tesson

Oct 11, 2017 - 2. Context. 1st year industrial PhD as French CIFRE contract between Huawei and I3S. Company ... Bulk Synchronous Parallel. â–« BSP active ...

[image: alt]

A BSP algorithm for the state space construction of ... - Julien Tesson

Python ? Are you serious ? Advantages of Python: untyped and interpreted many efficient ... Do you truth me ? ... each processor i computes succ(s) iff cpu(s) = i.

[image: alt]

Constructive algorithmic in Coq - Julien Tesson

Algorithmic Skeletons. Roots. â–· Cole 1989. â–· Patterns of parallel programs. Data Parallelism. â–· Distributed data structures. â–· Collectives operations (map).

[image: alt]

Implementing Powerlists with Bulk Synchronous ... - Julien Tesson

Bulk Synchronous Parallel ML ... the parallel functional programming library Bulk Synchronous ... [2], [3], which should not only be based on an abstraction.

[image: alt]

Program Calculation in Coq - Julien Tesson

Program calculation, being a programming technique that derives programs ... Different from many existing systems, we show in this paper that Coq, a popular theorem Appendix A provides a very short introduction to Coq. Although little.

[image: alt]

Profiling High-Level Heterogeneous Programs - Julien Tesson

Cuda (NVidia). OpenCL (Consortium ... Kernel : small example using OpenCL targets. Hardware. GPU. Multicore. CPU. OpenCL. Cuda. Mathias Bourgoin.

[image: alt]

Automatic Software Verification of BSPlib-programs ... - Julien Tesson

Mar 20, 2017 - Background: Bulk synchronous parallel (2). â–» Invented in the 80's by Leslie Valiant, and several implementations exists, notably: BSPlib ...

[image: alt]

Skeletons and the Parallel Programming Challenge - Julien Tesson

Single Chip Cloud Computer). â—‹ We may ... Source program S, including a number of tuning knobs (eg ... program space implied by the tuning knobs, and pick ...

[image: alt]

Proofs of pointer algorithms by inductive ... - Julien Tesson

May 15, 2012 - In LICS '02: Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science, pages 55â€“74, Washington, DC,. USA, 2002.

[image: alt]

A Skeletal-based Approach for the Development of ... - Julien Tesson

Dec 14, 2010 - Research Context. Extensible Machines ... Uncertain termination of long-running applications. Miss of ... computation intensive pieces of code â†’ heavy operations Combines MoLOToF with parallel algorithms families.

[image: alt]

Hybrid Bulk Synchronous Parallelism Library for ... - Julien Tesson

Dec 14, 2010 - BSML Library [gava:09] in C++. â€¢ Notion of Parallel vector. â€¢ Functional programming support. Boost.Phoenix and C++ lambda-function.

[image: alt]

MapReduce and Pregel limits in BigData processing - Julien Tesson

Mar 27, 2017 - Randomised keys: A solution for data skew in Join queries using. MapReduce. Tests of performance of Join and GroupBy-Join queries.

[image: alt]

Profiling High Level Heterogeneous Programs - Using ... - Julien Tesson

Jan 24, 2017 - GPU. Multicore. CPU. OpenCL. Cuda. M. Bourgoin E. Chailloux A. ... A small example. CPU RAM. GPU1 RAM. GPU0 RAM. Example. l e t dev ...

[image: alt]

A Multi-level Optimization Strategy to Improve the ... - Julien Tesson

Our computing plaforms are able to compute 8 floats of 32bits by AVX instruction. SISD add (not vectorized instructions) : SIMD add (vectorized instructions) :.

[image: alt]

Systematic Development of Correct Bulk Synchronous ... - Julien Tesson

5 Conclusions and Future Work. F. Loulergue. Systematic Development of Correct Bulk Synchronous Parallel Programs December 10, 2010 â€“ PDCAT. 2 / 26 ...

[image: alt]

Design, Implementation and Applications of the SkeTo ... - Julien Tesson

A Short Introduction to. Constructive ... â€œMethods for calculating programs from their Yicho system ... http://research.nii.ac.jp/~hu/pub/teach/pm06/CA[1-4].pdf.

[image: alt]

Remarks on cost analysis for patterns of parallelism - Julien Tesson

May 15, 2012 - Research programme. Preliminary ... Research programme. Research ... Develop an algorithm for cost-driven optimal refinement search. Vladimir The functor MÎ¸ = Î¸Ã—(H â†’ cost) with pointwise operations is a ... application.

[image: alt]

Compilation and Real-Time Analysis of a ... - Julien Tesson

3 Models Definition. 4 Multicore Response Time Analysis of SDF Programs ... Lots of simple cores. Kalray MPPA (Massively Parallel Processor Array): http://www-verimag.imag.fr/TR/TR-2016-1.pdf memory access pattern memory ...

[image: alt]

Formal Semantics of DRMA-Style Programming in ... - Julien Tesson

2 An Overview of BSPlib and BSP-IMP. BSPlib [6] is a library for bulk synchronous parallel (BSP) programming. In the. BSP model, a computer is a set of uniform ...

[image: alt]

Un compilateur vÃ©rifiÃ© pour Lustre - Julien Tesson

Implement a Lustre compiler in the Coq Interactive Theorem Prover. â€“ Following a previous ... [The Coq Development Team (2016): The Coq proof assistant reference manual]. â€“ A functional Munich, Germany: ACM Press, pp. 178â€“188.

×
Report Enumerated BSP automata GaÃ©tan Hains GDR-GPL ... - Julien Tesson

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

