arbitrary high order staggered semi-implicit discontinuous galerkin

May 24, 2016 - 1.0. 0.08. 0.10. 0.12. 0.14. 0.16. Velocity − Nx=10 P=5 x [m]. U [m/s] ..... DG for the model 2Dxr - Womersley test. 0.00. 0.01. 0.02. 0.03. 0.04.
1MB taille 1 téléchargements 247 vues
Introduction

ARBITRARY HIGH ORDER STAGGERED SEMI-IMPLICIT DISCONTINUOUS GALERKIN SCHEMES FOR WEAKLY COMPRESSIBLE FLOWS IN ELASTIC PIPES Matteo Ioriatti - Michael Dumbser Universit` a degli studi di Trento Dipartimento di Ingegneria Civile, Ambientale e Meccanica Robert Bosch GmbH Future Mechanical and Fluid Components (CR-ARF3) Renningen - Stuttgart (Germany)

May 24, 2016

Matteo Ioriatti - Michael Dumbser

Shark FV 2016

May 24, 2016

1 / 31

Introduction

Overview 1

Introduction

2

Derivation of the semi-implicit staggered DG for the 1D model Equations of the model Numerical scheme Solution algorihtm Explicit terms

3

Numerical tests for the 1D model Hagen-Poiseuille profile Steady flow in an elastic pipe Womersley test for unsteady flow Frequency domain

4

The semi-implicit DG scheme for the 2Dxr model Radial DG Theoretical notions Test for the DG 2Dxr

5

Conclusions Matteo Ioriatti - Michael Dumbser

Shark FV 2016

May 24, 2016

2 / 31

Introduction

Motivations Investigate compressible fluids in rigid and flexible tubes Recent developements in low order semi-implicit scheme for pressurized flows in flexible pipe:

2Dxr model for blood flows in arteries and veins (Casulli et al 2011); Scalar transport with local time stepping (Tavelli et al 2013); Semi-implicit method for non-hydrostatic flow (Fambri et al. 2013) Semi-implicit method for axially symmetric weakly compressible flows (Dumbser et al. 2014) Arbitrary high order of accuracy using the staggered DG method

Figure: Casulli, Dumbser and Toro 2011 Matteo Ioriatti - Michael Dumbser

Figure: Fambri, Dumbser and Casulli 2013 Shark FV 2016

May 24, 2016

3 / 31

Derivation of the semi-implicit staggered DG for the 1D model

Equations of the model

Equations of the model Hypothesis

Simplification of the Navier-Stokes equation in cylindrical coordinates L >> R (Hydrostatic equilibrium) Barotropic fluid PDEs of the 1D Model ∂ ∂ ρA + ρAU = 0 ∂t ∂x ∂ ∂ ∂p ρAU + ρAU 2 + A = −2πRτw ∂t ∂x ∂x Closure - Equation of state for weakly compressible fluid p − pv ρ(p) = ρ0 + c02

(2)

Closure - Tube laws A = A(p) Hooke law s

Laplace Law RL (p) = R0 +

p − p0 β

RH (p) = R0

1+

2Wp E∞

Closure - Friction models τw = τw ,s + τw ,us Matteo Ioriatti - Michael Dumbser

Shark FV 2016

(3) May 24, 2016

4 / 31

Derivation of the semi-implicit staggered DG for the 1D model

Numerical scheme

Computational grids

pi(x) pi-1(x)

pi+1(x)

ui+1/2(x)

ui-1/2(x)

xi-1

xi

xi+1

Figure: Staggered one-dimensional meshes

Velocity grid

Pressure grid ph,i (x, t) = φh (x)ˆ ph,i (t) φh (x) = ϕ(ξ)

ˆ h,i+1/2 (t) U(x, t)h,i+1/2 = ψh (x)U ψh (x) = ϕ(ξ)

x = xi + ξ∆x

Matteo Ioriatti - Michael Dumbser

Shark FV 2016

x = xi+1/2 + ξ∆x

May 24, 2016

(4)

5 / 31

Derivation of the semi-implicit staggered DG for the 1D model

Numerical scheme

Integration of the continuity equation xi+1/2

Z

φk xi−1/2

h∂ i ∂ (ρA)i,h + (ρAU)h dx = 0 ∂t ∂x

(5)

ˆ i,h Time derivative: (ρA)i,h = φh (ρA) Z

n+1

xi+1/2

φk φh dx xi−1/2

n

ˆ ˆ (ρA) ∂ ˆ i,h − (ρA)i,h (ρA)i,h = Mekh ∆x ∂t ∆t

1

Z Mehk =

ϕh (ξ)ϕk (ξ)dξ

(6)

0

ˆ i+1/2,h Spatial derivative: (ρAU)i+1/2,h = ψh (ρAU) Z

xi+1/2

φk xi−1/2

h i xi+1/2 ∂ (ρAU)h dx = φk (ρAU)h − xi−1/2 ∂x

Z

xi xi−1/2

∂φk (ρAU)h dx − ∂x

xi+1/2

Z

xi

∂φk (ρAU)h dx (7) ∂x

Universal tensors Z

1

Rukh = ϕk (1)ϕh (1/2) − 1/2

dϕk ϕk (ξ − 1/2)dξ dξ

1/2

Z Lukh = ϕk (0)ϕh (1/2) + 0

dϕ(ξ)k ϕk (ξ + 1/2)dξ dξ (8)

Discrete form with θ-method ρAU n+θ = θρAU n+1 + (1 − θ)ρAU n h i h i ˆ n+1 − (ρA) ˆ n + ∆t Rukh (ρAU) ˆ n+θ ˆ n+θ Mekh (ρA) i,h i,h h,i+1/2 − Lukh (ρAU)h,i−1/2 = 0 ∆x

Matteo Ioriatti - Michael Dumbser

Shark FV 2016

May 24, 2016

(9)

6 / 31

Derivation of the semi-implicit staggered DG for the 1D model

Numerical scheme

Integration of the momentum equation - Part 1 Left hand side of the momentum equation Z xi+1 ψk xi

hd i ∂ (ρAU)h + Aq ph dx dt ∂x

(10)

ˆ i+1/2,h Time derivative: (ρAU)i+1/2,h = ψh (ρAU) xi+1

Z

ψk ψh dx xi

n ˆ n+1 ˆ (ρAU) d i+1/2,h − (F ρAU)i+1/2,h ˆ (ρAU) i+1/2,h = Mekh ∆x dt ∆t

ˆn Spatial Derivative: Aq = ψq A , ph = φh p ˆh i+1/2,q Z xi+1 h i ˆ q ∂ φh p ˆ ni+1/2 p ˆ ni+1/2 p ψk ψq A ˆh dx = RpA ˆn+1 − LpA ˆn+1 kh h,i+1 kh h,i ∂x xi

(11)

(12)

Universal tensors 1

Z Rpkqh =

ϕk (ξ)ϕq (ξ) 1/2

Z Lpkqh = −

1/2

ϕk (ξ)ϕq (ξ) 0

Matteo Ioriatti - Michael Dumbser

∂ϕh (ξ − 1/2) dξ + ϕk (1/2)ϕq (1/2)ϕh (0) ∂ξ

(13)

∂ϕh (ξ + 1/2) dξ + ϕk (1/2)ϕq (1/2)ϕh (1) ∂ξ

Shark FV 2016

May 24, 2016

7 / 31

Derivation of the semi-implicit staggered DG for the 1D model

Numerical scheme

Integration of the momentum equation - Part 2 Right hand side of the momentum equation Z xi+1 h i ψk τs,i+1/2,h + τus,i+1/2,h dx

(14)

xi

Darcy Weisbach model τs = λρ

U 2

λ=

64 Re

γ=

2πλReρU 8



τs,h = γq (ρAU)h

(15)

Steady friction term Z xi+1 ˆ h dx = Mekhq γ ˆ n+1 ˆ n+1 ∆x ψk ψq γ ˆq ψh (ρAU) ˆi+1/2,q ψh (ρAU) = Γi+1/2,hk (ρAU) i+1/2,h i+1/2,h xi

(16) Unsteady friction term Z

xi+1 xi

n n ψk ψh τˆus,i+1/2,h dx = Mehk τˆus,i+1/2,h ∆x

(17)

Discrete form Z xi+1 h i   n ˆ n+1 ψk τs,i+1/2,h + τus,i+1/2,h dx = Γi+1/2,hk (ρAU) + Mehk τˆus,i+1/2,h ∆x (18) i+1/2,h xi

Matteo Ioriatti - Michael Dumbser

Shark FV 2016

May 24, 2016

8 / 31

Derivation of the semi-implicit staggered DG for the 1D model

Numerical scheme

Convolution integral unsteady friction models Zielke Model

t

∂U(ˆt ) tν W (t − ˆt )d ˆt ˆt = 2 ∂t R P −ni ˆt Use an approximated weighted function of the form W = i=N i=1 mi e τw ,us =

τ =

N X

τi

τi =

i=1

2µ R

Z

2µ R

Z

(19)

0

0

t

n ν dU(ˆt ) − i (t−ˆt ) d ˆt mi e R 2 dt

i = 1, 2, ...N

Time derivative + Leibiniz Rule Z d 2µ t dU(ˆt ) ni ν − ni 2ν (t−ˆt ) 2µ dU(t) τi = − mi 2 e R d ˆt + mi dt R 0 dt R R dt

(20)

i = 1, 2, ...N

(21)

The ODE model (Ioriatti - Dumbser - Iben) d ni ν 2µ dU(t) τi = − 2 τi + mi dt R R dt

(22)

Numerical discretization: Implicit Euler for stability reasons τin+1 = Matteo Ioriatti - Michael Dumbser

τin +

2µ mi (U n+1 R 1 + nRi ν2 ∆t Shark FV 2016

− Un)

i = 1, 2, ...N

(23)

May 24, 2016

9 / 31

Derivation of the semi-implicit staggered DG for the 1D model

Solution algorihtm

Coupling the equations Final form of the mometum equation h i−1  i ∆t h ˆ n n+1 n+1 n ˆ n+1 ˆn ˆ ni+1/2 p ρAU MeG RpAi+1/2 p ˆh,i+1 −LpA ˆh,i (24) i+1/2,h = Me+∆tΓi+1/2 i+1/2,h −θ ∆x ∆t n n n ˆn ˆ n ˆ ni+1/2 p ˆ ni+1/2 p G ˆus,h ∆t − (1 − θ) Me−1 [RpA ˆh,i+1 − LpA ˆh,i ] i+1/2,h = F ρAU i+1/2,h − τ ∆x

(25)

Continuity equation + Momentum equation n+1 MeρA(ˆ ph,i )

h i−1 ∆t 2 n+1 ˆ ni+1/2 p Ru Me + ∆tΓni+1/2 RpA ˆh,i+1 ∆x 2 h i−1 i−1 ∆t 2 ∆t 2 h n+1 n+1 ˆ ni+1/2 p ˆ ni−1/2 p Ru Me + ∆tΓni+1/2 Lu Me + ∆tΓni−1/2 LpA ˆh,i + θ2 RpA ˆh,i + θ2 ∆x 2 ∆x 2 i−1 ∆t 2 h n+1 ˆ ni−1/2 p − θ2 Lu Me + ∆tΓni−1/2 LpA ˆh,i−1 = ∆x 2  h i h i−1  −1 ∆t n ˆn ˆn ˆ n −θ Ru Me + ∆tΓni+1/2 MeG MeG MeρA h,i i+1/2,h − Lu Me + ∆tΓi−1/2 i−1/2,h ∆x i ∆t h ˆ n ˆ n − (1 − θ) Ru(ρAU) h,i+1/2 − Lu(ρAU)h,i−1/2 ∆x (26) − θ2

Matteo Ioriatti - Michael Dumbser

Shark FV 2016

May 24, 2016

10 / 31

Derivation of the semi-implicit staggered DG for the 1D model

Solution algorihtm

Solution algorithm Mildly non-linear system solved using the Newton method MeρA(ˆ p n+1 ) + T · p ˆn+1 = b(pn ) f(pn+1 ) = Me ρA(ˆ pn+1 ) + T · p ˆn+1 − bn

(27)

Newton step df(ˆ pn+1 ) = Me ρA0 (ˆ pn+1 ) + T dˆ pn+1 h df(pˆ n+1 ) i−1 k f(pˆk n+1 ) p ˆn+1 ˆn+1 − k+1 = p k dˆ pn+1 Mass flow and velocity update

(28) (29)

h i−1  i ∆t h ˆ n n+1 n+1 n ˆ n+1 ˆn ˆ ni+1/2 p ρAU MeG RpAi+1/2 p ˆh,i+1 − LpA ˆh,i i+1/2,h = Me + ∆tΓi+1/2 i+1/2,h − θ ∆x (30) Arbitrary high order of accuracy in space ˆ = ρAU) ˆ Scheme unconditionally stable for 0.5 ≤ θ ≤ 1 (when F ρAU θ = 1 first order scheme (Backward Euler method) θ = 0.5 second order scheme (Crank-Nicolson type method) Matteo Ioriatti - Michael Dumbser

Shark FV 2016

May 24, 2016

11 / 31

Derivation of the semi-implicit staggered DG for the 1D model

Explicit terms

Non linear convective terms PDE Formulation ∂ρAU ∂ρAU 2 dρAU = + dt ∂t ∂x DG approach Z

xi+1

ψk ψh dx xi

Me∆x

ˆ h,i+1/2 dQ dt

Z

∆t

dQ ∂Q ∂f = + dt ∂t ∂x

xi+1

=

ˆ n+1 ˆ nh,i+1/2 Q − FQ h,i+1/2



ψk ψh dx xi

= Me∆x

ˆ h,i+1/2 ∂Q ∂t

Q = ρAU

h i xi+1 Z + ψk · fhn − xi

ˆ n+1 ˆn Q −Q h,i+1/2 h,i+1/2 ∆t

with

xi+1

xi

f = uQ

(31)

∂φk n φh dx · fˆh,i+1/2 ∂x (32)

Z n +[ϕk (1)·fi+1 −ϕk (0)·fi n ]−

1 0

∂ϕ(ξ)k n ϕ(ξ)h dξ·fˆh,i+1/2 ∂ξ (33)

Numerical computation with Rusanov flux h ∆t n ˆ nh,i+1/2 = Q ˆn FQ Me−1 ϕk (1) · fi+1 − ϕk (0) · fi n − h,i+1/2 − ∆x

fi+1 =

Z

1

0

i ∂ϕ(ξ)k n ϕ(ξ)h dξ · fˆh,i+1/2 (34) ∂ξ

i 1 h i 1h n ˆ h,i+3/2 −ϕ(1)·Q ˆ h,i+1/2 ϕ(0)·fˆh,i+3/2 +ϕ(1)·fˆh,i+1/2 − Smax,i+1 ϕ(0)·Q 2 2

h i i 1 n ˆ h,i+1/2 −ϕ(1)·Q ˆ h,i−1/2 ϕ(0)·Q fi = ϕ(0)·fˆh,i+1/2 +ϕ(1)·fˆh,i−1/2 − Smax,i 2 2 1h

Matteo Ioriatti - Michael Dumbser

Shark FV 2016

n,+ n,− n Smax,i+1 = max(2|ui+1 |, 2|ui+1 |)

(35)

n Smax,i = max(2|uin,+ |, 2|uin,− |)

(36) May 24, 2016

12 / 31

Numerical tests for the 1D model

Hagen-Poiseuille profile

Hagen-Poiseuille solution for rigid pipe µ = 10−3 Pa · s

Laminar and steady flow (Re = 1000 Rigid pipe (R0 = 4 ·

10−3 m

β=

Incompressible flow (c0 = 1030 u(z) =

ρ0 = 998.2kg /m3 );

∆p (R 2 − z 2 ) 4µL

U=

Z

1 A

u(z)dA = A

(37)

0.16 0.14 0.08

0.10

0.12

U [m/s]

500040 500020

p [Pa]

R2 ∆p 8µL

Velocity − Nx=10 P=5

500060

Pressure − Nx=10 P=5

500000

L = 1)

1030 )

0.0

0.2

0.4

0.6

0.8

1.0

0.0

x [m]

0.4

0.6

0.8

1.0

x [m]

Figure: Analytical solution (

Matteo Ioriatti - Michael Dumbser

0.2

) and numerical data •

Shark FV 2016

May 24, 2016

13 / 31

Numerical tests for the 1D model

Steady flow in an elastic pipe

Steady flow in an elastic pipe ν = 10−3 Pa · s

Laminar and steady flow (Q = 1.875m3 /s Incompressible flow (c0 =

L = 1)

1030 );

Elastic pipe - Laplace law(R0 = 0.025m

2Q (R 2 (x) − z 2 ) uex (x, t) = πR 4 x

β = 2500) s

Rex (x) =

5

40νQ x πβ

R05 −

pex = p0 + β(Rex (x) − R0 ) (38)

Velocity − Nx=10 P=5

3.0 2.0

2.5

U [m/s]

−15 −20

1.0

−30

1.5

−25

p [Pa]

−10

3.5

−5

4.0

0

Pressure − Nx=10 P=5

0.0

0.2

0.4

0.6

0.8

1.0

0.0

x [m]

0.4

0.6

0.8

1.0

x [m]

Figure: Analytical solution (

Matteo Ioriatti - Michael Dumbser

0.2

) and numerical data •

Shark FV 2016

May 24, 2016

14 / 31

Numerical tests for the 1D model

Womersley test for unsteady flow

Womersley test: general information Oscillating pressure gradient pin (t) =