2011.11.18-F.Baguelin-diaporama avec animation 2 - CFMS

Nov 18, 2011 - Results. ➢ no instability confirmed. ➢ confirms quick rate of consolidation and establishes. ▫ time of fill removal. ▫ degree of creep attained.
3MB taille 1 téléchargements 282 vues
Titre

The foundation of the new sewage plant at le Havre An alternative solution with a preloading embankment F. Baguelin & Seng Y Ung (FONDASOL) F. Gaillard & J.P. Commun (RAZEL)

Journée franco-britannique CFMS-BGA, Paris, le 2 décembre 2011

L’ouvrage – vue perspective

THE PLANT

2 superimposed tanks each : ~ square 100m x 100m 6,6m of water

Les 4 cyclors : vue en plan

The 4 units : cyclors A, B, C, D

101 m

90 m

pl* et la solution pieux Bond &Harris UU London clay

PILES = the initial foundation concept net limit pressure pl* -1

0

1

2

pl* (MPa) 3

4

5

0

1. fill 5 10

2. sand PR1

15 depth z

PR2 20

PR3

3. sand

PR4

25 30 35 40

design

4. clay & peat 5. sand & gravel

45

360 piles L=40m

Ø=1.4m

mesh : 5,6mx5,6m QELS = 800 t

pl* et la solution préchargement

The alternative solution : preloading

Bond &Harris UU London clay

160 to 250 kPa net limit pressure pl* -1

0

1

2

pl* (MPa) 3

4

5

0

1. fill 5 10

2. sand PR1

15 depth z

PR2 20

PR3

3. sand

PR4

25 30 35 40

design

4. clay & peat 5. sand & gravel

45

360 piles L=40m

Ø=1.4m

mesh : 5,6mx5,6m QELS = 800 t

Plan du remblai de préchargement

110m

THE PRELOADING EMBANKMENT

T2 125m

H fill = 12.5 m T1

H fill = 8m

Plan du remblai d’essai

THE TRIAL EMBANKMENT

H=8m

Remblai d’essai : résultats et conclusion

THE TRIAL EMBANKMENT H= 8 m Results  no instability during fill construction  in 4 months - pore pressures dissipated - settlements stabilised and magnitude as predicted

Conclusion : preloading possible without vertical drains in all alluvial deposits

Remblai de préchargement : rés & conclusions

THE PRELOADING EMBANKMENT Measurements

Results

 inclinometers

 no instability confirmed

 pore pressures

 confirms quick rate of consolidation

 multipoint tassometers T1 & T2

and establishes  time of fill removal  degree of creep attained  residual settlement at service

 settlement profiles

 checks settlement model & provides settlement pattern for structural design

T1 – résultats à diverses périodes

MULTIPOINT TASSOMETER T1 -10

0

10

20

30

40

50

60 tassement s (cm)

10.00 5.00

cote NGF (m)

0.00 -5.00 24/04/2008 -10.00

21/05/2008 09/07/2008 02/09/2008

-15.00 -20.00 -25.00 -30.00

T2 – résultats à diverses périodes

MULTIPOINT TASSOMETER T2 -10

0

10

20

30

40

50

60

tassement (cm)

10.00

5.00

cote NGF (m)

0.00

-5.00

16/04/2008 21/05/2008

-10.00

09/07/2008 02/09/2008

-15.00

-20.00

-25.00

-30.00

T1 & T2 – valeurs finales

MULTIPOINT TASSOMETERS T1 & T2 – Final values

-10

0

10

20

30

40

50

60 tassement s (cm)

10.00 5.00

cote NGF (m)

0.00 -5.00 T1 (02/09/2008) -10.00 T2 (02/09/2008) -15.00 -20.00 -25.00 -30.00

Calage du POP sur T1 & T2

CALIBRATE OVERCONSOLIDATION MARGIN ∆σ’ ∆σ p (POP)

∆σ’ ∆σ p = σ’p - σ’v0

10

sigma ' vo sigma ' p sigma ' v T1 sigma ' v T2

5 0

altitude

-5 -10

∆σ’ ∆σ p ≈ 80 kPa

-15 -20 -25 -30 -35 0

100

200

300

400

sigma ' v

500

600

700

Calage du POP sur T1 & T2

MULTIPOINT TASSOMETERS T1 & T2 : measured & calculated settlements overconsolidation margin

fit for settlements

10

10

sigma ' vo sigma '5p sigma '0v T1 sigma ' v T2

5

cote NGF

0 -5 -10

-5

-10

-15

-15

-20

-20

-25

-25

-30

-30 0

100

600

700

-35 0

100

200

300

400

sigma ' v

500

200

300

400

mesure T1 mesure T2 calage T1 calage T2700 500 600

tassement (mm)

TASSUNI : une charge

SETTLEMENT MODEL : TASSUNI (FONDASOL software) n rectangles i with load qi m soil layers j with σ’p and : - either : moduli (E, Er) - or : compression indexes CC, CS y

M

Load qi on rectangle i

Settlement si O

x layer 1 layer j z

layer m

σz(i,j)

εz(i,j)

TASSUNI : formules de tassement avec sig’p

SETTLEMENT MODEL : TASSUNI (FONDASOL software) n rectangles i with load qi m soil layers j with σ’p and : - either : moduli (E, Er)

εz =

σ ' p − σ 'v 0 Er

For example :

+

σ z + σ 'v 0 − σ ' p

E = EM/α

E

&

Er = 3 to 10 EM/α

- or : compression indexes CC, CS

εZ =

σ 'p CS CC σ' +σz log + log v 0 1+ e σ 'v 0 1+ e σ 'p

TASSUNI : 13 couches de sol

TASSUNI : 13 LAYERS

TASSUNI : les 13 charges et les 62 charges

TASSUNI : 13 LOADS FOR PRELOADING

Les 62 charges de l’ELS q-permanent

TASSUNI : 62 LOADS FOR PERMANENT STATE

Profilomètre 3 : prévision et mesures

PROFILOMETER 3

Comparison between measured and calculated settlements before fill removal x(m) -20

0

20

40

60

T1

80

100

0.00 0.10

60 cm

s(m)

0.20 0.30 0.40 0.50 0.60 0.70

measures 3A

measures 3B

calculated

measure T1

calculated T1

Profilomètre 1 : prévision et mesures

OTHER PROFILOMETERS

Profilomètre 2 : prévision et mesures

OTHER PROFILOMETERS

Profilomètre 4 : prévision et mesures

OTHER PROFILOMETERS

Profilomètre 5 : prévision et mesures

OTHER PROFILOMETERS

Fluage : modèle de Bjerrum

SOIL CONSOLIDATION & CREEP

Bjerrum creep model

-

parameter tF for creep lines

Unloading from 1 to 2 : with :

 σ '1  tF 2 = tF1    σ '2  CC − CS m= (1+ e) Cα

m

Lois de consolidation et de fluage

SOIL CONSOLIDATION & CREEP

Asaoka sur T1 & T2

SOIL CONSOLIDATION : ASAOKA

T1

T2

Consolidation : courbe ajustée sur T1

SOIL CONSOLIDATION : CURVE FITTING

T1

Consolidation : courbe ajustée sur T2

SOIL CONSOLIDATION : CURVE FITTING

T2

Consolidation & fluage sur T1

SOIL CONSOLIDATION & CREEP layers subjected to creep at 25m depth :

peaty clay , cumulated thickness = 3m

Creep parameter

CONSOLIDATION ONLY

T1

CONSOLIDATION + CREEP CONNECTING POINT LAST MEASUREMENT

Tassements à 10 ans (ch. perm.) : courbes

SETTLEMENT PREDICTED at 10 years under permanent loads

85 mm

Tassements à 10 ans (ch. perm.) : carte

SETTLEMENT PREDICTED at 10 years under permanent loads

Tassements sous charge d’eau dans CZC

SETTLEMENT PREDICTED under water load in cell CZC

6,6 mm

Tassements sous charge d’eau max

SETTLEMENT PREDICTED under maximum variable load

18 mm

Modèle de la structure

SOIL-STRUCTURE INTERACTION

Model 1 : structure (3D) + subgrade springs for soil =>

Model 2 : 2D =>

initial reinforcement in the structure

a slice of the structure, 5.6m thick : walls or porticos + elastic layer (28m thick) for soil additional reinforcement (+10%)

Modèle 1 : avec ressorts

SOIL-STRUCTURE INTERACTION Model 1 : structure on springs

Modèle 2 : sol élastique

SOIL-STRUCTURE INTERACTION

Model 2 (2D) : structure on elastic soil

Modèle 2 : Valeurs de E

SOIL-STRUCTURE INTERACTION Model 2 (2D) :

E values for soil

E (MPa)

Fill Gravel

49 199

272

272

Sands 1

143

174

180

Sands 2

58

65

68

Clay 1 Clay 2

69 30

75 32

79 34

15.3m

29.55m

90 m

Soil in natural state

Soils consolidated

Modèle 2 : tassement file 17

SOIL-STRUCTURE INTERACTION Model 2 (2D)

Settlement at row 17 (columns) Water in the 4 tanks 6,50 cm

4,11 cm

Modèle 2 : tassement file 17

SOIL-STRUCTURE INTERACTION Model 2 (2D)

Settlement at row 17 (columns) Water in 2 tanks on left, 1 on right 5,65 cm

2,60 cm

Modèle 2 : tassement files 1 & 20

SOIL-STRUCTURE INTERACTION Model 2 (2D) Settlement at rows 1 & 20 (walls) Water in the 4 tanks

2,50 cm

1,76 cm

Tassements mesurés en service (1 an) : carte

SETTLEMENTS MEASURED IN SERVICE

CELL CZA

Settlements under water level fluctuation of 1,1m in one tank -16

(mm)

Avantages inconvénients

THE OPINION OF THE CONSTRUCTION WORKS DIRECTOR On the preloading solution PROS

CONS

Lower cost

Fill material management at acceptable cost (supply, disposal)

Simple technique (standard earth works) hence : allows to prepare easily the structure works

Impact of road transportation (400 trucks / day in the city) Lack of schedule visibility Difficulty to obtain approval by the supervisor on the method and on the time for fill removal

FIN FONDASOL Fin - FONDASOL

THANK YOU FOR YOUR ATTENTION !