Aucun titre de diapositive - CFMS

π. ϕ θ. ϕ ε ε. ϕ θ ω. ϕ θ. ϕ θ ρ ρ π o kk kk e i i g o gg v dd d ud. F. rN. Wd. ( ) ( ). ( ) ... Contact interaction defined by 3 mechanical parameters: □ Cubic form of ...
4MB taille 7 téléchargements 279 vues
Journée d'hommage au Prof. Biarez MODELLING OF LANDSLIDES AS A BIFURCATION PROBLEM F. DARVE, F. PRUNIER, S. LIGNON, L. SCHOLTES, J. DURIEZ Laboratoire Sols, Solides, Structures, INPG-UJF-CNRS, Grenoble, France –ALERT, RNVO, DIGA, LESSLOSS, SIGMA, STABROCK F. NICOT CEMAGREF Grenoble, ALERT, RNVO F. LAOUAFA INERIS, Paris, France

I Introduction 1 Failure : the classical view 2 An example of diffuse failure strictly inside Mohr-Coulomb limit surface 3 Hill’s sufficient condition of stability and bifurcation criteria : phenomenological analyses for axisymmetric and plane strain conditions 4 A multiscale analysis of instabilities with a micromechanical model 5 A direct numerical analysis of instabilities with a discrete element method II Landslides modelling : Trévoux and Petacciato examples III Rockfalls modelling : Acropolis example IV Loading paths with constant q

I Introduction FAILURE : THE CLASSICAL VIEW ‡Rate independent materials :

d σ = F (d ε ) ∀ λ ≥ 0 : F ( λ d ε ) ≡ λ F ( d ε ) ⇒ F Homogeneous of degree 1 ‡Euler’s identity :

d σ = F ( d ε )≡ ∂ F d ε ∂ (d ε)

d σ α = M αβ d ε β

⎛ dε dσ=Mh(v)dε ⎜⎜ v= ⎝ dε

⎞ ⎟⎟ ⎠

‡Perfect plasticity :

dσ=0 ⇒

⎧ det M h = 0 ⎨ M hdε=0 ⎩

and

dε ≠0 Plastic limit condition Plastic flow rule

(Limit stress state)

UNDRAINED LOADING ON LOOSE SANDS Typical behaviour of a loose sand : undrained (isochoric) triaxial compression Δu σ 3

σ1 σ3 Δu σ 3

σ1 σ3

→ Experimental evidence : ε1

q goes through a maximum before Mohr-Coulomb limit

q q

p

ε1

UNDRAINED LOADING ON LOOSE SANDS Experimental observations (I. Georgopoulos, J. Desrues – Grenoble, DIGA project):

Partial diffuse failure

Total diffuse failure

UNDRAINED LOADING ON LOOSE SANDS A typical example of a diffuse mode of failure : ‡ Δq = ΔF S : « small » additional force (stress controlled loading) q peak is unstable according to LYAPUNOV definition Non-controllability after R. NOVA definition ‡ Second order work criterion : d ²W = dσ 1dε1 + 2dσ 3 dε 3

= dqdε1

(1)

(1)

with the isochoric condition :

dε v = 0

After HILL condition of stability, q peak is unstable ‡ For axisymmetric conditions : ⎡ dq ⎤ = N ⎡ dε1 ⎤

⎢dε ⎥ ⎣ v⎦

• Undrained loading : dε v = 0 • At q peak : dq = 0

⎢ dσ ⎥ ⎣ 3⎦

• Bifurcation criterion : det N = 0 ⎡ dε 1 ⎤ ⎡ 0 ⎤ N • Failure rule : ⎢dσ ⎥ = ⎢0⎥ ⎣ 3⎦ ⎣ ⎦

‡ Conclusions : q peak is a proper failure state, strictly inside the plastic limit condition, without localization pattern, properly described by Hill’s condition and a bifurcation criterion

HILL’S CONDITION OF STABILITY ‡ DRUCKER’s postulate ∀ dσ, dε p : d²W p=dσ : dε p > 0 always satisfied in associated elasto-plasticity dε p = dλ (df/dσ) ⇒ d²W p= dλ (dσ : df/dσ) >0 >0 ‡ HILL’s condition of stability ∀ dσ, dε : d²W =dσ : dε > 0

DRUCKER ⇒ HILL

Incrementally linear constitutive relations dσ = M dε

d²W = t dε M dε = t dε Ms dε

d²W > 0 ⇔ det Ms > 0

• Associated elasto-plasticity : M≡Ms plasticity limit condition : det M=0 stability condition : det Ms=0

IDENTICAL !

• Non-associated elasto-plasticity : det Ms is always vanishing before det M and det tnLn=0, ⇒ det Ms=0 is satisfied stricly inside the plastic limit condition and, inside the localisation condition

BIFURCATION ANALYSIS IN AXISYMMETRIC CONDITIONS σ1- σ3/R ε1+ 2R ε3=0 ; R=cst.

‡ (σ1-σ3/R) peak is unstable according to LYAPUNOV ‡ d²W = dσ1dε1+ 2 dσ3dε3 = (dσ1-dσ3/R) dε1 ≤ 0 from (σ1-σ3/R) peak ‡

ε1

dε1

dσ1-dσ3/R =Q dε1+ 2R dε3

dσ3/R

dε1

At (σ1-σ3/R) peak : 0 =Q 0

dσ3/R

BIFURCATION CRITERION : det Q=0 ⇔ 2 E1-/E3-(1-ν33-)R²-2(ν13-+ E1- ν31-/E3-)R+1=0 Δ=-(2/(E3-)²) det Ms ≥ 0 Loss of controllability after NOVA (1994) First unstable direction : dσ1 √2 dσ3

=

E1-

(1-ν33-)(E1- ν31--E3- ν13-)

√2 E3- E1-(1-ν33-)-ν13-(E1- ν31--E3- ν13-)

Rupture rule : E1- dε1+ (2 ν31- E1-/E3--1/R) dσ3=0

BIFURCATION ANALYSIS IN PLANE STRAIN CONDITIONS (H.D.V. KHOA) •

Second order work: d 2W = d σ 1 d ε 1 + d σ 3 d ε 3

= (dσ 1 − dσ 3 R ) dε 1 + dσ 3 (dε 1 + R dε 3 ) R

peak

= (dσ 1 − dσ 3 R ) dε 1 ≤ 0

⎧dε1 = positive constant ⎪ ⎨dε 2 = 0 ⎪dε + Rdε = 0 (R=cst.) 3 ⎩ 1

det Q =0

fro m

(σ 1

− σ 3 R ) pe a k

⇒ The peak is potentially unstable in Hill’s sense



⎡dσ 1 − dσ 3 R ⎤ ⎢ ⎥ =Q d ε + Rd ε 3 ⎦ ⎣ 1

Octo-linear model:

Bifurcation criterion

(

)

(

)

(

)

⇔ E 1− 1 −V 23−V 32 − R 2 − ⎡E 3− V13− +V12 −V 23− + E 1− V 31− +V 32−V 21− ⎤ R + E 3− ⎣ ⎦ ⎛ ⎡dε1 ⎤ 2 2 ⎡ dσ 1 ⎤ Δ = −4 E 1− E 3− det P S ≥ 0 = P ⎜⎜ ⎢ ⎥ ⎢ ⎥ d ε d σ ⎣ 3⎦ ⎝ ⎣ 3⎦

( )( )

det P s =0

⎡ dε1 ⎤ ⎢ ⎥ ⎣dσ 3 R ⎦

First bifurcation point

(1 −V

V

2 − 1− 1 2

)=0

⎞ ⎟⎟ ⎠

First bifurcation direction E 1− (1 −V 23−V 32 − ) ⎡⎣E 1− (V 31− +V 32−V 21− ) − E 3− (V13− +V12−V 23− ) ⎤⎦ ⎛ dσ ⎞ 1 ⎜ ⎟ = ⎝ dσ 3 ⎠c E 3− ⎡E 1− D + 1 −V12 −V 21− 1 −V 23−V 32 − ⎣⎢

( (

)(

))

(

− E 3− V13− +V12−V 23−

) ⎤⎦⎥ 2

AXISYMMETRIC PROPORTIONAL STRAIN PATHS – INL2 model, DENSE SAND R ∈ (0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0)

Volumetric strain versus axial strain on the left and deviatoric stress versus mean pressure on the right

Deviatoric stress versus axial strain on the left and (σ1-σ3/R) versus axial strain on the right

PLANE STRAIN PROPORTIONAL STRAIN PATHS (H.D.V. KHOA) ƒ Loose Hostun sand ⇒ liquefaction for all R values

ƒ Dense Hostun sand

octo-linear model

⇒ liquefaction for only low R values

Proportional strain paths simulated by the incrementally octo-linear model for different R values (R=[0.1,0.2,0.3,0.35,0.4,0.45,0.5,0.6,0.7,0.8,0.9,1.0])

BIFURCATION DOMAIN IN AXISYMMETRY- INL2 and octolinear models, DENSE SAND

Instability domain for the dense sand in axisymmetric conditions.

σ1- 2σ3 plane in the cases of the octo-linear model (+) and the non linear one (•).

First stress directions giving a nil d²W for the dense sand in the σ1- 2 σ3 plane, with the octo-linear model (+) and the non linear one (•).

BIFURCATIONS IN AXISYMMETRIC CONDITIONS Cones of unstable stress directions : Dense sand ; non-linear model

BIFURCATIONS DOMAINS IN PLANE STRAIN (H.D.V. KHOA)

octo-linear model Bifurcation domains and first bifurcation directions corresponding to: • vanishing d2W

• vanishing d2W (red) or detPs (blue)

d e tP

Loose Hostun sand

Dense Hostun sand

Bifurcation domains are larger for the case of loose Hostun sand than for the dense one.

Loose Hostun sand

s

Dense Hostun sand

The above results of two bifurcation indicators completely numerically coincide.

BIFURCATIONS IN PLANE STRAINs (H.D.V. KHOA)

Loose Hostun sand

Dense Hostun sand

Boundary of the bifurcation domain and the first incremental stress directions of vanishing d2W, according to Hill’s condition, for dense Hostun sand (left) and loose Hostun sand (right). Diagrams in the (σ1; σ3) plane (ε2= 0) in the case of the octo-linear constitutive model.

BIFURCATION DOMAIN ( 3D )

Instability surface for the dense sand (tr σ = 300 kPa)

Stress paths in the deviatoric plane

Instability surface for the loose sand (tr σ = 300 kPa)

THE MICRO-DIRECTIONAL MODEL ( F. NICOT) Nicot F. and Darve F. (2005) : A multiscale approach to granular materials. Mech of Mat., 37,980-1006

RVE

uˆt ,

rˆ r F , uˆ

uˆn ,

σ,ε

Contact direction

r n (θ , ϕ ) l ≈ 2rg

rˆ dF

rˆ du

dε Strain localisation operator

dσ Stress averaging

Local behaviour

duˆi (θ ,ϕ ) ≈ 2rg dε ij n j (θ ,ϕ )

σ ij =

dFˆn = kn duˆn

2rg ve

∑ Fˆ n i

c

rˆ rˆ rˆ rˆ r r F + k d u ˆ ⎧ ⎫ t t t ˆ ˆ ˆ dFt = min ⎨ Ft + kt dut , tan ϕ g Fn + kn dun ⎬ r − Ft ⎩ ⎭ Fˆ + k durˆ t t tt

(

)

(Chang, 1992; Cambou, 1993, etc)

j

Probing tests and normalised second order work

ε1

dε 1

M4

r d σ dσ 1

r dε

M3

αε

M2

ασ 2 dε 2

M1

2 dσ 2

2 ε2

General expression of the second order work

d 2W = d σ d ε

Expression of the second order work in axisymmetric conditions

d 2W = dσ 1 dε 1 + 2 dσ 2 dε 2

Normalised second order work

d w=

d 2W

2

dσ 1 + 2 dσ 2 2

2

dε 1 + 2 dε 2 2

2

Polar diagrams of the normalised second order work Axisymmetric case 1

1

0.8

0.8

0.6

0.6

0.4

0.4

q

0.2

p 0

= 0.725

q p

0.2

q

= 0.701

q

-0.2

-0.2

q p

-0.4

= 0.875

p

0

p

= 0.439 -0.4

= 0.800 q p

-0.6

-0.6

-0.8

-0.8

= 0.439

-1

-1 -1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Micro-directional model

0.6

0.8

1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Incremental octolinear model

After Nicot, F., and Darve, F. (2005) : Micro-mechanical investigation of material instability in granular assemblies. Int. J. of Solids and Structures, 43, 3569-3595

0.6

0.8

1

Micro-mechanical interpretation

d 2W = d 2Wl + d 2Wv + d 2W f

Local second order work

d 2Wl =

ρo 3 2 2π N g rg ρ g

Change in volume

Change in fabric

dFˆi (θ , ϕ ) duˆi (θ , ϕ ) ω e (θ , ϕ ) sin ϕ dθ dϕ ∫∫ 2 − 1 ε kk [o ;π ]

d 2W f =

d 2Wv =

3 ρo 2 2π N g rg ρ g

∫∫

[o ;π ]2

ρo 3 2 2π N g rg ρ g

∫∫

[o ;π ]2

Fˆi (θ , ϕ ) duˆi (θ , ϕ ) dω e (θ , ϕ ) sin ϕ dθ dϕ 1 − ε kk

Fˆi (θ , ϕ ) duˆi (θ , ϕ ) ω e (θ , ϕ ) dε kk sin ϕ dθ dϕ (1 − ε kk )2

Micro-mechanical interpretation r n

r t1 r t2

rt Fc r r Fct + dFct =

tan ϕ g (F + kn du n c

n c

α

Quadratic form of the second order work

r k t duct

rˆ r d 2Wˆ = dF ⋅ duˆ = dFˆn duˆ n + dFˆt1 duˆt1 + dFˆt2 duˆ t2

)

Plastic case

In the plastic case 2 2 d 2Wˆ = k n duˆ n + tan ϕ g cos α k n duˆ n duˆ t + k t sin 2 α duˆt

duˆ n ≤ 0

d Wˆ ≤ 0 2

tan α ≤

tan ϕ g 2

kn kt

duˆ t ∈ [U 1 ; U 2 ]

⎡ π π⎤ ; ⎣ 2 2 ⎥⎦

α ∈ ⎢−

2 ⎛ k tan α t − tan ϕ g k n duˆ n cos α ⎜1 + ξ i 1 − 4 ⎜ k n tan 2 ϕ g ⎝ Ui = 2 k t sin 2 α

ξ 1 = −1

ξ2 = 1

⎞ ⎟ ⎟ ⎠

Discrete analysis of stability from D.E.M. computations (L. Sibille) The Discrete Element Model : ‡ SDEC software (Donzé & Magnier 1997): molecular dynamics approach such as Cundall’s one (1979).

‡ Contact interaction defined by 3 mechanical parameters: 105 ≤ kn ≤ 106 N / m

kt = kn / 0.42 Φ cont = 35°

‡ Cubic form of the specimen; 10 000 spheres; continuous size distribution; dense specimen: 2 ≤ Dsphere ≤ 9 mm

For p = 100 kPa:

n = 0.38

‡ All paths in principal stress (σ1, σ2, σ3) or strain (ε1, ε2, ε3) spaces are allowed. In this lecture: axi-symmetric conditions only.

kt kn

φcont

Discrete analysis of stability from D.E.M. computations ( L. SIBILLE) Stress probes :

on

‡ The initial axi-symmetric stress states: 1. isotropic compression (100, 200 or 300 kPa), 2. triaxial drained compression (σ2 = σ3 = cst.) characterised by: q σ1 − σ 3 = p (σ 1 + σ 2 + σ 3 ) 3

‡ The loading program: • defined in the Rendulic plane of stress increments,

• dσ =

( dσ 1 ) + 2

(

2 dσ 3

)

2

= cte = 1kPa

• 0 ≤ αdσ < 360° → response vectors dε defined in dual plane ( 2dε3, dε1). 2 2 → d W = d W (α dσ )

Discrete analysis of stability from D.E.M. computations Unstable directions : Diagram of f (α dσ ) = d Wnorm. + c 2

with:

d 2Wnorm. =

dσ ⋅ d ε dσ d ε

c such as: f (α dσ ) > 0 σ3 = 100 kPa

σ3 = 200 kPa

→ Cones of "unstable" stress directions observed with the D.E.M.

Discrete analysis of stability from D.E.M. computations Cones of unstable stress directions : D.E.M. and Incremental Non-Linear model Discrete Element Model d²W > 0 Cones of unstable directions (L. Sibille)

Macroscopic phenomenological relation (I.N.L.2 model) calibrated on the drained triaxial responses of D.E.M. (L.Scholtes).

2nd step – from the bifurcation point to the failure • Imposimato and Nova (1998) shown that the full controllability of a loading programme defined by its control parameters can be lost before reaching the plastic limit condition. • The control parameters can be linear combinations of stresses or strains (e.g. volumetric strains).

Loose specimen, η = 0.46, α = 215.3 deg (q = cst ) • Stress probe is fully stress controlled → no failure observed. • Can we choose others control parameters ? d²W = dσ1 dε1 + 2 dσ3 dε3 = dq dε1 + dσ3 dεv • Can we control the loading programme defined by:

α = 215.3°

dq = 0 and dεv = - 0.002 % (dilatancy) ? f (α ) = d 2Wnorm. + c

v

0) (α = 200°, d²W > 0) (α = 210°, d²W < 0) (α = 215.3°, d²W < 0) (α = 220°, d²W < 0) (α = 230°, d²W < 0) (α = 240°, d²W > 0) (α = 250°, d²W > 0) f (α ) = d 2Wnorm. + c

• Small perturbation of the numerical specimen External input of kinetic energy (1 10-5 J) to the specimen by excitements of some floating grains (simulation without gravity).

2nd step – from the bifurcation point to the failure

• For R = 4.01; 1.94; 0.408; 0.257 (d²W > 0) a new stable state is reached. • Total collapse for R = 1.00; 0.843; 0.593 (d²W < 0).

Kinetic energy (J)

• For R = 1.22 (d²W < 0 but stress direction close to the border of the cone ) the collapse is partial.

Simulation time (s)

Simulation time (s)

CONCLUSIONS 1.

Phenomenological analysis : for non associated materials like geomaterials, there is not a single plastic limit surface where failure occurs, but rather a whole domain in the stress space where bifurcations, losses of uniqueness, instabilities … i.e. FAILURES can appear, according to : the stress-strain history the current direction of loading the loading mode

In this bifurcation domain, various failure modes can develop (material instabilities leading to diffuse or localized failures, geometric instabilities, … ) Second order work criterion seems to detect diffuse failure 2.

Micromechanical analysis : it confirms these analyses. Moreover a new micro-mechanical understanding of these material instabilities is proposed by considering the local, discrete, second order work at the grain level.

3.

Discrete element analysis : bifurcation domains and cones of unstable stress-strain directions also exhibited in good qualitative agreement. Diffuse failure was simulated exactly for the conditions predicted by the theory.

These 3, basically different, methods give similar results

Some recent contributions

Book : Degradations and Instabilities in Geomaterials, F. Darve and I. Vardoulakis eds, Springer publ., 367 pages, 2005 Papers : - Darve, F., Servant G., Laouafa F., Khoa H.D.V. (2004): Failure in geomaterials, continuous and discrete analyses, Comp. Meth. In Applied Mech. and Eng., vol. 193, 27-29, 3057-3085. - Nicot, F., and Darve, F. (2005) : A multiscale approach to granular materials. Mechanics of Materials, 37, 980-1006 - Darve, F., and Nicot, F. (2005): On incremental non linearity in granular media, phenomenological and multi-scale views.(I) Int. J. Numerical Analytical Methods in Geomech., vol.29, n°14, 1387-1410 - Darve, F., and Nicot, F. (2005): On flow rule in granular media, phenomenological and multiscale views (II). Int. J. Numerical Analytical Methods in Geomech. ,vol. 29, n°14, 1411-1432 - Nicot, F., and Darve, F. (2005) : Micro-mechanical investigation of material instability in granular assemblies. Int. J. of Solids and Structures, 43, 3569-3595 - H.D.V. Khoa, I.O. Georgopoulos, F. Darve, F. Laouafa (2006): Diffuse failure in geomaterials , experiments and modelling, Comp. Geotechn., vol.33, n°1, 1-14. - Nicot, F., and Darve, F. (2006) : On the elastic and plastic strain decomposition in granular materials., Granular Matter, vol.8, n°3, 221-237 - Sibille L., Nicot F., Donze F.V., Darve F. (2007) : Material instability in granular assemblies from fundamentally different models, Int. J. Num. Anal. Methods in Geomechanics, vol. 31, n°3, 457482 - Nicot F., Sibille L., Donze F., Darve F. ( 2007) : From microscopic to macroscopic second-order work in granular assemblies, Mechanics of Materials, vol.39, n°7, 664-684

II Landslides modelling : Trévoux and Petacciato examples

FINITE ELEMENT MODELLING OF THE TREVOUX AND PETACCIATO LANDSLIDES BY TAKING INTO ACCOUNT UNSATURATED HYDRO-MECHANICAL COUPLING

Application to Trévoux and Petacciato landslides

Trévoux

Petacciato

deep crack (square in front of the parish church).

“Vaccareggia”, crack on the road near the slide boundary.

The Trevoux site

Geographic location of the studied area

The Trevoux site

Typical cross section of the Trevoux landslide

Finite element mesh of the Trevoux landslide

The Petacciato site

Geographic location of the studied area

The Petacciato site

~ 6°

Typical cross-section of the Petacciato landslide

Finite element mesh of the Petacciato coastal slope

Description of the Plasol constitutive model (Liège university)

• Van Eekelen yield criterion : f = I 2σ

⎛ 3c ⎞ ⎜ ⎟⎟ = 0 + m⎜ I σ − tan ϕ c ⎠ ⎝

– With : 1

⎛ rc ⎜⎜ re ⎝ b=

⎞n ⎟⎟ − 1 ⎠

⎛ rc ⎜⎜ ⎝ re

⎞ ⎟⎟ + 1 ⎠

rc =

m = a (1+ b sin 3ϕ )

n

a=

1 n

2 sin ϕ c

3 (3 − sin ϕ c )

re =

n = −0.229

rc (1 + b )n

2 sin ϕ e 3 (3 + sin ϕ e )

Description of the Plasol constitutive model

• evolution of the internal variables : – hyperbolic function of : 2 ε = ∫ ε& dt = ∫ tr (e&) dt 3 t

p eq

t

p eq

0

2

0

tr (ε& ) e& = ε& − 1 3 p

p

– Internal variables : ϕc = ϕc0

(ϕ +

ϕe = ϕe0

(ϕ +

c = c0

(c +

cf

ef

− ϕ c 0 )ε eqp

B p + ε eqp − ϕ e 0 )ε eqp

B p + ε eqp

f

− c0 )ε eqp

Bc + ε eqp



0

= 30°, ϕ f = 35°)

Trévoux soil parameters Comp act marl (6)

Soil parameters

Unit

Upper fill (1)

Low fill (2)

Sand clay (3)

Gravel Gravel ly sand ly marl (5) (4)

Grain specific weight

kN/ m3

26.

26.

29.00

28.00

27.

28.5

Young modulus

MP a

38.6

38.6

30.0

20.0

46.3

100.0

Poisson’s ratio

-

0.29

0.29

0.29

0.29

0.29

0.29

Porosity

-

0.3

0.3

0.5

0.5

0.3

0.3

Intrinsic permeability

m2

10-10

10-10

10-10

10-10

10-14

10-14

Initial friction angle

°

10.0

10.0

10.0

10.0

35.0

35.0

Final friction angle

°

35.0

35.0

35.0

40.0

35.0

35.0

B p coefficient

-

0.008

0.008

0.008

0.008

0.008

0.008

kPa

10.0

15.0

1.0

1.0

100.0

100.0

°

0

0

3.2

3.2

2.0

2.0

Cohesion Dilatancy angle

Petacciato soil parameters Soil parameters

Symbols

Unit

Blue-gray clay

Grain specific weight

ρs

kN/m3

27.

Young modulus

E

MPa

95.0

Poisson’s ratio

ν

-

0.21

Porosity

n

-

0.3

Intrinsic permeability

kw

M2

10-17

Initial friction angle

ϕ0

°

1.0

Final friction angle

ϕf

°

19.0

B p coefficient

Bp

-

0.01

Initial cohesion

c0

kPa

10

Final cohesion

cf

kPa

171

Bc coefficient

Bc

-

0.02

ψ 0 =ψ f

°

0

Dilatancy angle

Hydro-mechanical coupling for the unsaturated soil

• Time dependent model of water transfer : – Pressure head :

hw =

pw

γw

+y

– Generalised Darcy’s law : ν w = − K w ( pc )∇hw – Richard’s equation : water mass balance) With

θ w = nS ew

and

⎛V ⎞ S ew = ⎜⎜ w ⎟⎟ ⎝ Vv ⎠ current

∂θ w T = ∇ (K w ( pc )∇hw ) ∂t

(volume water content)

(Darcy +

Hydro-mechanical coupling for the unsaturated soil

• Richards equation depends on 2 hydrodynamic characteristics : – Water retention curve of Van-Genuchten : S ew = S w +

S w − S rw

(1 + (αp ) )

1 β 1− β

c

– Permeability :

K w = S ew k w

• Effective stress : With :

χ = S ew

⎛V ⎞ S rw = ⎜⎜ w ⎟⎟ ⎝ Vv ⎠ minimal

σ ' = σ − pa 1 + χ ( pa − p w )1

⎛ Vw ⎞ S w = ⎜⎜ ⎟⎟ ⎝ Vv ⎠ maximall

Water retention curve for Trévoux Parameters Maximal degree of saturation Residual degree of saturation

Symbols

S S

w

rw

Unit

Sands

Marls

-

1.0

1.0

-

0.1

0.1

First retention parameter

α

Pa–1

6.8 10–5

2.5 10–5

Second retention parameter

β

-

4.8

2.0

Water retention curve for Petacciato Parameters

Symbols

Maximal degree of saturation

S

w

Residual degree of saturation

S

rw

First retention parameter Second retention parameter

α β

Unit

Clay

-

1.0

-

0.1

Pa–1

1.0 10–5

-

1.35

Implementation of d2W in finite element code Lagamine

• Expression of Hill’s stability criterion : d2 Wpi = dσ'pi : dε pi

– Local second order work : normalised : d Wnorm. = 2

d2 Wpi dσ' pi dε pi

– Global second order work :

Npi

D2 W = ∑ dσ'pi : dε pi .ωpi Jpi pi=1

D2 W

2

normalised, weighted :

D Wnorm. =

Npi

Npi

∑ ω J ∑ dσ'

pi=1

pi pi

pi=1

pi

dε pi

with :

Npi : total number of integration points Jpi : determinant of Jacobian transformation matrix for point pi ωpi: weight factor for point pi

Application to landslides

• Loading program in the simulation : – Initial state: unsaturated soil (dry) – Progressive saturation by increasing the water table – Stability analysis thanks to second order work criterion

• Results : – Iso values of the second order work – Global second order work of the problem vs loading parameter

Application to Trévoux landslide

• Evolution of local second order work – Water rising modelling

Application to Trévoux landslide

• Evolution of local second order work – Water rising modelling

Swelling level level of flood

Application to Trévoux landslide

• Evolution of global second order work :

Downhill water level (m)

Application to Petacciato landslide

• Evolution of local second order work – Water rising modelling

Application to Petacciato landslide

• Evolution of global second order work : 60 STEP 25

50

D2Wnorm

40 STEP 75

30 20

STEP 85

10 0 0

STEP 96

100

200

Upside water

300 level(m)

400

CONCLUSIONS

¾ Locally, Hill’s bifurcation criterion comes before the other criteria (i.e. Mohr-Coulomb plastic limit condition, Rice’s localisation condition, etc.). ¾ Application of Hill’s criterion to stability analyses of non-linear boundary problems : – Material scale : local second order work criterion • detection of different failure modes (localized, diffuse), • description of the propagation of the potentially unstable zones. – Global scale : global criterion by integrating of local second order work into considered volume • description of global stability of the whole body, • highlight of the influence of the parameters of the constitutive behaviour (saturation, hydraulic conductivity, etc.) and events of hydraulic nature (raining, water flow, earthquakes, etc.) or anthropic (constructions, excavations, etc.) to the global stability of body.