Wave Equation with Dynamic BC Theorical and ... - Nicolas Fourrier

Wave Equation with Dynamic B.C.. Theorical and Numerical Approaches. Nicolas Fourrier. UNIVERSITY OF VIRGINIA [email protected]. October 4, 2011.
256KB taille 1 téléchargements 315 vues
Wave Equation with Dynamic B.C. Theorical and Numerical Approaches Nicolas Fourrier

U NIVERSITY

OF

V IRGINIA

[email protected]

October 4, 2011

Nicolas Fourrier (U.V.A.)

P.D.E. Seminar

October 4, 2011

1/1

Overview

Nicolas Fourrier (U.V.A.)

P.D.E. Seminar

October 4, 2011

2/1

Problem Definition

Overview

Nicolas Fourrier (U.V.A.)

P.D.E. Seminar

October 4, 2011

3/1

Problem Definition

Problem to solve

Problem to solve Wave Equation with dynamic boundary condition  utt + cΩ ut = ∆u − kΩ u on Ω du utt + cΓ ut + dη − kΓ ∆Γ u = 0 on Γ

(1)

 on Ω  utt + cΩ ut = ∆u − kΩ u du − kΓ ∆Γ u = 0 on Γ = Γ1,2,3 utt + cΓ ut + dη  u=0 on Γ0

(2)

There are four damping coefficients (cΩ , kΩ , cΓ , kΓ ): c and k denote respectively dynamic and static coefficients Subcript Ω and Γ denote coefficients acting respectively on the interior and on the boundary. Nicolas Fourrier (U.V.A.)

P.D.E. Seminar

October 4, 2011

4/1

Problem Definition

Problem to solve

Problem to solve Wave Equation with dynamic boundary condition  utt + cΩ ut = ∆u − kΩ u on Ω du utt + cΓ ut + dη − kΓ ∆Γ u = 0 on Γ

(1)

 on Ω  utt + cΩ ut = ∆u − kΩ u du utt + cΓ ut + dη − kΓ ∆Γ u = 0 on Γ = Γ1,2,3  u=0 on Γ0

(2)

There are four damping coefficients (cΩ , kΩ , cΓ , kΓ ): c and k denote respectively dynamic and static coefficients Subcript Ω and Γ denote coefficients acting respectively on the interior and on the boundary. Nicolas Fourrier (U.V.A.)

P.D.E. Seminar

October 4, 2011

4/1

Problem Definition

Problem to solve

Problem to solve Wave Equation with dynamic boundary condition  utt + cΩ ut = ∆u − kΩ u on Ω du utt + cΓ ut + dη − kΓ ∆Γ u = 0 on Γ

(1)

 on Ω  utt + cΩ ut = ∆u − kΩ u du − kΓ ∆Γ u = 0 on Γ = Γ1,2,3 utt + cΓ ut + dη  u=0 on Γ0

(2)

There are four damping coefficients (cΩ , kΩ , cΓ , kΓ ): c and k denote respectively dynamic and static coefficients Subcript Ω and Γ denote coefficients acting respectively on the interior and on the boundary. Nicolas Fourrier (U.V.A.)

P.D.E. Seminar

October 4, 2011

4/1

Problem Definition

Problem to solve

Problem to solve Wave Equation with dynamic boundary condition  utt + cΩ ut = ∆u − kΩ u on Ω du utt + cΓ ut + dη − kΓ ∆Γ u = 0 on Γ

(1)

 on Ω  utt + cΩ ut = ∆u − kΩ u du − kΓ ∆Γ u = 0 on Γ = Γ1,2,3 utt + cΓ ut + dη  u=0 on Γ0

(2)

There are four damping coefficients (cΩ , kΩ , cΓ , kΓ ): c and k denote respectively dynamic and static coefficients Subcript Ω and Γ denote coefficients acting respectively on the interior and on the boundary. Nicolas Fourrier (U.V.A.)

P.D.E. Seminar

October 4, 2011

4/1

Problem Definition

Importance of Dirichlet

Imaginary Axis

cΩ =2 cΓ =2 kΩ =1 kΓ =1

1.6i

Real Axis −1.1

½

utt + cΩ ut = ∆u − kΩ u utt + cΓ ut + du dη − kΓ ∆Γ u = 0

0

on Ω on Γ

Imaginary Axis

cΩ =2 cΓ =2 kΩ =1 kΓ =1

1.5i

Real Axis −0.6

  utt + cΩ ut = ∆u − kΩ u utt + cΓ ut + du dη − kΓ ∆Γ u = 0  u=0

Nicolas Fourrier (U.V.A.)

0

on Ω on Γ2,3,4 on Γ1

P.D.E. Seminar

October 4, 2011

5/1

Problem Definition

Domain

No Dirichlet

Γ In this picture: 1

Ω: Interior

2

Γ: Boundary

3

Lx : Length

4

Ly : Width



Ly

Lx

Nicolas Fourrier (U.V.A.)

P.D.E. Seminar

October 4, 2011

6/1

Problem Definition

Domain

Dirichlet on Γ0

Γ In this picture: 1

Ω: Interior

2

Γ: Boundary

3

Lx : Length

4

Ly : Width

Ly



Γ

Γ

Γ0 Lx

Nicolas Fourrier (U.V.A.)

P.D.E. Seminar

October 4, 2011

7/1

Energy Identity

Overview

Nicolas Fourrier (U.V.A.)

P.D.E. Seminar

October 4, 2011

8/1

Energy Identity

Notation

Notation

hu, viΩ =

R

Ω uv

dΩ

|u|2Ω = hu, uiΩ Γ : Boundary on which dynamic BC are applied Γ0 : Dirichlet BC R hu, viΓ = Γ uv d Γ |u|2Γ = hu, uiΓ

The goal is to identify the energies and pull out an energy identity which will be used in the stabilization.

Nicolas Fourrier (U.V.A.)

P.D.E. Seminar

October 4, 2011

9/1

Energy Identity

Introduction

Different steps

 on Ω  utt + cΩ ut = ∆u − kΩ u du utt + cΓ ut + dη − kΓ ∆Γ u = 0 on Γ = Γ1,2,3  u=0 on Γ0

(3)

Multiply by ut and integrate. ∂u ∂η

= kΓ ∆Γ u − utt − cΓ ut on Γ

On Γ0 , u = 0 Derive the boundary and interior energies. Obtain the energy identity.

Nicolas Fourrier (U.V.A.)

P.D.E. Seminar

October 4, 2011

10 / 1

Energy Identity

Result

Result

Energies  EΩ (t) = EΓ (t) =

1 2 1 2

 2  + |∇u|2Ω + kΩ |u|2Ω |ut |Ω |ut |2Γ + kΓ |∇Γ u|2Γ

Energy Identity 1 d 2 dt

[EΩ (t) + EΓ (t)] = −cΩ |ut |2Ω − cΓ |ut |2Γ

Nicolas Fourrier (U.V.A.)

P.D.E. Seminar

October 4, 2011

11 / 1

Stabilization

Overview

Nicolas Fourrier (U.V.A.)

P.D.E. Seminar

October 4, 2011

12 / 1

Stabilization

Introduction

Procedure

 on Ω  utt + cΩ ut = ∆u − kΩ u du utt + cΓ ut + dη − kΓ ∆Γ u = 0 on Γ = Γ1,2,3  u=0 on Γ0

(4)

Multiply by u and integrate. ∂u ∂η

= kΓ ∆Γ u − utt − cΓ ut on Γ

u = 0 on Γ0 Set the left hand side to be the total energy. Set the right hand side to be the remaining terms. Estimate the right hand side.

Nicolas Fourrier (U.V.A.)

P.D.E. Seminar

October 4, 2011

13 / 1

Stabilization

Integration

Integration by Parts Principal Equation Z

0

T

−|ut |2Ω

+

|∇u|2Ω

hu, ut iΩ |0T +

+

kΩ |u|2Ω dt



Z

T 0



∂u ,u ∂η



Γ

+



∂u , ut ∂η



dt =

Γ0

cΩ (|u(0)|2Ω − |u(T )|2Ω ) 2

Normal Term Z

T 0



∂u ,u ∂η

Z

T 0



dt =

Γ

−kΓ |∇Γ u|2Γ +|ut |2Γ dt −

cΓ (|u(T )|2Γ − |u(0)|2Γ ) − hu, ut iΓ |T0 2

It appears two unfriendly terms. Nicolas Fourrier (U.V.A.)

P.D.E. Seminar

October 4, 2011

14 / 1

Stabilization

Use of the energy identity

Recall that the energy identity is: 1d [EΩ (t) + EΓ (t)] = −cΩ |ut |2Ω − cΓ |ut |2Γ 2 dt Using the energy identity allows to rewrite the two unfriendly terms: −

Z

T

0

|ut |2Ω +|ut |2Ω dt

Nicolas Fourrier (U.V.A.)

=

Z

T 0

cΩ cΓ 1 1 |ut |2Ω + |ut |2Γ dt+( + )(E (T )−E (0)) cΓ cΩ 2cΩ 2cΓ

P.D.E. Seminar

October 4, 2011

15 / 1

Stabilization

Z

0

T

Identifying the LHS and RHS

Z T cΩ cΓ 2 2 2 |ut |Ω + |∇u|Ω + kΩ |u|Ω dt + |ut |2Γ + kΓ |∇Γ u|2Γ dt cΓ c Ω 0 1 1 + )(E (0) − E (T )) = hu, ut iΩ |0T + hu, ut iΓ |0T + ( 2cΩ 2cΓ cΩ cΓ + (|u(0)|2Ω − |u(T )|2Ω ) + (|u(0)|2Γ − |u(T )|2Γ ) 2 2

Nicolas Fourrier (U.V.A.)

P.D.E. Seminar

October 4, 2011

16 / 1

Stabilization

Left Hand Side

Estimate the LHS

Left Hand Side Let c = max{ ccΩΓ , ccΩΓ } ≥ 1 T

cΩ |ut |2Ω + |∇u|2Ω + kΩ |u|2Ω dt + c c 0 cΓ Z T EΩ (t) + EΓ (t)dt ≥ Z

Z

T 0

cΓ |ut |2Γ + kΓ |∇Γ u|2Γ dt cΩ

0

=

Z

T

E (t)dt 0

Nicolas Fourrier (U.V.A.)

P.D.E. Seminar

October 4, 2011

17 / 1

Stabilization

Right Hand Side

Estimate the RHS I Recall 1 1 + )(E (0) − E (T )) + hu, ut iΩ |0T + hu, ut iΓ |0T 2cΩ 2cΓ cΓ cΩ + (|u(0)|2Ω − |u(T )|2Ω ) + (|u(0)|2Γ − |u(T )|2Γ ) 2 2

RHS = (

First estimate (

1 1 1 1 + )(E (0) − E (T )) ≤ ( + )E (0) 2cΩ 2cΓ cΩ cΓ

Nicolas Fourrier (U.V.A.)

P.D.E. Seminar

October 4, 2011

18 / 1

Stabilization

Right Hand Side

Estimate the RHS II

Second estimate Let k = max{ k1Ω , kDΓ }, and D be a Poincaré constant. hu, ut iΩ |0T + hu, ut iΓ |0T   1 D )EΩ (0) + (1 + )EΓ (0) ≤ 4 (1 + kΩ kΓ ≤ 4 [(1 + k)EΩ (0) + (1 + k)EΓ (0)] ≤ (4 + 4k)E (0)

Nicolas Fourrier (U.V.A.)

P.D.E. Seminar

October 4, 2011

19 / 1

Stabilization

Right Hand Side

Estimate the RHS III

Third estimate Γ Let ck = max{ ckΩΩ , Dc kΓ }

cΩ cΓ (|u(0)|2Ω − |u(T )|2Ω ) + (|u(0)|2Γ − |u(T )|2Γ ) 2 2 2cΩ 2DcΓ EΩ (0) + EΓ (0) ≤ kΩ kΓ ≤ 2ck E (0)

Nicolas Fourrier (U.V.A.)

P.D.E. Seminar

October 4, 2011

20 / 1

Stabilization

Energy Estimate

Recall Z

T

E (t)dt ≤ c × (LHS)

0

RHS ≤ E (0)(4 + 4k +

Final Estimate Z T

1 1 + + 2ck ) cΩ cΓ

E (t)dt ≤ E (0)c(4 + 4k +

0

   c ck where   k

1 1 + + 2ck ) cΩ cΓ

= max{ ccΩΓ , ccΩΓ } Γ = max{ kcΩΩ , Dc kΓ } 1 D = max{ kΩ , kΓ }

Nicolas Fourrier (U.V.A.)

P.D.E. Seminar

October 4, 2011

21 / 1

Numerical Results

0

Impact of kΩ

Maximum of eigenvalues real part in function of cΩ

−0.2

−0.4

−0.6

−0.8

−1

0

0.2

cΩ =2 cΓ =2 kΩ =0.4 kΓ =1

0.4

0.6

0.8

1

1.6

1.8

2

1.5i

Real Axis

Nicolas Fourrier (U.V.A.)

1.4

Imaginary Axis

cΩ =2 cΓ =2 kΩ =1.4 kΓ =1

  utt + cΩ ut = ∆u − kΩ u utt + cΓ ut + du dη − kΓ ∆Γ u = 0  u=0

1.2

−1.1

0

on Ω on Γ2,3,4 on Γ1

P.D.E. Seminar

October 4, 2011

22 / 1

Numerical Results

Impact of kΓ

−0.2 −0.3

Maximum of eigenvalues real part in function of kΓ

−0.4 −0.5 −0.6 −0.7 −0.8 −0.9 −1

0

0.5

cΩ =2 cΓ =2 kΩ =1 kΓ =0.4

1

1.5

2

3.5

4

2.5i

Real Axis

Nicolas Fourrier (U.V.A.)

3

Imaginary Axis

cΩ =2 cΓ =2 kΩ =1 kΓ =2.8

  utt + cΩ ut = ∆u − kΩ u utt + cΓ ut + du dη − kΓ ∆Γ u = 0  u=0

2.5

−0.88

0

on Ω on Γ2,3,4 on Γ1

P.D.E. Seminar

October 4, 2011

23 / 1

Numerical Results

Impact of cΩ

0

Maximum of eigenvalues real part in function of cΩ −0.2

−0.4

−0.6

−0.8

−1

0

0.5

cΩ =0.9 cΓ =2 kΩ =1 kΓ =1

cΩ =1.9 cΓ =2 kΩ =1 kΓ =1

1

2

  utt + cΩ ut = ∆u − kΩ u utt + cΓ ut + du dη − kΓ ∆Γ u = 0  u=0

2.5

3

3.5

4

Imaginary Axis

cΩ =3.5 cΓ =2 kΩ =1 kΓ =1

1.5i

Real Axis

Nicolas Fourrier (U.V.A.)

1.5

−1.9

0

on Ω on Γ2,3,4 on Γ1

P.D.E. Seminar

October 4, 2011

24 / 1

Numerical Results

Impact of cΓ

−0.4

Maximum of eigenvalues real part in function of cΓ

−0.5 −0.6 −0.7 −0.8 −0.9 −1 −1.1

0

0.5

cΩ =2 cΓ =0.9 kΩ =1 kΓ =1

cΩ =2 cΓ =2.1 kΩ =1 kΓ =1

1

2

  utt + cΩ ut = ∆u − kΩ u utt + cΓ ut + du dη − kΓ ∆Γ u = 0  u=0

2.5

3

3.5

4

Imaginary Axis

cΩ =2 cΓ =2.9 kΩ =1 kΓ =1

Real Axis

Nicolas Fourrier (U.V.A.)

1.5

1.5i

−1.2

0

on Ω on Γ2,3,4 on Γ1

P.D.E. Seminar

October 4, 2011

25 / 1

Numerical Results

Impact of kΓ on cΓ

−0.4 −0.5 −0.6

Maximum of eigenvalues real part in function of cΓ

−0.7 −0.8 −0.9 −1 −1.1 0.5

cΩ =2 cΓ =1 kΩ =1 kΓ =2.5

1

cΩ =2 cΓ =2 kΩ =1 kΓ =2.5

1.5

2.5

  utt + cΩ ut = ∆u − kΩ u utt + cΓ ut + du dη − kΓ ∆Γ u = 0  u=0

3

3.5

4

4.5

Imaginary Axis

cΩ =2 cΓ =4.2 kΩ =1 kΓ =2.5

Real Axis

Nicolas Fourrier (U.V.A.)

2

2.3i

−1.5

0

on Ω on Γ2,3,4 on Γ1

P.D.E. Seminar

October 4, 2011

26 / 1

c Impact of c Γ

Numerical Results



0

Maximum of eigenvalues real part in function of cΩ

−0.2

−0.4

−0.6

−0.8

−1

0

0.5

cΩ =0.6 cΓ =0.6 kΩ =1 kΓ =1

cΩ =2 cΓ =2 kΩ =1 kΓ =1

1

1.5

2.5

  utt + cΩ ut = ∆u − kΩ u utt + cΓ ut + du dη − kΓ ∆Γ u = 0  u=0

3

3.5

4

4.5

Imaginary Axis

cΩ =3 cΓ =3 kΩ =1 kΓ =1

1.6i

Real Axis

Nicolas Fourrier (U.V.A.)

2

−1.6

0

on Ω on Γ2,3,4 on Γ1

P.D.E. Seminar

October 4, 2011

27 / 1