supplementary material individual variability in ... - Ghislain Vieilledent

(ha). Number of trees (first census). Species (% of stems at first census). First ..... Density. 0.000. 0.002. 0.004. 0.006. 0.008. 0. 100. 300. 500. 700. µj densities. µj.
1MB taille 4 téléchargements 279 vues
SUPPLEMENTARY MATERIAL

INDIVIDUAL VARIABILITY IN TREE ALLOMETRY DETERMINES LIGHT RESOURCE ALLOCATION IN FOREST ECOSYSTEMS – A HIERARCHICAL BAYESIAN APPROACH.

in Oecologia

Ghislain Vieilledent?,1,2,3

Benoît Courbaud1,6

Jean-François Dhôte4,5

and

Georges Kunstler1

James S. Clark6

[?] Corresponding author: \E-mail: [email protected] \Phone: 00.33.4.67.59.37.48 \Fax: 00.33.4.67.59.37.33 [1] Cemagref –Mountain Ecosystems Research Unit, 2 rue de la Papeterie, BP 76, F–38402 Saint-Martin-d’Hères cedex, France [2] AgroParisTech–UMR1092, Laboratoire d’Etude des Ressources Forêt Bois, 14 rue Girardet, F–54000 Nancy, France [3] Cirad–UR105 Forest Ecosystem Goods and Services, TA C-105/D, Campus International de Baillarguet, F–34398 Montpellier Cedex 5, France [4] INRA–UMR1092, Laboratoire d’Etude des Ressources Forêt Bois, 14 rue Girardet, F–54000 Nancy, France [5] ONF–Département Recherche, Boulevard de Constance, F–77300 Fontainebleau, France [6] Duke University–Nicholas School of the Environment and Earth Sciences, box 90328 Durham NC, 27708, USA

1

Site Site name number 1

Luan

Country

Alps region

Elevation (m)

Latitude

Longitude

Switzerland

Canton of Vaud

1442

46° 21' 45” N

6° 58' 16” E

Species (% of stems at Number of first census) Surface First Second trees (first (ha) census census census) Abies Picea Others alba abies 1.00

339

24

22

54

2004

–

2

Miroir1

France

Tarentaise

1357

45° 36' 18" N

6° 53' 07" E

0.25

375

95

5

0

1994

2006

3

Miroir3

France

Tarentaise

1377

45° 36' 19" N

6° 53' 09" E

0.25

319

91

9

0

1994

2006

4

Premol

France

Belledone

1434

45° 06' 41" N

5° 51' 26" E

0.80

503

34

45

20

2005

–

5

Queige

France

Beaufortain

1358

45° 41' 57'' N

6° 27' 30'' E

0.50

285

51

49

0

2002

–

6

Sixt

France

Haut Giffre

1520

46° 01' 16" N

6° 48' 51" E

0.25

608

1

95

5

1994

2006

7

SteFoy

France

Tarentaise

1642

45° 33' 08'' N

6° 54' 23'' E

0.25

219

0

99

1

1994

2006

8

StRhemy

Italy

Aosta Valley

1874

45° 50’ 16” N

7° 11’ 18” E

0.30

96

0

91

9

2003

–

9

Teppas

Italy

Aosta Valley

1720

45° 02' 36'' N

6° 40' 30'' E

2.00

939

73

21

6

1998

–

Appendix S1: Plot characteristics. Trees were measured on nine different plots ranging in size from 0.25 ha to 1 ha. Six plots were located in the French Alps, two in the Italian Alps and one in the Swiss Alps. Stands are uneaven-aged. Abies alba Mill. (Silver Fir) and Picea abies (L.) Karst. (Norway spruce) are the dominant species. All sites are situated at the mountain-belt elevation from 800 to 1800 m.

2

25

50

20

40

Mean Linear Power Quotient Michaelis−Menten Gompertz Mean by DBH class

Mean Linear Power Mean by H class

● ● ●



CH (m)



H (m)





15

30

● ●





10

20





● ●

5

10



● ●

0

0



0

10

20

30

40

50

60

70

80

90

100

110

0

10

20

30

40

H (m)

DBH (cm)

(b)

10

(a)

8

Mean Linear Power Mean by DBH class

CR (m)

6





● ●

4

● ●

● ● ●

2



0



0

10

20

30

40

50

60

70

80

90

100

110

DBH (cm)

(c)

Appendix S2: Graphical superposition of calibrated mathematical functions with points representing the mean of the response by covariate class. Allometries are: (a) height as a function of DBH, (b) crown height as a function of height and (c) crown radius as a function of DBH. Some parametric functions may be too much constrained by an unbalanced data-set, where the number of smaller trees is much more important than the number of bigger trees. Here we show that the graphical superposition of the mathematical function selected and the mean by DBH class (or H class) was good and that selected models were not biased because of an unbalanced data-set.

3

(a) H-DBH Model description

Model number

Effects (Y: yes, n: no) Mathematical function

Posterior mean of deviance

pD

DIC

Covariate DBH

Parameters

Mean model

H1

n

4012.59

1.99

4014.58

Linear model

H2

Y

276.47

1.94

278.41

Power model

H3

Y

271.90

3.25

275.15

Monod model

H4

Y

176.10

2.97

179.07

Michaelis-Menten model

H5

Y

168.09

3.18

171.26

Gompertz model

H6

Y

-198.82

3.05

-195.78

Effects (Y: yes, n: no)

pD

DIC

Covariate H

Posterior mean of deviance

(b) CH-H Model description

Model number

Mathematical function

Parameters

Mean model

CH1

n

2868.67

1.98

2870.65

Power model

CH2

Y

1521.62

2.90

1524.52

Linear model

CH3

Y

1529.80

2.01

1531.81

Effects (Y: yes, n: no)

Posterior mean of deviance

pD

DIC

Covariate DBH

(c) CR-DBH Model description

Model number

Mathematical function

Parameters

Mean model

CR1

n

1685.17

1.99

1687.15

Linear model

CR2

Y

1862.47

2.01

1864.48

Power model

CR3

Y

301.95

2.96

304.91

Appendix S3: Model comparison for the three allometric relations. Allometries are (a) height as a function of DBH, (b) crown height as a function of height and (c) crown radius as a function of DBH. The lower the DIC, the best the model. A difference of more than 10 in the DIC rules out the model with the higher DIC. For equivalent DIC, we selected the model with the lower deviance. If the deviance difference was inferior to 10, we applied the parsimonious principle selecting the model with fewer parameters (with the lowest pD).

4

Appendix S4: Measurement errors Model for measurement errors Indexes and notations i: Index of the tree. t: Index of the measuring team. T : Number of measurements for each tree (T = 3). I: Number of trees in the measurement error protocol (I = 50). zit : Measurement t of variable for tree i. z can be DBH, height, crown height or crown radius. Z: Vector of observed values zit . zi,0 : Latent variable (“true value”) z for tree i. Z0 : Vector of “true values” zi,0 . σz2 : Variance for measurement errors. N : Normal distribution. LN : Log-normal distribution. IG: Inverse-gamma distribution. Bayes formula p(parameter|data, model) ∝ Likelihood × Prior Likelihood The likelihood is defined as the probability of observing the data under the assumption that the model is true: Q Q p(Z|Z0 , σz2 ) = Tt=1 Ii=1 LN (zit |log(zi,o ), σz2 ) Priors p(log(zi,0 )) = N (log(zi,0 )|ui , vi ), with ui = 0 and vi = 1.0 × 106 p(σz2 ) = IG(σz2 |s1 , s2 ), with s1 = 1.0 × 10−3 and s2 = 1.0 × 10−3 Joint posterior Q Q p(Z0 , σz2 |Z, priors) ∝ Tt=1 Ii=1 p(zit |zi,o , σz2 )p(zi,0 )p(σz2 ) Q Q p(Z0 , σz2 |Z, priors) ∝ Tt=1 Ii=1 LN (zit |log(zi,o ), σz2 )N (log(zi,0 )|ui , vi )IG(σz2 |s1 , s2 ) Conditional posterior for parameter σz2 Q Q p(σz2 |Z, Z0 , priors) ∝ Tt=1 Ii=1 LN (zit |log(zi,o ), σz2 )IG(σz2 |s1 , s2 )

5

Measurement error results MCMC provided 1000 estimates for σz2 . The mean and standard variation for σz2 were calculated for each dendrometric variable (Tab. S4). We were able to estimate the precision of our measurement as a percentage (Tab. S4) because we considered multiplicative errors: zit = zi,0 exp(it ). For a 95% confidence interval: −2¯ σz ≤ it ≤ +2¯ σz exp(−2¯ σz ) ≤ exp(it ) ≤ exp(+2¯ σz ) 100(exp(−2¯ σz ) − 1)(%) ≤ measurement error(%) ≤ 100(exp(+2¯ σz ) − 1)(%) Results showed a very good estimation of the DBH with a low measurement error (0.93%). Height was also quite well estimated with an error close to 10%. The two other variables, crown height and crown radius, were quite difficult to measure in the field and had a range of precision of approximately 50% and 30%, respectively.

Variable

Model

Mean (σ²z)

Sd (σ²z)

Measurement error (%) confidence interval at 95% lower bound

upper bound

DBH

2.21E-05

3.42E-06

-0.93

0.94

H

3.97E-03

6.13E-04

-11.84

13.43

CH

7.78E-02

1.23E-02

-42.76

74.69

CR

2.42E-02

3.75E-03

-26.74

36.50

Appendix S4: Means and standard deviations for variance associated to measurement errors. Means and variances were calculated from the thousand simulations of σz2 obtained with MCMC. Credible interval at 95% for the measurement errors were computed. As errors were multiplicative they were expressed in percentage.

6

Abies alba µj densities

r density

15

3.2

3.3

3.4

3.5

3.6

50 0.082

0.084

0.086

0.088

0.090

3.1

3.2

3.3

3.4

3.5

3.6

3.7

0.072

0.074

0.076

0.078

r τ2 density

0.082

50

100

150

0.080

0.03

0.04

0.05

0.06

0.020

0.025

0.030

0.035

0.040

0.000

0.005

0.010

0.015

0.020

0.030

0.035

0.040

τ2 σ2y density

2e−05

3e−05

4e−05

0.002

0.004

0.006

σy2

0.008

0.006

0.008

500

0.050

0 100

0 0.000

σx2

0.045

300

Density

80000

Density

40000

500 0 100

300

Density

80000 40000

1e−05

700

Vδ σ2x density

120000

τ2 σ2y density

700

Vδ σ2x density

0 0e+00

0

0

20 0

10

50

100

Density

Density

150

100 80 60

Density

40

50 40 30

200

µj V δ density

200

r τ2 density

20

Density

0

0 0.080

µj V δ density

0

0.02

120000

0.01

Density

200

Density

5

50 0

0

3.1

60

3.0

100

10

Density

150

Density

100

10 5

Density

200

15

250

r density

300

µj densities

Picea abies

0e+00

1e−05

2e−05

3e−05

4e−05

0.000

0.002

0.004

σy2

σx2

(a) µj densities

µj densities 8

6

6 4

Density

4 3

Density

2

2 0.0

0.5

1.0

0.10

0.15

0.20

0.25

0.30

0.35

−0.5

0.0

0.5

1.0

1.5

0.35

0.40



τ2 density

σx2

τ2 density

σx2

0.03

0.04

0.001

0.003

0.005

0.007

600 0.07

0.001

40 20

30

σ2y

0.10

0.12

0.14

0.02

(b)

7

0.04

0.06

0.08

σ2y

0.003

0.005

σ2x

10 0.08

0.55

400

Density 0.05

σ2y

0

10

20

Density

30

40

0.03

τ2

0

0.06

0.50

0 0.01

σ2x

σ2y

0.45

200

30 10 0

0 0.02

20

Density

400

Density

200

60 80

600

40

µj

0.01

0.04

0.30



τ2

0.02

0.25

µj

20 40 0.00

0

0

1

2 0

0

−0.5

0

Density

−1.0

Density

V δ density

5

8 10 6

Density

4

4 2

Density

6

8

V δ density

0.10

0.12

0.14

0.007

35

Density

25

15 10

Density

5

15

Density

25

35

20 15 10

b densities

−0.6

−0.5

−0.4

−0.3

−0.2

0.40

0.42

0.44

0.46

0.48

0.50

−0.4

0.48

0.50

0.52

V δ densities

τ2 densities

0.010

0.015

0.020

0.025

3.5e−05

σ2y

0.010

0.015

densities

0.030

0.040

5.0e−06

σ2y

Density

densities

0

Density 0.020

0.005

τ2

0 0.010

0.025

60

Density 0.040

100000

densities

100

Density 2.5e−05

σ2x

0.030



0

40000 0

1.5e−05

0.020

σ2x

50

100000

150

densities

0.020

0 20 0.010

τ2 σ2y

150

0.005

100

0.025

0.56

50

0.020

60 80

Density

0

0 0.015

20 40

80

Density

40

100

0.010

0.54

100

τ2 densities 120

V δ densities

50

Density

−0.6

b



Density

−0.8

µj

σ2x

5.0e−06

−1.0

b

0 0.005

0 5 −1.2

µj

40000

−0.7

150

−0.8

0

0

0 5

5

Density

µj densities

b densities

15

µj densities

1.5e−05

2.5e−05

σ2x

3.5e−05

0.010

0.020

σ2y

0.030

0.040

(c) Appendix S5: Posteriors and priors for parameters. Allometries are: (a) height as a function of DBH, (b) crown height as a function of height and (c) crown radius as a function of DBH. Priors are represented with dashed lines (- - -) and posteriors with plain lines (—). We used informative priors for the measurement error variance on response (σy2 ) and on covariate (σx2 ). All other priors were taken non-informative.

8

(a) H-DBH Parameter

Abies alba

Picea abies

Mean

Sd

Mean

Sd

3.34E+00

4.74E-02

3.42E+00

3.94E-02

µ [Miroir1]

3.24E+00

4.03E-02





µ [Miroir3]

3.35E+00

4.20E-02





µ [Premol]

3.19E+00

4.02E-02

3.39E+00

4.17E-02

µ [Queige]

Signification

3.28E+00

3.59E-02

3.53E+00

2.84E-02

µ [Sixt]

site fixed effects





3.52E+00

2.93E-02

µ [SteFoy]





3.44E+00

2.89E-02

µ [StRhemy]





3.30E+00

3.26E-02

3.34E+00

3.15E-02

3.23E+00

3.96E-02

8.46E-02

1.55E-03

7.67E-02

1.45E-03

3.12E-02

7.42E-03

1.08E-02

2.33E-03

3.97E-03

6.14E-04

3.97E-03

6.14E-04

2.21E-05

3.40E-06

2.21E-05

3.40E-06

2.94E-02

3.61E-03

4.03E-02

2.45E-03

µ [Teppas] r V

σ²y σ²x τ²

fixed f parameter variance of individual random effects variance of log-measurement errors on response H variance of log-measurement errors on covariate DBH variance of log-errors

(b) CH-H Parameter

Abies alba Mean

Sd

Mean

Sd

3.67E-01

1.26E-01

7.72E-01

1.39E-01

µ [Miroir1]

-6.04E-01

1.12E-01





µ [Miroir3]

-2.76E-01

1.11E-01





µ [Premol]

-5.19E-01

1.38E-01

1.37E-02

1.46E-01

µ [Queige]

Signification

Picea abies

site fixed effects

7.14E-01

6.16E-02

4.88E-01

8.45E-02

µ [Sixt]





-6.95E-02

1.33E-01

µ [SteFoy]





4.01E-01

6.99E-02

µ [Teppas]

2.09E-01

5.00E-02

3.03E-01

1.12E-01

2.13E-01

3.44E-02

3.80E-01

5.10E-02

7.79E-02

1.19E-02

7.79E-02

1.19E-02

3.97E-03

6.14E-04

3.97E-03

6.14E-04

1.78E-02

5.36E-03

4.48E-02

1.16E-02

V

σ²y σ²x τ²

variance of individual random effects variance of log-measurement errors on response CH variance of log-measurement errors on covariate H variance of log-errors

(c) CR-DBH Parameter

Abies alba Mean

Sd

Mean

Sd

-3.27E-01

6.45E-02

-6.41E-01

6.46E-02

µ [Miroir1]

-6.38E-01

4.57E-02





µ [Miroir3]

-5.88E-01

5.26E-02





-6.07E-01

5.51E-02

-9.18E-01

5.55E-02

-3.54E-01

4.30E-02

-7.74E-01

4.48E-02





-1.03E+00

4.56E-02 3.99E-02

µ [Premol] µ [Queige]

Signification

Picea abies

site fixed effects

µ [Sixt] µ [SteFoy]





-9.78E-01

µ [Teppas]

-4.77E-01

3.26E-02

-7.74E-01

4.19E-02

4.54E-01

1.33E-02

5.25E-01

1.20E-02

1.48E-02

2.78E-03

2.49E-02

4.23E-03

2.42E-02

3.73E-03

2.42E-02

3.73E-03

2.21E-05

3.40E-06

2.21E-05

3.40E-06

1.34E-02

2.70E-03

1.48E-02

3.35E-03

b V

σ²y σ²x τ²

fixed f parameter variance of individual random effects variance of log-measurement errors on response CR variance of log-measurement errors on covariate DBH variance of log-errors

Appendix S6: Means and standard deviations of the estimated parameters for the best allometric models. Allometries are: (a) height as a function of DBH, (b) crown height as a function of height and (c) crown radius as a function of DBH.

9