Report Dra. Edith Perrier May 17th-September 16th

Perspective 2: Towards direct modeling of porous media images . ... This contribution aims at investigate new concepts and tools to be developed then ..... calculations were done so far on squared on cubes representations equivalent ... solid area (colored brown), with a probability pS, or a pore area (colored white), with a.
4MB taille 41 téléchargements 202 vues
Report  Dra.  Edith  Perrier     May  17th-­September  16th         Advising on the Project 168638, SENERCONACYT-Hidrocarburos Yacimiento Petrolero como un Reactor Fractal leaded by Dra. K.Oleshko: How to estimate oil-water capillary pressure curves and relative oil and permeability curves in naturally fractured and vuggy oil reservoirs from multiscale geological data?

     

      1.  Introduction .....................................................................................................................................................2   2.  Modelling    fractal  fractured  porous  media .........................................................................................4   3.  Modelling  fractured  and  vuggy  porous  media:  first  attempts....................................................6   4.  The  key  issue  of  connectivity  addressed  through  network  modeling. ...................................9   5.  Perspective  1:  Towards  a  new  network  model  with  triple  porosity ....................................12   6.  Perspective  2:  Towards  direct  modeling  of  porous  media  images .......................................17   7.  Fractal  and  percolation  modeling........................................................................................................20   8.  First  conclusions..........................................................................................................................................21   9.  References......................................................................................................................................................22   10.  Appendices  (description  of  already  delivered  codes)..............................................................23   10.1.  SIM-­‐POR ...............................................................................................................................................23   10.2.  MF...........................................................................................................................................................26    

 

1  

1.  Introduction     This   contribution   aims   at   investigate   new   concepts   and   tools   to   be   developed   then   applied  to  model  oil  recovery  in  multiscale,  naturally  fractured  vuggy  reservoirs,  in  the   context  of  data  acquisition  and  modeling  done  by  the  whole  team  involved  in  the  project   leaded  by  Dra.  Oleshko.       From  the  available  literature  in  the  domain,  a  preliminary    conclusion  is  that  research  in   the  domain  is  still  in  its  infancy.    As  mentioned  by  Wu  et  al.  (2011),  even  if  the  existence   of   vugs   or   cavities   in   naturally   fractured   reservoirs   has   long   been   observed,   and   even   though  these  vugs  are  known  for  their  large  contribution  to  reserves  of  oil,  natural  gas,   or  groundwater,  few  quantitative  investigations  of  fractured  vuggy  reservoirs  have  been   conducted.   Arbogast   and   Gomez   (2009)   conducted   numerical   simulations   at   the   interface   between   the   Stokes   and   Darcy   flow   domains,   they   studied   the   macroscopic   effective   permeability   of   a   vuggy   medium,   and   showed   that   «  the   influence   of   vug   orientation,  shape,  and,  most  importantly,  interconnectivity  determine  the  macroscopic   flow   properties   of   the   medium  ».   Mayur   Pal   (2012)   states   that   the   «  traditional  »   numerical   modeling   of   flow   through   vuggy   porous   media   using   coupled   Darcy–Stokes   equations  poses  several  numerical  challenges  and  proposes  an  alternative  method,  the   upscaled   Stokes-­‐Brinkman  model.  Such  attempts  at  the  level  of  fluid  dynamics  modeling   are  still  very  theoretical  and  cannot  predict  the  behavior  of  a  given  reservoir  from  field   data,   they   mainly   investigate   the   shape   of   relative   permeability   curves   to   be   fitted   on   direct   measurements.     Lv   et   al.   (2011)  consider   that   there   is   an   urgent   need   to   research   the  oil-­‐water  flowing  law  and  influence  mechanism  of  fractured-­‐vuggy  medium  so  as  to   provide   the   basis   for   accurately   prediction   of   reservoir   performance…   and   they   carry   out  a  series  of  numerical  fluid  flow  experiments  on  fracture  network  models  firstly,  then   adding   some   vugs   with   different   position   to   assess   the   influence   of   vug   density   and   vug-­‐ fracture   connectivity   on   the   shape   of   the   relative   permeability   curves   as   a   function   of   water  saturation,  without  any  comparison  with  real  data  at  this  stage.       In  this  report,  I  present  first  some  similar  work  (see  following  section  2),  starting  from   programs  initially  developed  to  model  fractal  pore  networks  (Perrier  et  al.,  1995)  and  to   simulate   associated   retention   curves   and   water   conductivity   in   aggregated   soils.   As   mentioned   by   Gringarten   (2008)   many   analysis   techniques   used   in   Petroleum   Engineering   originated   from   subsurface   hydrology.   The   programs   were   adapted   to   simulate   the   oil-­‐water   capillary   pressure   curve   and   the   oil   and   water   relative   permeability  curves  from  a  network  of  embedded  fractures  similar  to  the  pore  network   defined  by  a  widely  used  mass  fractal  model  of  porous  media  (Rieu  and  Sposiro,  1991).   These  programs  were  also  updated  to  provide  a  new  interface  for  any  end-­‐user  to  easily   understand   the   principles   of   network   pore-­‐scale   modeling   now   widely   used   in   Petroleum  Research  (e.g.  Al-­‐Kharusi  and  Blunt,  2007,  2008).     Then   the   initial   model   was   modified   to   include   vugs   (section   3).   First   simulations   confirm   that   connectivity,   which   is   an   important   issue   whatever   the   model   as   regards   the   prediction   of   permeability,   is   a   particularly   key   issue   for   vugs.   Their   more   or   less   spherical  shape  is  a  from  pure  geometrical  reasons  a  priori  associated  to  disconnected   holes,   where   trapped   oil   from   ancient   days   could   not   be   recovered   unless   by   pumping   directly  in  the  filled  hole!    In  fact,  we  know  that  they  may  be  connected,  either  because  

 

2  

they  are  crossed  by  fractures  or  because  they  are  linked  trough  smaller  fissures,  as  those   exhibited   in   section   3.   More   generally,   apparently   isolated   vugs   at   a   given   scale   of   observation  can  be  connected  through  (micro)pores  that  would  be  revealed  at  a  smaller   scale  through  what  is  called  the  matrix  at  the  observation  level.  It  appears  necessary  to   build  first  a  triple  porosity  model  accounting  for  the  three  types  of  porosity  (fractures,   vugs,  matrix),  then  to  address  the  upscaling  issue.     Connectivity  is  difficult  to  assess  from  2D  information,  but  3D  simulators  are  very  time   and   memory   consuming.   Section   4   presents   a   pseudo-­‐3D   simulator   where   one   can   consider  several  planes,  including  intra-­‐plane  connections  and  inter-­‐planes  connections,   using  first  the  same  type  of  models  as  those  presented  in  section  2  and  3  in  each  plane.   The   focus   is   on   network   modeling   considering   that   the   detailed   physically   based   assumptions  made  as  regards  fluid  flow  in  each  type  of  porosity  are  so  far  less  important   than   finding   ways   to   account   for   the   local   connections   which   rules   the   macroscopic   connectivity   thus   a   major   component   of   the   permeability.   The   part   of   the   present   available  code  dealing  with  the  simulation  of  retention  curves  and  relative  permeability   curves  from  the  input  of  any  set  of  interconnected  conducting  objects  is  quite  general,   and  can  be  quickly  adapted  to  deal  with  any  type  of  network,  either  in  2D  or  3D,  since   only   the   links   or   connections   between   objects   are   important   in   a   network   model.   But   before   launching   the   actual   development   of   new   computer   codes   that   can   be   used   by   end-­‐users,   which   is   always   consuming   a   lot   of   time,   we   first   investigated   different   options  from  the  conceptual  design  of  possible  algorithms.    The  underlying  question  is:   how  to  build  both  realistic  and  tractable  triple  porosity  network  models?     In   section   5   and   6,   I   propose   two   directions   for   future   work,   which   may   complement   each   other.   The   goal   is   obviously   to   calibrate   models   from   real   data.   But   there   are   at   least  two  ways  to  proceed:     1)  Either  we  consider  some  kind  of  inverse  modeling:   That   is   we   start   from   theoretical   models,   and   whatever   the   type   of   selected   conceptualization   (either   mathematical   models   based   on   fluid   dynamic   modeling   including   different   conceptual   parameters   linked   to   different   types   of   porosities,   or   computer   models   based   on   networks   involving   also   parameters   associated   with   different  types  of  porosities),  the  model  parameters  will  be  fitted  a  posteriori  to  match   real   measured   retention   or   permeability   curves.     We   will   consider   this   perspective,   which  is  the  most  classical  in  academic  research,  in  section  5.    A  first  proposal  would  be   to   work   on   extensions   of   the   PSF   model   developed   initially   by   Perrier,   Bird   and   Rieu   (1999)  for  soils  and  which  appears  quite  convenient  to  model  fractal  size  distributions   of  vugs  and  matrix  areas  in  rocks,  and  could  be  coupled  with  a  fracture  model.     2)  Or  we  consider  some  kind  of  direct  modeling:   We   look   at   the   available   geological   data   and   measurable   variables,   that   is   in   the   present   projects,   images   in   2D,   or   maybe   in   3D,   and   we   build   models   integrating   a   priori   such   data,  which  seems  more  appealing  in  applied  research  but  has  also  some  shortcomings.   We   will   address   this   second   option   in   section   6.   We   refer   to   previous   work   done   par   Delerue   and   Perrier   (2002)   initially   to   extract   pore   networks   from   soil   tomographical   3D   images,   but   a   new   code   would   also   have   to   be  developed   to   account   for   the   matrix   since   this   code   was   working   on   binarized   images   of   the   pore   space   where   vugs   would   have  been  detected  as  pure  disconnected  holes,     Finally   we   will   address   briefly   in   section   7   the   issue   of   multiscale   fractal   modeling   where   some   theoretical   developments   mail   help   to   deal   with   upscaling     from   micro   to   meso  then  macro  scale  of  a  large  reservoir.    

 

3  

2.  Modelling    fractal  fractured  porous  media     A   multiscale   algorithm   was   developed   to   generate   a   network   of   fractures   according   to   the   Rieu   and   Sposito(1991)   fractal   model.     An   example   is   given   if   Fig.2.1:   any   given   studied  area  can  be  divided  into  embedded  polygonal  subareas  according  to  seeds  given   at   each   observation   level.   In   the   example   below,   N=10   random   points   are   the   initial   seeds  at  level  1  (Fig.2.1.a),  the  same  number  of  divisions  are  used  at  level  2  (Fig.2.1.b),   and  at  level  3  we  get  1000  polygons.  Applying  the  same  similarity  ratio  k=96%  to  each   polygon  generates  the  mass  fractal  medium  of  dimension  D  (D=1+LogN/(LogN-­2Logk)).       colored  in  brown    (Fig.2.1.c)  and  a  fractal  number  size  distribution  of  fractures  colored   in  blue  and  following  a  power-­‐law  involving  the  same  D  exponent.    N  and  k  can  vary  at   each  scale  to  obtain  non  fractal  but  multiscale  structures.    

(a)  

 

 

 

  (b)  

(c)  

 

 

(d)   (e)   (f)   Figure  2.1.  Example  of  construction  of  a  fractal  network  of  fractures     with  N=10  k=96%    D=2.9315…       A  geometrical  algorithm  was  designed  to  tessellate  the  pore  space  according  to  local   apertures  (the  result  is  shown  on  Fig.2.1.d)  since  the  pore  or  fracture  aperture  is  the  key   parameter  to  use  physically-­‐based  laws:   1)   To   estimate   the   capillary   pressure   curve,   a   simple   capillary   model   is   used   to   model   the   distribution   of   two   non   miscible   fluids   in   a   porous   medium   (the   wetting   fluid   is   water,  while  the  non  wetting  fluid  is  oil),  assuming  Laplace’s  law  to  be  valid  throughout   the   pore   distribution   range   in   the   following   simplified   manner.   For   a   given   capillary   pressure  h  and  the  corresponding  fluid  equilibrium  state,  a  pore  is  filled  with  water  (or   oil)   if   its   aperture   is   smaller   than   r=alpha/h   (resp.   larger   than   r=alpha/h),     where   alpha   is   a   constant   that   can   be   calculated   from   the   liquid-­‐solid   contact   angle   and   the   liquid-­‐  

4  

water-­‐oil   surface   tension.   The   value   of   alpha   depends   on   the   experimental   conditions,   namely   the   type   of   oil,   the   temperature,   the   results   presented   in   Fig   2.2.a   are   so   far   qualitative,   and   the   numerical   values   would   be   proportional   to   the   plotted   ones.   Simulations  take  into  account  not  only  the  pore  size  but  also  its  accessibility,  here  from   the   top   of   the   sample:   On   Figure   2.1.h   one   observes   that   water   could   reach   only   the   smallest   pores   connected   to   the   top   side.     Accounting   for   the   network   connectivity   explains   the   hysteresis   shown   here   on   Fig.   2.2   only   for   the   pressure   curve,   where   injection  of  water  in  an  oil-­‐filled  network  corresponds  to  the  lowest  curve  in  the  plot.         h   K  

W%    

W%  

  (b)     Figure  2.2.  (a)  Simulation  of  the  water-­‐oil  capillary  pressure  curve     (b)  Simulation  of  water  and  oil  permeability  curves,  where  water  permeability  is  the   highest  for  the  highest  water  content  W%.   Further  plots  will  present  relative  permeabilities  normalized  by  the  maximum  value.     2)  To  estimate  the  relative  permeability  curves,     K  is  calculated  by  analogy  with  electrical  transport  in     a   classical   manner   for   pore   network.   Each   pore   or   fracture  is  given  an  elementary  resistance  varying  as   a  power  law  of  its  aperture  (in  a  fracture  of  aperture   r     and   length   l,   the   flow   is   proportional   to   r3/l,   according  to  the  simplest  formula  of  Poiseuille’s  law   in   a   cylinder.     Other   local   values   derived   from   local   integration  of  Navier-­‐Stokes  equation  could  be  used     for   different   types   of   pores,   namely   for   spherical   There  is  one  equation  per  node,   vugs).   At   a   given   water   content,   if   a   pressure   so  for  example  we  have  a  linear   gradient   is   prescribed   between   two   opposite   sides,   system  of  3061  equations  in  the   water   can   flow   through   the   subnetwork   of   pores   case    of  Fig.2.1.c.  to  calculate  the   filled  with  water  and  connected  both  to  the  inlet  and   relative  water  permeability  at   the   outlet   of   the   sample.   The   sum   of   the   local   flows   water    saturation  shown  in   at  each  node  of   this  Kirchoff  network  must  be  zero.   Fig.2.2.b.     This   condition   leads   to   a   linear   system   to   solve,   For  the  equilibruim  state   imposing  a  precise  local  pressure  at  each  point.  The   represented  in    Fig.2.1.f.    water-­‐ macroscopic   equivalent   relative   permeabilities   are   filled  pores  are  not  connected   then   derived,   respectively   for   water-­‐filled     and  the  permeability  value  is   subnetworks  and  for  oil-­‐filled  subnetworks.   zero.    

 

(a)  

5  

3.  Modelling  fractured  and  vuggy  porous  media:  first  attempts     The  Pore  Solid  Fractal  model  is  a  generalization  of  the  previous  model.  It  was  developed   by   Perrier   et   al.   (1999)   to   overcome   the   limitations   of   the   mass   fractal   models,   whose   mass  tends  towards  zero  and  porosity  towards  infinity  when  iterated  over  an  arbitrary   large  number  of  scales.    The  theoretical  model  involves  a  probability  for  the  fractal  set  to   be  decomposed  into  smaller  solid  and  voids  at  each  iteration    (pF=9/16  in  Figure  3.1.)        

    (a)   (b)   Figure  3.1.  The  PSF  model  can  represent  a  fractal  number  size  distribution  of  vugs.  (a)   The  proportion  of  vugs  kept  at  each  scale  is  3/16  with  this  example  iterated  3  times  on  a   16x16x16  squared  grid.  (b)  an  example  iterated  3  times  on  20x20x20  polygonal   tessellation,    with  an  incomplete  fragmentation  process  inspired  from  the  PSF  model,   where  90%  of  the  space  is  occupied  by  vugs  at  each  level.     The  simulator  presented  in  section  2  was  adapted  to  investigate  the  behavior  of  a  fractal   distribution  of  vugs  inspired  by  the  PSF  model.  It  only  “PSF-­‐inspired”  because  no  solid   impermeable   blocks   are   kept   at   each   iteration,   future   work   might   use   the   black   areas   to   model   the   matrix   (see   section   5).   In   the   present   investigation   the   vug-­‐model   was   only   coupled  with  the  fracture  model  to  show  some  first  qualitative  results.     On   following   Fig.3.2,   numerical   experiments   confirm   that,   when   one   considers   a   set   of   disconnected   vugs   (Fig.3.2.a),   only   those   connected   to   the   water   injection   front   can   release  oil.    When  micro-­‐fractures  are  added,  water  can  enter  first  the  smallest  fractures   connected   to   the   top   side   (Fig.3.2.b),   but   further   filling   will   decrease   the   capillary   pressure   at   the   oil-­‐water   interface,   and   finally   most   of   the   porosity   will   become   reachable  :  At  the  end  of  the  simulation,  only  small  disconnected  vugs  will  remain  full  of   black   oil   (Fig.3.2.c).   On   Fig.3.2.c   one   can   also   observe   the   associated   simulated   normalized   oil   and   water   relative   permeabilities   curves,   the   values   are   0   in   the   case   without   fractures   shown   in   Fig.3.2.a.   Fig.3.2.d   shows   the   simulated   pore   size   distribution,    with  a  great  of  amount  of  the  porosity  distributed  on  micro  vugs  or  micro   fractures.   The   simulated   capillary   pressure   curve   (Fig.3.2.c)   is   linked   to   this   pore   size   distribution,  the  decrease  of  the  capillary  pressure  is  very  sharp  for  low  water  content,   since  water  can  go  in  the  large   vugs  as  oil  going  out  the  same  vugs  when  the  pressure   at   the  two  fluids  interface  becomes  negligible.      

6  

  (a)   With  only  disconnected  vugs,  water   injected  from  the  top  can  reach   only  part  of  the  (micro-­‐scale)   reservoir  

(b)   When  micro-­‐fractures  are  added  to   connect  vugs,  water  injected  from   the  top  can  reach  first  the  smallest   connected  fractures  then  most  of   the  pore  space  (see  following     Figure  3.3)  

  Figure  3.2.    Part  1.  Simulation  of  water  injection  in  a  vuggy  porous  medium,  without   fractures  (a)  and  with  fractures  (b,  c,  d).      

 

 

 

7  

 

    (c)      

 

 

 

  (d)     Figure  3.2.  Part  2.  Simulation  of  water  injection  in  a  vuggy  porous  medium,  without   fractures  (a)  and  with  fractures  (b,  c,  d).  

8  

4.  The  key  issue  of  connectivity  addressed  through  network   modeling.  

  Previous  sections  confirm  that  the  connectivity  of  the  pore  space  is  a  key  issue.     The  best  way  to  address  it  is  to  work  in  3D,  since  apparent  connectivity  in  2D  is  always   biased,  but  there  is  a  lack  of  3D  reliable  data,  and  when  such  data  exist,  for  example  with   X-­‐ray  tomographical  images,  they  cover  a  limited  range  of  scales  linked  to  the  resolution   of   the   acquisition   system   (Delerue   and   Perrier,   2002).   Many   researchers   try   to   extrapolate  from  2D  to  3D.    At  the  London  Imperial  College  Blunt’s  team    reconstruct  3D   porous  media  having  the  same  statistical  properties  than  those  observed  on  2D  images,   then   they   extract   a   network   model   from   the   reconstructed   samples   to   simulate   the   fluid   properties.  The  reconstruction  and  network  extraction  may  be  very  long  (several  days)   for   a   virtual   sample   of   some   microns   length   (Al-­‐Kharusi   and   Blunt,   2008).   Moreover   the   geometrical  features  disappear  in  the  statistical  reconstruction.     We   investigated   here  a   pseudo   3D   approach   where   several   planar   networks   of   objects   can  be  connected  in  the  third  dimension.       This   option   would   have   the   advantage   to   be   more   tractable   in   terms   of   computational   memory  and  time,  and  the  artificial  transversal  links  could  be  used  to  fit  experimental   pressure  or  permeability  curves  using  real  data.  Inverse  modeling  could  be  achieved  by   optimization   methods   similar   to   those   developed   par   Peter   Matthews   and   co-­‐workers   (Laudone,   Matthews   et   al.,   2007)   who   estimated   permeability   curves   from   a   Por-­‐Cor   Model  calibrated  using  retention  curves.   Extensions  could  account  for  three  different  types  of  porosity  in  three  planes,  one  with   fractures,  a  second  one  with  vugs,  a  third  one  with  the  matrix.    Unfortunately  this  would   assume   that   the   matrix   is   continuous   whereas   some   fractured   or   vuggy   media   might   well   act   as   important   continuities   preventing   easy   access   to   some   oil-­‐filled   areas.   I   would  advise  to  develop  a  new  network  model  including  from  the  very  beginning  three   types  of  conducting  objects  (see  section  5).                              

 

9  

 

(a)  

(b)

(c)  

 

 

 

 

 

 

  Figure  4.1  A  3-­‐plane  realization  of  a  vuggy  porous  medium  Part  1.   (a) if  there  are  no  connecting  paths  between  planar  sections,  oil  remains  trapped  in   disconnected  vugs,  and  the  fluid  properties  are  just  the  mean  of  those  obtained   with  several  independent  realizations.   (b) if  water  can  flow  through  (invisible)  paths  between  sections  in  a  pseudo  3D  way,   the  fluid  properties  are  strongly  modified  (see  results  in  Figure  4.1  Part  2).  In  the   present  simulations,  a  3D  network  has  been  build  by  connecting  arbitrary  each   node  in  a  given  plane  to  a  neighboring  one  in  the  following  plane.    

 

10  

   

  (c)    

 

  (d)     Figure  4.1  Part  2:  Simulation  of  the  fluid  properties  for  the  model  shown  on  Figure  4.1.c.   (c)  Simulation  of  the  water-­‐oil  capillary  pressure  curve     (d)  Simulation  of  water  and  oil  relative  permeability  curves,  where  water  permeability   is  the  highest  for  the  highest  water  content,  and  the  other  values  are  normalized  by  the   maximum  value  to  get  results  ranging  from  0  to  1.    

 

11  

5.  Perspective  1:  Towards  a  new  network  model  with  triple  porosity       Until   now,   previous   codes   were   adapted   to   account   for   vugs   (Section   1,2,3).   As   mentioned  before,  we  propose  now  to  build  an  improved,  more  realistic  model.    The  PSF   (Pore   Solid   Fractal)   was   conceived   (Perrier   at   al.,1999)   to   allow   the   representation   of   both   solids   and   voids   in   space   in   a   more   realistic   way   than   with   a   mass   fractal   model     (which   represents   mainly   a   power   law   distribution   of   pores   sizes   included   in   a   solid   phase   that   vanishes   when   a   broad   range   of   scales   is   considered).   The   same   PSF   can   model  solid  particles  or  grains  at  a  given  scale  or  the  matrix  at  another  scale.       Section  3  was  only  inspired  by  the  PSF  model  to  account  for  vugs,  here  we  propose  to   develop  a  new  simulator  actually  based  on  the  PSF  to  account  first  for  vugs  and  matrix,   then  later  in  this  section  for  fractures.     Several   papers   using   the   PSF   model   have   already   been   published.   The   mathematical   calculations  were  done  so  far  on  squared  on  cubes  representations  equivalent  to  those   illustrated   in   Figure   5.1.a   or   Figure   3.1.a   (or   on   random   spatial   distributions   to   study   percolation  properties  in  2D  or  3D).    At  each  iteration  of  the  model,  a  vanishing  fractal   set,  colored  yellow  on  Figure  5.1.a,  is  subdivided  in  N  subareas:  Each  subarea  can  be  a     solid   area   (colored   brown),   with   a   probability   pS,  or   a   pore   area   (colored   white),     with   a   probability   pP,   or   a  new  (yellow)  area,  with  a  probability  pF,  which  is  again  divided  into   solids  (now  matrix)  and  pores  at  the  following  iteration.  On  has  obviously  :      pF   + pS + pP = 1   The  fractal  dimension  of  the  pore-­‐solid  interface  is  given  as  a  function  of  the  Euclidean   dimension  d  (2or  3),  N  and  pF  as  follows:     €

D =d    

(

Log N.pF LogN

)  

  The  PSF  model  can  be  fitted  from  the  knowledge  of  the  total  porosity  and  a  pore  size   distribution,  or  from  a  capillary   € pressure  curve  which  is  given  by  the  following  equation:   ⎧ D−d ⎫ ⎪ pP ⎪ ⎛ h ⎞ θ =Φ− ⎨1− ⎜ ⎬  for    h   min ≤ h ≤ hmax   ⎟ pS + pP ⎪ ⎝ hmin ⎠ ⎪⎭ ⎩     pP When  the  model  is  developed  ad  infinitum  one  has:   Φ = .   € pS + pP     € For  the  present  extension  including  an  additional  porosity    Φ   M in  the  matrix  (  with  pore  

sizes  smaller  than  those  of  the  pores  identified  to  vugs,  that  is  smaller  than  the  value  rmin   € associated   to   hmax),   it   has   been   shown   (Perrier,   PhD   1995)   that   the   same   analytical   relationship  holds  for  the  capillary  pressure  on  the  [€ hmin,  hmax]  range.     In  this  case  we  will  have:   pP Φ = ΦM +   pS + pP    

  The  PSF  has  been  widely  used  in  soil  science  (quoted  about  80  times),  it  explains  links   between  structural  and  fluid  r€etention  properties,  its  connectivity  has  been  recently   studied  using  percolation  theory,  and  we  propose  now  to  extend  it  to  naturally  fractured   and  vuggy  oil  reservoirs  at  multiple  scales.

 

12  

   

(a)  

(c)  

 

  Figure  5.1   A  PSF  example   F=8/16  P=2/16  S=6/16    

(b)  

(d)  

 

 

  We  will  first  move  from  squares  to  polygons  (see  Figures  5.1.b&c,  not  only  to  generate   more   realistic   pictures,   but   to   get   the   smoothed   properties   of   statistical   fractal   (The   theoretical   regular   model   generates   step-­‐functions,   with   one   value   for   each   scale,   whereas   the   statistical   realizations   smooth   the   functions).   This   first   step   is   straightforward  in  2D,  and  a  3D  Voronoi  algorithm  should  be  used  to  generate  polyedras   in  3D.    At  the  last  level  of  a  given  simulation  (Figure  5.1.d),  the  iterations  are  stopped,   and   the   yellow   areas   “disappear”   to   be   replaced   by   vugs   and   matrix   in   the   same   proportion  pP  and  pS.       Several  examples  of  PSF  realizations  representing  multiscale  fractal  vugs  and  matrix   areas    can  be  observed  in  Figure  5.2.  ,  for  different  values  of  this  3-­‐parameter  model  (N,   pF,pP).          

 

13  

(b)  

(a)  

(c)   N=50,  pF=0.50,  pP=0.25    pS=0.25    

(e)   N=100,    pF=0.5,  pS=0.4,  pP=0.1,  2  levels  

(d)  

(f)   N=100,    pF=0.75,  pS=0,  pP=0.25,  2  levels  

  Figure  5.2:  Examples  of  PSF  random  realizations  a)  a  fragmentation  skeleton  after  2   iterations  b)  a  porous  medium  associated  to  previous  skeleton.  c)  and  d)  :  3  iterations,   with  and  without  plotting  the  constructions  lines,  note  that  the  matrix  and  vug  areas   have  the  same  mean  value  but  that  their  distribution  is  random.  e)  a  PSF    model  with   more  matrix  than  vugs  f)  a  particular  case  of  the  PSF:  pS=0,  where  one  gets  again  a   fractal  power-­‐law  distribution  of  vug  sizes    but  also  a  mass  solid  fractal  for  the  matrix.    

14  

          The   PSF   has   been   widely   used   in   soil   science   (1999’s   initial   paper   quoted   about   80   times),   it   explains   links   between   structural   and   fluid   retention   properties,   its   connectivity  has  been  recently  studied  using  percolation  theory,  and  we  propose  now  to   calculate   its   predictions   as   regards   oil   and   water   relative   permeability.   This   was   not   done  before,  since  it  requires  the  development  of  a  new  network  simulator  similar  to  the   one   used   in   section   1   and   3.   Most   of   previous   algorithms   can   be   reused   to   carry   out   numerical  simulation,  first  in  2D,  later  in  3D.       The  first  stage  consists  in  extracting  the  network.     This   could   be   done   as   explained   later   in   following   section   6   for   real   images.   But   for   virtual  images,  one  can  take  into  account  the  actual  construction  process  of  the  model,  to   get   exact   calculations   of   the   required   neighboring   links.   This   is   possible   because   the   Voronoi     tesselation   is,   for   theoretical   reasons,   equivalent   to   a   Delaunay   triangulation.   We  show  In  Figure  5.3  the  network  obtained  for  the  first  level  of  the  model  construction.     Extra  work  has  to  be  done  to  handle  the  network  hierarchy  of  the  multiscale  case.    

    Figure  5.3:  Extracting  a  network  of  connected  objects  at  the  first  iteration  of  a  PSF  model      

 

15  

  Finally  the  last  step  of  the  model  construction  will  deal  with  the  addition  of  fractures,  to   model  a  triple  porosity  medium.     This  can  be  done  :   -­‐ either  by  simple  superimposition  of  a  classical  fracture  network  on  the  PSF  vug-­‐ matrix  model,  using  the  multiple  planes  software  to  find  inter-­‐plane  connections.   This  first  option  is  illustrated  as  in  Figure  5.4.   -­‐ or  by  including  fractures  whose  position  in  space  is  linked  to  the  natural   fragmentation    process  as  illustrated  as  in  Figure  5.5.    

Figure  5.4  

 

   

(a)  

 

(b)  

 

Figure  5.4  

  These  2  options  have  to  be  discussed  further  with  the  geologists  and  considering  the   specificities  of  the  present  field  of  investigation.        

16  

6.  Perspective  2:  Towards  direct  modeling  of  porous  media  images     First  ideas  presented  here  have  been  developed  from  2D  images,  such  as  obtained  at  a   microscopic   scale   from   the   field   of   investigations.   They   could   be   used   in   pseudo   3D   simulations  or  generalized  if  3D  images  are  available.     As  usual  we  will  proceed  first  with  examples.   In   example   1   (Figure   6.1),   linear   and   spherical   features   were   identified   from   image   analysis  and  stored  in  a  multi-­‐layered  GIS  (Figure  6.1.b).  Adding  the  automatic  detection   of   spatial   neighboring   connections   in   such   a   set   of   spatial   objects   is   not   an   easy   task.   Moreover,  in  this  example  as  in  many  other  ones,  the  extracted  network  of  fractures  and   vugs  would  be  non-­‐conducting.  This  is  why  the  surrounding  matrix  has  to  be  taken  into   account.   We   propose   an   original   way   to   both   identify   the   connections   between   the   fracture   and   vug   nodes   of   a   future   network,   and   to   account   for   nodes   representing   matrix   areas   in   an   orginal   way   also     based   on   the   Voronoi   tessellation   algorithm   (Figure   6.1.c),  using  an  ingenious  way  to  select  seeds  on  the  object  boundaries.      

(a)  Oleskko  2012  

 

 

(b)  Cherkasov  2012  

        Figure  6.1:  Example  1  A  Voronoi   tessellation  of  a  porous  space  to   accounting  to  identify  neighboring   relationships  between  different  types  of   idealized  porous  objects.        (c)    1  idealized  fracture,  1  vug  and  several   surrounding  porous  matrix  areas).  

     

 

17  

The  proposed  method  is  inspired  from  the  work  done  by  Delerue  and  Perrier  (2002)  to   extract  pore  networks  from  3D  binarized  images.  Let  us  consider  a  porous  space  colored   black  in  Figure  6.2.a.  Points  are  selected  on  the  boundary  of  the  pore  space,  as    indicated   on   Figure   6.2.b,   to   be   used   a   the   seeds   of   a   Voronoi   tessellation.     From   theoretical   reasons,  the  closer  the  space  between  these  dots,  the  better  is  the  determination  of  the   skeleton   of   the   pore   space   which   is   also   the   set   of   the   centers   of   the   maximum   balls   covering  the  pore  space.  The  method  is  also  very  close  to  the  one  developed  by  Phillips   et  al.  (2012)  to  design  optimal  filling  of  shapes  in  theoretical  physics  and  mathematics.     The  new  idea  proposed  here  is  to  generalize  the  method  to  find  the  centers  of  optimal   balls  covering  the  pore  space  but  also  to  find  the  centers  of  the  optimal  spheres  covering   the   dual   space   in   order   to   build   a   network   accounting   also   for   the   matrix.   (Embedded   tessellations   such   as   those   used   in   section   1   could   take   into   account   of   new,   smaller   objects  revealed  by  increasing  the  resolution)    

  (a)   (b)     Figure  6.2.  A  Voronoi  tessellation  with  seeds  selected  on  the  boundary  of  vug-­‐objects     From   this   type   of   space   tesselation,   it   will   become   possible   to   extract   the   network   liking   both  matrix  polygonal  areas  and  pore  objects.  Vugs  or  fractures  will  be  handled  in  the   same  way  at  this  stage  (see  Figure  6.3),  they  differ  in  according  to  their  more  or  linear  or   spherical  shapes,  but  both  types  are  represented  by  polygons.  Such  polygons    could  be   read   from   the   GIS-­‐   files   obtained   by   Cherkasov.   The   expected   resulting   network   is   shown   colored   red   on   Figure   6.3.   An   automated   algorithm   can   be   developed   by   accounting   from   the   neighboring   relationships   calculated   by   the   Voronoi   algorithm   plus   specific  geometrical-­‐based  algorithms  similar  to  those  presented  in  section  1.    

 

18  

 

  Fig.  6.3  Extracting  a  network  from  the  specific  space  partition  shown  in  Figure  2.b.          

  (a)  

(b)  

 

  Devopping  an  algorithm  which  can  be  used  by  end-­‐users  would  involve  different  steps  :   1)   either   reading   the   original   grey-­‐scale   image   and   developing   a   computer-­‐assisted   method  to  detect  the  significant  objects     or   reading   associated   binarized   images   where   the   objects   have   already   been   automaticall  detected.     2)    Selecting  seeds  on  the  interfaces  at  the  highest  possible  resolution  (1  pixel  in  2D  or  1   voxel  in  3D)   3)  running  a  voronoi  tesselation  in  2D  or  3D   4)   extracting   the   associated   network   with   3   types   of   nodes   (fractures,   vugs,   matrix)   and   generic  links   5)   simulating   the   fluid   pressure   and   permeability   properties   as   previously,   either   in   2D,   in  pseudo  2D  or  in  3D,  depending  on  the  available  data.  

 

19  

7.  Fractal  and  percolation  modeling     The  tools  that  we  propose  to  develop  are  based  on  fractal  geometrical  concepts,  which   are  a  special  case  of  multiscale  modeling.    The  fractal  framework  is  useful  to  design  the   model.   Then   computer   simulations   can   be   easily   adapted   to   modify   the   parameters   at   each   scale   (selecting   different   values   for   the   number   of   sub-­‐areas,   for   the   number   of   matrix   versus   vug   subareas,   etc.)   and   thus   to   simulate   multiscale   properties   going   beyond  the  mere  pure  fractal  case.     When   the   fractal   assumption   is   verified,   fractal   dimensions   calculated   on   images   will   help  calibrating  the  models.  A  dedicated  algorithm  has  been  provided  (see  Appendix  2)   to  estimate  not  only  fractal  dimensions,  but  also  the  multifractal  parameters,  the  Renyi   dimensions,  which  can  be  considered  as  geostatistical  indicators  of  the  spatial  variability   when  used  on  spatial  data.           Some   mathematical   calculations   can   be   done   on   pure   fractals   to   estimate   the   capillary   pressure  curve,  where  the  connectivity  effect  can  be  neglected  in  several  cases.     Some  other  theoretical  investigations  were  carried  out  to  evaluate  their  connectivity  on   random   realizations   of   square   or   cubic   grids.   This   was   done   using   percolation   theory   and   probabilistic   renormalization   function,   which   can   help   to   investigate   the   type   of   expected   connectivity   on   random   distributions.     Let   us     just   give   hints   about   possible   applications   of   such   a   theoretical   approach.   Consider   a   fractal   power-­‐law   distributions   of  vugs  included  in  a  mass  fractal  matrix  (such  as  illustrated  on  Figure  5.2.f).    Providing   the   assumption   that   the   vugs   follow   a   power-­‐law   distribution   of   sizes,   percolation   theory   could   estimate,   for   a   total   vug-­‐porosity   given   value,   the   minimum   number   of   fractal  iterations  to  be  considered  for  the  whole  set  of  vugs  to  be  connected  or  not  (in  2D   or  3D).    This  required  minimum  number  of  iterations  corresponds  to  a  critical  vug  size   Rmin.  If  the  vug  network  is  connected,  the  critical  permeability  could  be  calculated  from   Rmin.   Above   this   critical   value   above,   the   permeability   will   be   “vug-­‐driven”,   and   calculated   from   the   vug   size   distribution.   Below   this   transition   point,   the   permeability   would  be  “matrix  driven”,  that  is  low  valued,  and  calculated  from  the  mean  size  of  the   microscopic   porosity.   Such   qualitative   theoretical   arguments   could   prove   useful   to   constraint  the  simulations  by  theoretical  reasoning.       We   will   not   develop   futher   this   point   because   the   present   report   focuses   on   the   extraction  of  networks,  whereas    the  fractal  dimensions    give  more  useful    information   on   the   scaling   behavior   than   on   the   type   of   geometrical   network   model   to   be   build   to   match  realistic  spatial  arrangements.  

 

20  

8.  First  conclusions     We   propose   to   develop   new   original   tools   to   account   for   the   triple   porosity   media   encountered  in  naturally  fractured  vuggy  reservoirs.    We  consider  that  the  keys  issues   as  regards  estimation  of  their  permeability  and  oil  accessibility  is  the  connectivity  of  the   different  spatial  areas  involved  in  natural  rock  formations.  We  propose  to  undertake    the   extraction   of   realistic   networks   linking   these   areas   and   enabling   the   simulation   of   relative  permeabilities  at  a  given  scale,  from  local  permeabilities  of  each  area  estimated   at  smaller  scale.       We   propose   to   develop   algorithms   based   on   computational   geometry   to   capture   the   key   components   of   natural   geometries   as   regards   fluid   flow.   Our   previous   work   was   already   based   on   such   ideas   at   the   pore-­‐scale   level.   Similar   work   is   widely   used   with   fracture   network   models.   To   our   knowledge   no   similar   work   has   been   done   so   far   on   triple   porosity   models.     The   algorithms   that   we   propose   to   develop   are   potentially   usable   at   any  scale  from  spatialized  data.  But  whatever  the  exponential  increase  computer  power,   it  will  be  always  impossible  to  handle  a  large  broad  of  scales  in  a  single  simulation.  By   explicitly  introducing  matrix  areas  as  a  new  type  of  nodes  in  the  network,  we  will  also   provide  ways  to  allocate  porosity  and  permeability  values  integrating  smaller  scales  in   larger   scale   simulations.   What   appears   as   a   matrix   at   the   scale   of   large   fractures   and   vugs   can   reveal   fissures   and   small   vugs   at   a   higher   resolution   :   we   can   either   assume   similarity  through  a  large  range  of  scale  or  just  consider  a  way  to  cope  with  multiscale   properties.   Fractal   geometry   gives   hints   for   the   upscaling   issue   since   mathematical   calculations   can   be   derived   in   the   case   of   idealized   self-­‐similar   media   to   validate   the   computer   simulations.  If  the  reservoir  was  a  perfect  self-­‐similar  fractal  trough  the  whole  range  of   scale   from   microns   to   kilometers,   one   could   focus   on   the   micro   scale   then   looking   for   some   kind   of   renormalization   functions   to   extrapolate   towards   the   meso   and   macroscale.     We   believe   that   fractal   theories   and   fractal   dimensions   apply   only   over   limited   ranges   of   scale,   and   that   several   scales   must   be   investigated   as   regards   the   acquisition  of  experimental  data.       Empirical   relationships   between   porosity   and   permeability   have   already   been   established   in   the   past,   but   the   fitted   parameters   have   to   be   estimated   again   when   investigating  a  new  reservoir,  which  requires  the  acquisition  of  large  data  sets  of  both   porosity   and   permeability   to   carry   out   reliable   statistics.   My   point   of   view   consists   in   advising  to  take  more  time  to  test  new  ideas  for  the  estimation  of  permeability  directly   from   data   about   the   porosity   spatial   distribution   in   a   network.   Some   direct   measurement   of   permeability   and   capillary   pressure   curves   would   be   also   needed   at   different   scales,   first   to   calibrate   and   validate   the   model.     The   proposed   model   will   need   further  implementation  and  this  would  delay  the  production  of  expected  entregables  at   the   first   step.   But   any   new   ideas   involve   both   some   risk   and   some   hope   as   well   in   applied   research   as   in   pure   research   and   progressive   knowledge   of   all   types   of   data   available  on  the  field  of  investigation  will  also  drive  the  model  construction.   As   regards   the   modeling   of   fluid   properties   from,   the   work   done   for   the   micro-­‐scale   will   be   re-­‐used   at   meso   and   macro   scale   providing   appropriate   varying   functions   for   local   behavior  of  fluids  in  fractures,  vugs,  or  matrix.        

 

21  

9.  References   Al-­‐Kharusi  Anwar  and  Martin  Blunt  2007,  Network  extraction  from  sandstone  and   carbonate  pore  space  images,  Journal  of  Petroleum  Science  and  Engineering,    Volume:  56   Issue:  4,  Pages:  855-­‐860         Al-­‐Kharusi  Anwar  and  Martin  Blunt  2008,  Multiphase  flow  predictions  from  carbonate   pore  space  images  using  extracted  network  models,  Water  Resour.  Res.,  44,  W06S01,   doi:10.1029/2006WR005695   Arbogast  Todd  and  Mari  San  Marin  Gomez,  2009,  A  discretization  and  multigrid  solver   for  a  Darcy–Stokes  system  of  three  dimensional  vuggy  porous  media,  Computational   Geosciences  Volume  :  13  Issue  :  3,  pages  :  331-­‐34.   Delerue J.F and E.Perrier, 2002, DXSoil,  a  library  for  3D  image  analysis  in  soil  science,   Computer and Geosciences, Volume: 28 Issue: 9 Pages: 1041-­‐1050.   Gringarten  A.,  2008.  From  straight  lines  to  deconvolution:  the  evolution  of  the  state  of   the  art  in  well    test  analysis,  SPE  Res  Eval  &  Eng11  (1)  pages  :  41-­‐62.   Huiyun  Lu,  2007.  Investigation  of  Recovery  Mechanisms  in  Fractured  Reservoirs,  PHhD   dissertation,   http://www3.imperial.ac.uk/earthscienceandengineering/research/perm/porescalemo delling/phd%20theses Laudone, Giuliano M.; Matthews, G. Peter; Gane, Patrick A. C.; et al, 2007. Estimation of structural element sizes in sand and compacted blocks of ground calcium carbonate using a void network model, Transport in porous media, Volume: 66 Issue: 3 Pages: 403-419 Lv Aimin, Jun Yao, Wei Wang, 2011, Characteristics of Oil-Water Relative Permeability and Influence Mechanism in Fractured-Vuggy Medium, Procedia Engineering 18, pages : 175183 Mayur  Pal,  2012,  A  unified  approach  to  simulation  and  upscaling  of  single-­‐phase  flow   through  vuggy  carbonates,  Int.  J.  Numer.  Meth.  Fluids  ;  69:1096–1123   Phillips  C,  J.  Anderson,  G.Huber,and  S.  Glotzer,2012,  Optimal  Filling  of  Shapes,  Physical   Review  Letters  108,  198304  (2012)   Perrier  E,  C.Mullon,  M.  rieu  and  G.  de  Marsily,  1995.  Computer  construction  of  fractal  soil   structures:  Simulation  of  their  hydraulic  and  shrinkage  properties,  Water  Resources   Research,  Volume  31,  Issue  12,  pages  2927-­‐2943   Perrier, E; Bird, N; Rieu, M, 1999. Generalizing the fractal model of soil structure: the poresolid fractal approach, Geoderma Volume: 88 Issue: 3-4 Pages: 137-164 Rieu  M.  and  G.  Sposito,  1991,  Fractal  fragmentation,  soil  porosity  and  soil-­‐water   properties.  1.  Theory,  Soil  Science  Society  of  America    Journal,  Volume:  55      Issue:  5   pages:  1231-­‐1238         Wu,  Yu-­‐Shu;  Di,  Yuan;  Kang,  Zhijiang;  Fakcharoenphol,  Perapon  ;  2011.  A  multiple-­‐ continuum  model  for  simulating  single-­‐phase  and  multiphase  flow  in  naturally  fractured   vuggy  reservoirs,    Journal  of  Petroleum  Science  and  Engineering,    Volume:  78  Issue:  1,   Pages:  13-­‐22        

 

22  

10.  Appendices  (description  of  already  delivered  codes)    

10.1.  SIM-­‐POR         A  simulator  of  virtual  porous  structures  to  calculate  water  retention  curves  and  relative   water  and  oil  permeability  curves.       The  interface  of  the  simulator,  using  choice  buttons,  is  straightforward  (see  screencopy   Figure  10.1.1.).  Buttons  or  triangular  icons  give  access  to  additional  options.    

       

Figure  10.1.1.     The  description  is  done  here  using  a  series  of  examples.     Example  1:  a  classical  mass  fractal  fractured  media  (Figure  10.1.2).    After  the  first   example,  all  the  parameters  can  be  modified  to  try  other  configurations.  

 

23  

   

 

 

Select  “Fragment  number  all   level”=  10  then  click  “init”  once,   then  click  “Frag.next  level”  3   times  (you  get  any  similar   random  realization)  

Click  on  “identify  nodes”.   The  number  of  allocated  nodes   (3043  here)  is  printed  in  the   main  xterm  frame.  

 

 

You  can  fill  the  pore  space  with   oil  by  selecting  “fill  with  oil”  in   the  “drain”  menu  

select    “automatic  pressure   pressure  decreasing”  in  the   “inject”  menu.  Redo  it  by  clicking   on  “yes”  in  the  “Calc.permeability”   button  (it  will  be  slower)  

Select  the  similarity  ratio  k%   to  be  equal  to  95  for  all  levels     then  click  on  “create  porous   medium”.  

Click  on  any  of  the  item    of   Histograms/curve  to  plot  and   to  store  data  in  files  RES1,   RES2,  RESK,  

 

 

  Figure  10.1.2     Example  2:    a  vuggy  porous  media  (Figure  10.1.3)   Select  first  a  different  model  by  going  into  the  “General  Options”  subwindow:  Select  PSF   instead  of  RS  and  a  fragmentation  probability  equals  to  0.90  in  this  example.    

Select,  “Fragment  number  all   level”=  50  then  click  “init”   once,  then  click  “Frag.next   level”    twice.   Then  click  on  “identify  nodes”.    

 

 

 

Select  in  “similarity  ratios”  level   2  only  and  for  the  ratio  k2  a   value  of  1.  then  click  on  “create   porous  medium”  (only  vugs   above)  

Select  now  in  “similarity   ratios”  level  1  only  and  for  the   ratio  k1  a  value  of  98.  then   click  on  “create  porous   medium”  :vugs  +  fissures  

 

24  

Then  in  each  case  select    “automatic  pressure  pressure  decreasing”  in  the  “inject”  menu    as  in  previous   example  10.1.2  

Figure  10.1.3   The  code  developed  for  such  a  software  includes  different  files.     1)  random.h  and  random.cc  are  very  small  programs  to  generate  random  numbers.   The  present  version  relies  on  the  standard  function  provided  by  C++  (gcc).  Other   generators  could  be  used  if  necessary,  when  the  type  of  randomization  is  a  key  issue   (namely  for  random  fracture  network  or  any  type  of  virtual  porous  structure-­‐     2)  liste.h  and  liste.cc  are  short  programs  providing  functions  to  handle  lists  of  any   computer  objects.  Lists  are  particularly  useful  to  navigate  within  connected  graphs  and   standard  librairies  could  have  been  used.     3)  geometrie.h  and  geometrie.cc  are  customized  programs  to  handle  not  only  standard   points,  lines,  polygons,  the  calculation  or  areas,  centers  of  gravity,  intersections,   translations,  similarities,etc,  but  also  polygons  whose  edges  include  a  pointer  towards   neighboring  polygons,  useful  to  handle  connections  in  a  network  of  geometrical  objects.   Geometrie.cc  includes  a  third  file  named  voronoi.cc,  which  implements  a  very  useful   tessellation  algorithm  to  divide  a  given  area  around  seed  points.  The  originality  here  is   that  the  voronoi  algorithm  works  in  a  recursive  way,  which  is  useful  to  handle  multiscale   geometries.  graphique.cc    generates  arrays  ready  to  use  for  graphical  plots  of  curves  or   histrograms.     4)  simule.h  and  simule.cc   This  is  the  core  of  the  object  oriented  simulator  used  to  create  specific  objects  such  as   pores,  aggregates,  nodes  and  to  handle  a  hierarchy  of  embedded  and  connected  objects.   It  includes  the  generation  of  fractal  structures  according  to  two  types  of  fractal  models,   the  RS  (Rieu&Sposito,  1991)  mass  fractal  model  and  the  initial  version  of  the  PSF  model   (Perrier,  Bird  and  Rieu,  1999).   The  program  includes  specific  routines  for  generation  of  a  pore  network  (linked  so  far  to   the  type  of  geometrical  model  used,  but  could  be  generalized).   The  generation  of  networks  linking  multiple  planes  is  also  included  in  these  files   It  includes  two  general  routines:   i) to  calculate  water  retention  curves  from  a  pore  size  distribution  accounting  for   the  pore  size  and  for    the  connectivity  of  the  pore  network.   ii) to  calculate    water  and  oil  relative  permeability  curves  by  solving  the  set  of  n   linear  equations  associated  to  each  of  the  n  nodes  of  a  network.  Each  equation  is   based  on  the  assumption  of  local  flows  in  each  pore  according  to  the  Poiseuille   law  and  equilibria  at  each  nodes  of  input  and  output  flows.     5)  vorosol.h  and  vorosol.cc   To  associate  to  any  user  action  a  function  defined  in  the  core  program  simule.cc  and  to   handle  the  graphical  plots  sent  to  subwindows.     6)  vorosol_ui.h  and  vorosol_ui.cc   Only  used  for  the  User  Interface  (UI)  with  menus,  buttons,  windows,  etc,  it  is  based  on   the  Xview  librairies  running  on  the  X11  windowing  system  (Unix,  Linux,  included  in  Mac   OS  and  possible  Cygwin  unix  emulator  on  Windows)      

25  

   

    10.2.  MF   A  tool  to  calculate  fractal  dimensions  or  generalized  multifractal  Renyi  dimensions  D(q)   on  2D  images.      

 

 

 

 

 

         

 

26  

q=   q=   q=   q=   q=   q=   q=   q=   q=   q=   q=   q=   q=   q=   q=   q=   q=   q=   q=   q=   q=  

0   1   2   3   4   5   6   7   8   9   10   -­‐1   -­‐2   -­‐3   -­‐4   -­‐5   -­‐6   -­‐7   -­‐8   -­‐9   -­‐10  

Dq=   Dq=   Dq=   Dq=   Dq=   Dq=   Dq=   Dq=   Dq=   Dq=   Dq=   Dq=   Dq=   Dq=   Dq=   Dq=   Dq=   Dq=   Dq=   Dq=   Dq=  

1.933   1.934   1.937   1.939   1.942   1.945   1.947   1.949   1.951   1.952   1.953   1.929   1.921   1.923   1.923   1.923   1.922   1.920   1.919   1.918   1.917  

                                         

R2=0.9997078840639666,   R2=0.9999841252975528,   R2=0.9999986306665456,   R2=0.999990116178825,   R2=0.9999794464215885,   R2=0.9999698482318073,   R2=0.9999616538159831,   R2=0.9999546393134002,   R2=0.9999485251756162,   R2=0.9999430832247717,   R2=0.9999381470051176,   R2=0.9895262354225199,   R2=0.9336743702031681,   R2=0.8841167109470233,   R2=0.8508342108189841,   R2=0.8278568244143374,   R2=0.8111482132543008,   R2=0.7984717820380415,   R2=0.7885353794347528,   R2=0.7805435225624624,   R2=0.7739799723471931,  

ddl=7,   ddl=7,   ddl=7,   ddl=7,   ddl=7,   ddl=7,   ddl=7,   ddl=7,   ddl=7,   ddl=7,   ddl=7,   ddl=7,   ddl=7,   ddl=7,   ddl=7,   ddl=7,   ddl=7,   ddl=7,   ddl=7,   ddl=7,   ddl=7,  

(Sign.1%ifR2>0.6363252899999999)   (Sign.1%ifR2>0.6363252899999999)   (Sign.1%ifR2>0.6363252899999999)   (Sign.1%ifR2>0.6363252899999999)   (Sign.1%ifR2>0.6363252899999999)   (Sign.1%ifR2>0.6363252899999999)   (Sign.1%ifR2>0.6363252899999999)   (Sign.1%ifR2>0.6363252899999999)   (Sign.1%ifR2>0.6363252899999999)   (Sign.1%ifR2>0.6363252899999999)   (Sign.1%ifR2>0.6363252899999999)   (Sign.1%ifR2>0.6363252899999999)   (Sign.1%ifR2>0.6363252899999999)   (Sign.1%ifR2>0.6363252899999999)   (Sign.1%ifR2>0.6363252899999999)   (Sign.1%ifR2>0.6363252899999999)   (Sign.1%ifR2>0.6363252899999999)   (Sign.1%ifR2>0.6363252899999999)   (Sign.1%ifR2>0.6363252899999999)   (Sign.1%ifR2>0.6363252899999999)   (Sign.1%ifR2>0.6363252899999999)  

    One  just  show  here  a  few  illustrations,  using    screencopies  of  the  software  used  on  3  real   images  coming  from  the  field  of  investigation.     The  Reyni  dimension  of  order  zero  Dq(0)  reduces  to  the  classical  fractal  dimension.       When  D(0)  is    equal  to  the  Euclidean  dimension  (here  d=2  ),  the  image  is  not  fractal.         When  the  spectrum  of  D(q)  values  is  flat,  the  medium  is  not  multifractal.                      

 

27