Radioactive contamination transfer in Spiral II Simulation and ... - WP5

Oct 28, 2005 - Cryotraps dimensioning and conception. Objective of our works. Conclusion and Prospects. 1. 1. 1. Contamination problem in vacuum system.
2MB taille 1 téléchargements 225 vues
Radioactive contamination transfer in Spiral II Simulation and experimental studies Manssour FADIL P. Dolegieviez, M. Ozille, V. Pismont, B. Rannou, Ph. Robillard

SAFERIB annuel meeting – EURISOL 27 – 28 October 2005 - Saclay

Summary 1

Objective of our works

1

MOVAK3D validation

1

Cryotraps dimensioning and conception

1

Contamination problem in vacuum system

1

Conclusion and Prospects

SPIRAL2 PROJECT OBJECTIVE Production of neutron-rich exotic nuclei A > 40 ; N

TOOL Nuclear fission

PROBLEM Very strong activity (5 1014 Bq) To have an idea : Target UCx (SPIRAL2) : 8,3 1013 Bq/kg PWR unloaded : 7,5 1013 Bq/kg

Problematic question : Very strong radioactivity ~ 5 1014 Bq Contamination transfer Simulation of nuclei migration

Vacuum systems dimensioning

MOVAK3D

Movak3D Code : description

1 Transmission probability 1 Molecular regime (very low pressure) 1 Any geometric shape 1 Monte Carlo Simulation

Movak3D Code : validation Comparative method

Theoretical formulas

Experimentation

Movak3D Code : theoretical validation L

Santler

Absorber

Source

D

 3 L'  Pr =  1 +   4 D

Diffuser

Pr

Santler, D.J., 1986, “New concepts in molecular gas flow”. J. Vac. Sci. & Technol. A −1

L’ = f(L/D)

0,2 0,16

MOVAK3D

0,12

Santler

0,08 0,04 0 0

10

20

30

40 L/D

MOVAK3D : Theoretical validation

De

Pr

D

Diaphragm Roth, A., 1990, “Vacuum technology”, Elsevier Science Publishers B.V., 3ed edition, Amsterdam.

1,E+00

MOVAK3D Roth

1,E-01

1,E-02

1,E-03 0

0,2

0,4

0,6

0,8

1 De/D

MOVAK3D : Experimental validation at 20 K Outgoing flux : Φe Transmission probability : Pr = Φe/Φi

Gaz flow at 20 K Flux entry : Φi

Measurement

MOVAK3D

N2

0.21 + 0.063

0.12 + 0.01

%

Ar

0,19 + 0.057

0.12 + 0.01

%

MOVAK3D : Experimental validation at 20 K

CRYOTRAPS OBJECTIVE

FUNCTION

Limitation of radioactive elements migration Radioactive gases trapping

TOOL

Cryogenic trapping system CRYOTRAPS

Radioactive gases in the target UCx after 90 days of irradiation

4,1 1014 Bq

Hypothesis : Tfusion < 2000 °C

80 K

→ element in the gaseous state

20 K

Te, Ba, Sr, Sb, In,…, H2O

N2, O2, CO2, CO, rare gases

GR1 : 3,5 1014 Bq

GR2 : 5,5 1013 Bq

20 K with an absorber solid

H2 ; H3 GR3 : 1,4 108 Bq

GR1 GR2

Total length : 100 cm

20 cm

GR3

80 K

20 K

20 K Ch. act

20 K

80 K

Transmission Efficiency (for s = 1) : (%) GR1

0,11

GR2

0,20

GR3

0,91

7 cm

CRYOTRAPS DESIGN

Contamination transfer from UCx target to the pumps Pumps related to the vacuum chamber

Probability transmission : 2.3 %

9,3 1012 Bq 4,1 1014 Bq

Contamination transfer from UCx target to the pumps Pumps related to the vacuum chamber Equivalent dose rate at 1 m (µSv.h-1)

1.1 106

0 hours

1.0 105

8 hours

5.0 103

3 months

3.9 102

1 year

and with radiobiological protection (20 cm of the lead) (µSv.h-1)

1.2

8 hours

Conclusion and prospects 1 1 1 1 1

Good agreement between Movak3D and measurements or theoretical formulas Cryotraps prototype under construction in GANIL Collaboration with Cryogenics team of IPN/Orsay to realize a cryogenic source Cryotraps prototype and cryogenic source tests at the beginning of 2006 Real contamination problem in vacuum systems