Plasma Display Panels

Luminescent Materials, Spinger-Verlag, ... (PDPs) are photoluminescent ... Panel Display Devices - Spring 2001. Lecture 8. 8. What is a Plasma? Solid. Liquid.
8MB taille 58 téléchargements 383 vues
Lecture 9 6.976 Flat Panel Display Devices

Photoluminescence Case Study: Plasma Display Panels

Outline • • • • • • •

Overview Physical Principles Plasma Discharge Physics Photoluminescence Addressing Fabrication Processes How well do they work

6.976 Flat Panel Display Devices - Spring 2001

Lecture 8

1

References • Larry Weber, Color Plasma Displays, Seminar M-6, SID Seminar Lecture Notes, 1996 • Shigeo Mikoshiba, Color Plasma Displays, Seminar M-6, SID Seminar Lecture Notes, 1999 • Shigeo Mikoshiba, Color Plasma Displays, Seminar M-2, SID Seminar Lecture Notes, 2000 • G. Blasse et al. Luminescent Materials, Spinger-Verlag, 1994. • T. N. Criscimagna, “AC Plasma Display,” Chapter 3 in Display Devices, J. I. Pankove, ed., Spinger-Verlag, 1980.

6.976 Flat Panel Display Devices - Spring 2001

Lecture 8

2

Summary of Today’s Lecture • Color Plasma Display Panels (PDPs) are photoluminescent flat panel displays which generate UV using two dimensional array of miniplasma discharge cells • PDPs have inherent memory • PDPs are passive matrix addressed. • Energy consumed by the addressing circuit of PDPs could be reduced by using energy recovery techniques www.pctechguide.com

6.976 Flat Panel Display Devices - Spring 2001

Lecture 8

3

60” Diagonal Plama Display Panel

Weber, SID ‘00 6.976 Flat Panel Display Devices - Spring 2001

Lecture 8

4

LG Electronics Plasma Display Panel

Park, SID ’00, p. 475 6.976 Flat Panel Display Devices - Spring 2001

Lecture 8

5

Mikoshiba, SID Seminar Notes, 2000 6.976 Flat Panel Display Devices - Spring 2001

Lecture 8

6

Color Plama Display Fundamentals • Ultra-Violet light is generated by a gas discharge • Ultraviolet light excites a phosphor layer • Phosphor fluoresces visible light • Different phosphors are used for Red, Green and Blue • Each phosphor sub-pixel has 256 possible intensity levels www.pctechguide.com

6.976 Flat Panel Display Devices - Spring 2001

Lecture 8

7

What is a Plasma? Low Temperature

Solid

atom

Liquid

atom

6.976 Flat Panel Display Devices - Spring 2001

High Temperature Gas

electron ion

Lecture 8

Plasma

electron

ion

8

Where does the UV Come From?

nucleus

electron

Ground State 6.976 Flat Panel Display Devices - Spring 2001

Spontaneous Emission of Light

Excited State Lecture 8

Ground State 9

Visible-Light Emission Process PDP

CRT

1

Secondary electron emission

Thermionic electron emission

2

Multiplication of electrons by ionization

-

3

Electronic excitation of gas

-

4

VUV radiation from excited gas

-

5

Photoluminescence

6.976 Flat Panel Display Devices - Spring 2001

Cathodoluminescence

Lecture 8

10

Basic Device Structure

Weber, SID ’00 Digest p. 402 6.976 Flat Panel Display Devices - Spring 2001

Lecture 8

11

Basic Structure and Glow Formation Anode Phosphor V0

Positive Column

R Negative Glow Cathode

6.976 Flat Panel Display Devices - Spring 2001

Lecture 8

12

Penning Ionization Direct ionization ( higher breakdown voltage)

Ar + e − → Ar + + 2e − Penning ionization ( lower breakdown voltage) (16.6 eV)

Ne + e





Ne + Ar → *

Ne + 2e *

+

Ne + Ar + e

(16.6 eV)

6.976 Flat Panel Display Devices - Spring 2001

− −

(15.8 eV)

Lecture 8

13

I-V Characteristics

Mikoshiba, SID Seminar Notes, 2000

Vd = data line voltage Vs = scan voltage 6.976 Flat Panel Display Devices - Spring 2001

Vd < VBD and Vs < VBD but Vd + Vs > VBD Lecture 8

14

Current Limiting Techniques

Weber, SID Seminar Notes, 1996 6.976 Flat Panel Display Devices - Spring 2001

Lecture 8

15

Luminous Regions

Weber, SID Seminar Notes, 1996 6.976 Flat Panel Display Devices - Spring 2001

Lecture 8

16

Model of Important Gas Discharge Reactions

Weber, SID Seminar Notes, 1996 6.976 Flat Panel Display Devices - Spring 2001

Lecture 8

17

Feedback Model

Weber, SID Seminar Notes, 1996 6.976 Flat Panel Display Devices - Spring 2001

Lecture 8

18

Basic Cell Model for AC PDP

Pleshko 6.976 Flat Panel Display Devices - Spring 2001

Lecture 8

19

Basic Cell Operation of AC PDP

Pleshko 6.976 Flat Panel Display Devices - Spring 2001

Lecture 8

20

Wall Charges in an AC PDP Cell electrode

+++

excited atom

+++++ -

+ +

+++++

---

---

- -

+ +

+ +

- +- + + - + + +++

+++

---

(e)

(f)

---

-----

-----

(a)

(b)

(c)

dielectric layer

+

ion

6.976 Flat Panel Display Devices - Spring 2001

-

electrode charge

(d) wall charge

electron

- -

+++ + + + -

- +- + -

excited atom Lecture 8

21

Simple Write and Erase

Pleshko 6.976 Flat Panel Display Devices - Spring 2001

Lecture 8

22

VUV Output in On- and Off States

Weber, SID Seminar Notes, 1996 6.976 Flat Panel Display Devices - Spring 2001

Lecture 8

23

Photoluminescence • The ground state has equilibrium distance Ro with vibrational states are as shown • The excited state has equilibrium distance Ro’ with vibrational states are as shown • The parabola offset is ∆R • The absorption transistion is – g→e

• The emission transition is – e→g

Blasse 6.976 Flat Panel Display Devices - Spring 2001

Lecture 8

24

Excitation and Emission

Blasse

• Emission and Excitation spectral different. • Phosphors are excited with 147 nm radiation • Red, green and blue phosphors emit at their corresponding wavelength 6.976 Flat Panel Display Devices - Spring 2001

Lecture 8

25

RED Phosphor for 147 nm Excitation CIE chr. Diagram Phosphor

Relative Efficiency

(NTSC)

x

y

0.67

0.33

1/10 decay

Y2O3:Eu3+

1

0.64

0.34

4 ms

(Y,Gd)BO3:Eu3+

1.3

.64

.36

11 ms

.51

.34

Y.96P.60V.40O4:Eu.0 4

Mikoshiba, SID Seminar Notes, 2000 6.976 Flat Panel Display Devices - Spring 2001

Lecture 8

26

GREEN Phosphor for 147 nm Excitation CIE chr. Diagram Phosphor

Relative Efficiency

x

y

.21

.71

0.18

0.73

14 ms

(Ba,Sr,Mg)O•Al2O3:Mn2+ 1.2

.15

.75

14 ms

Zn2SiO4: Mn2+

.23

.70

(NTSC) BaAl 12O19:Mn2+

1

1.2

1/10 decay

Mikoshiba, SID Seminar Notes, 2000 6.976 Flat Panel Display Devices - Spring 2001

Lecture 8

27

BLUE Phosphor for 147 nm Excitation CIE chr. Diagram Phosphor

Relative Efficiency

x

y

(NTSC)

.14

..08

BaMgAl10O17: Eu2+

.15

.077

YP.85V.15O4

.19

.21

1/10 decay