pdf format

2 Watts. (80-90 Volts) www.neazoi.com/technology/thermocouple.htm ... [2] MAX. efficiency, ηeng(P), at given power P ... Bulk versus Quantum : for LARGE ∆T.
660KB taille 2 téléchargements 412 vues
Laboratoire de Physique et Modelisation ´ des Milieux Condenses ´ Univ. Grenoble & CNRS, Grenoble, France

The best quantum thermoelectric at finite power output

Robert S. Whitney Preprint arXiv:1306.0826 Aachen — Nov 2013

OVERVIEW Ioffe (1958) Inst. Semicond. Leningrad

2 Watts (80-90 Volts)

MY QUESTION: What is MAX. efficiency at GIVEN power output?

♣ Quantum thermoelectric ♣ Nonlinear Landauer-Buttiker ¨

THOT = 572 K TCOLD = 305 K www.neazoi.com/technology/thermocouple.htm

♦ parasitic heat flows — phonons & photons ♦ inelastic / relaxation in quantum system

CENTRAL RESULTS Heat-engine efficiency: ηeng = P/J Output : power = P = V I Input : heat-current = J

Refrigerator efficiency ≡ coeff. of performance (COP): ηfri = J/P Output : J Input : P

[1] ABSOLUTE upper bound on Power Output: P ≤ Pqb ♣ Pqb is quantum-bound (ill-defined in classical thermodyn) [2] MAX. efficiency, ηeng (P ), at given power P ♣ function of P/Pqb

⇐= Quantum unlike Carnot efficiency = classical



Carnot Example low power : ηeng (P ) ≤ ηeng 1 − α1

 p P/Pqb + · · ·

INTRODUCTION

Bulk versus Quantum : for LARGE ∆T Linearity requires temp. drop to be small on scale of thermalization Scal e therm of aliza tio

HOT

n

he

bu

lk

hea

t

at

HOT

the

ele

rm

ctr

ic

oe

cu

rre

lec

LINEAR

nt

tric

COLD

Sca the le of rma liza ti

quantum thermoelectric

on

COLD

ele

ctr

ic c

urr

en

t

NON-LINEAR

Nonlinear regime : efficiency η is meaningful, but ZT is NOT. Muralidharan-Grifoni (2012),

Whitney (2013), Meier-Jacquod (2013),

Michelini’s poster

Dictionary (for linear people) Linear formula√

η/ηCarnot =

√ZT +1−1 ZT +1+1

ZT = ∞ ⇐⇒ η = ηCarnot ZT = 3 ⇐⇒ η = 13 ηCarnot ZT = 0 ⇐⇒ η = 0

METHOD: scattering theory beyond linear response Heat current:

JL =

Z



−∞

dǫ ǫ TRL (ǫ) h

     ǫ−eVL ǫ−eVR f −f kB TL kB TR

  ♦ transmission function TRL (ǫ) = tr S † (ǫ) S(ǫ)    ♦ Fermi-Dirac for ingoing particles: f (ǫ − eVj ) kB Tj ♣ obeys 2nd law thermodyn, etc.

beyond

Whitney PRB (2013)

linear-response : Hartree-like interactions – self-consistent Christen-Buttiker ¨ (1996)

Self-consistent loop:

S(ǫ)

potential-distrib. in system

ORIGIN of THERMOELECTRICITY HOT Fermi sea

quantum system's transmission

COLD Fermi sea

I = 0 V = Vstop P = IV = 0

Mahan,Sofo (1996). Humphrey,Linke (2005)

Vanishing transmission width ⇒ reversibility (no entropy generated) ⇒ Carnot efficiency η = ηcarnot = 1 − TR /TL ... but no power

ORIGIN of THERMOELECTRICITY HOT Fermi sea

quantum system's transmission

COLD Fermi sea

I = 6 0 V = 6 0 P = IV = max.

Efficiency at max. power • vanishing transmission width; Esposito,Lindenberg,van den Broeck (2009)

⇒ Curzon Ahlborn efficiency

Curzon, Ahlborn (1975), Novikov (1957), Chambadal (1957)

• non-vanishing transmission width: Nakpathomkun, Xu, Linke (2010), Leijnse, Wegewijs, Flenberg (2010) Hershfield, Muttalib, Nartowt (2013), ...Others

... higher max power but lower efficiency at that power

ANSWERING MY QUESTON What is MAXIMUM EFFICIENCY for GIVEN power output?

OPTIMIZING EFFICIENCY for GIVEN POWER OUTPUT (n + 1) variables: n slices + bias, V one constraint : power = P ♣ want minimum heat-flow J for given P

Proof: changing height τγ of slice γ , decreases J   ∂P ǫγ J′ ∂J × = − if 0 > ∂τγ P eV P′ ∂τγ V

(increases efficiency)

primed = d/dV

For given temperatures TL ǫ0 =

eV 1 − TR /TL

(hot)

& TR

ǫ1 = eV

(cold) ′

J P′

primed = d/dV

transmission

TRANSCENDENTAL EQUATION

ǫ0

ǫ1 energy

Energy-integrals in J and P are Fermi-functions × top-hat P & J are sums of logs and dilog.-functions     ln 1 + e−(ǫ−eVj )/kB Tj & Li2 −e−(ǫ−eVj )/kB Tj Get ǫ1 from above transcendental eq. for given TL (hot) & TR (cold)

OPTIMAL TOP-HAT WIDTH

transmission

max. power output

transmission

increasing power output

energy

energy

transmission

zero power output

energy

UPPER-BOUND on POWER OUTPUT for N transverse modes Refrigerator cooling power: J ≤

1 π2 Jqb ≡ N (kB TL )2 2 12h

Heat-engine electrical power: 2 A0 π 2 P ≤ Pqb ≡ N kB TL − kB TR 6h

with

A0 ≃0.192

• Purely quantum, i.e. irrelevant for N → ∞

• Jqb = Pendry (1983) as limit on entropy flow =⇒ “single mode fermionic” analogue of black-body • Large N — Bjorn Sothmann’s talk Jordan et al (2013) For Ioffe’s “Kerosene Radio” set-up : Jqb , Pqb ∼ 10nW per transverse mode ⇒ 100W needs cross-section 1cm×1cm

MAX. EFFICIENCY for GIVEN POWER OUTPUT Heat-eng. : small power output, P . ! s P + ··· η = η Carnot 1 − α1 Pqb where Pqb is upper-bound

Fridge : small power output, J . ! s J Carnot η=η 1 − α2 + ··· Jqb where Jqb is upper-bound

PARASITIC PHONON/PHOTON FLOWS 4 4 Black-body photons: Jph ∝ (Thot − Tcold )

phonon in nanostructures Heron et al (2009-11)

Total efficiency ηel&ph =

Jph Jel

P Jel + Jph

Max efficiency - don’t care what P

P=VI Max efficiency at given P :

(not given P ) • No phonons/photons: max ηel&ph = NARROW transmission =⇒ ηel&ph → ηCarnot • Phonons/photons dominate: max ηel&ph ⇔ max P = WIDE transmission

ηel&ph (P ) =

P ηel (P ) P + ηel (P )Jph

RELAXATION modelled as Buttiker “voltage probe” (1988) Sometime – inelastic scattering may increase efficiency see Casati’s talk & Ora’s talk

REALLY HARD PROBLEM !!

ANSWERED in 2 limits : low power and max power Over-estimate never exceed results without relaxation. ... open question for intermediate powers

♣ Max. efficiency at given power : “top-hat” transcendental eq. for position/width

⇒ Width grows with power ♣ Results : [1] max. possible power

transmission

CONCLUSIONS

energy

(quantum)

[2] max. possible efficiency (quantum)

Is this the BEST thermoelectric at finite power output?? ♣ Open question: relaxation at intermediate power outputs? ♣ Open question: strongly correlated systems (Kondo, Luttinger, etc)? ♦ How to make top-hat? Buttiker said “top-hat = band = chain quantum-dots”