Orange juice gj authentication by 1H NMR 1H NMR - Marion Cuny

Principal Component Analysis on. 1H NMR spectra of fruit juices. 3 x 10. -3. Normalised covariance. 3 x 10. -3. Normalised covariance. 0. 1. 2. C. 2 10% var. 0. 1.
4MB taille 25 téléchargements 355 vues
Institute of Food Research

Orange g juice j authentication by 1H NMR G n Le Gwen L Gall, G ll Marion M i n Cuny C n and nd Ian Colquhoun

Need for authentication • Orange Juice consumption is increasing world wide and freshly squeezed juices (Not from Concentrate,, NFC)) is a growing g g market in US, Canada and Europe Million SSE M E Gallons

1800 1600

U S consumption of orange juice by category U.S.

1400

From Conc OJ (FCOJ)

1200

Reconst Conc OJ ((RCOJ)) (chilled)

1000

Not From Conc (NFC) (chilled) TOTAL

800 600 400 200 0

89

90

91

92

93

94

95

96

97

98

99

00

YEAR

http://edis.ifas.ufl.edu/FE195#TABLE_4

Need for authenticating orange juice • Some techniques exist to detect fraud (HPLC SNIF (HPLC, SNIF-NMR) NMR) but still need for more Aim: would it possible to easily implement a technique such as 1H Nuclear Magnetic Resonance (NMR) spectroscopy to address authentication issues?

Techniques for measuring wide ranges off metabolites t b lit 1H H-NMR NMR

major compounds (fingerprinting) (f g p g)

GC/MS GC/ S

Ma n y primary Mainly pr mary metabolites, polar & nonpolar: amino-acids amino acids, organic acids, sugars, fatty acids acids…

METABOLITES

LC/MS

Secondary S d metabolites, aromatic cpds, phenolics, glycoalkaloids

Preparation • pH adjust 10 mL of juice to 4 00±0 03 add D2O to supernatant 4.00±0.03, (50-100 samples a day) • Proton NMR: 10 min recording per sample Le Gall G, Puaud M, Colquhoun IJ, Discrimination between orange juice and pulp wash by H-1 nuclear magnetic resonance spectroscopy: Identification of marker compounds JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 49 (2): 580-588 FEB 2001

1H NMR of fruit juice

citric dmp asn ? asp

suc + gluc

OVERALL

malic

SPECTRA

10

8

suc gluc gluc luc

6

4

2

0

ppm 3

ppm

2.5

ethanol

malic gaba dmp pro dmp pro dmp gaba

arg

ala

?

fatty val acids sterol Mean Orange Juice

Mean Grapefruit 2.6

2.4

2.2

2

1.8

1.6 ppm

1.4

1.2

1

0.8

Mean spectra Low field region formic acid niacin niacin

? ?

? ?

tyr * tyr * ?* hesphesp h ? ?

naringin g

* polyphenols

? *

h hesp hl phlorin

Mean OJ

naringin

M n GF Mean 9

8.5

8

7.5 ppm

7

6.5

6

Study on orange and grapefruit juice • 93 juices bought in local supermarkets, Norwich ,UK •

58 – – –

orange g juices j 24 freshly squeezed 12 fresh concentrates 22 p pasteurised concentrates



10 mixtures orange/grapefruit juice – 3 freshly squeezed – 7 pasteurised concentrates



23 – – – •

grapefruit juices 9 freshly squeezed 4 fresh concentrates 10 p pasteurised concentrates

2 freshly squeezed Clementine juices

• Can we differentiate orange g juice j from g grapefruit p by 1H NMR? Markers? • Orange juice from mixtures? • Freshly squeezed from concentrate? Markers?

Approaches for data analysis

sample l 15_4 30_4 13_4

t tyr 84089 153982 140869

multivariate, integrated sample l 15_4 30_4 13_4

t tyr

phe h

c. putr t

84089

20591

4937

153982

46018

11968

140869

21517

12189

multivariate, whole trace measurements s sample

univariate, integrated

Data reduction by PCA, whole traces traces measurements

PCs

sam mples

samp ples

z11 z12 z13

z21 z22 z31 scores

zn1 zn2

Principal Component Analysis on 1H NMR spectra of fruit juices -3

Normalised covariance

x 10

3

3

2

2

1

1 PC C2

PC C2 10% var

x 10

0

-1

-2

-2

-3

-3

grapefruit orange

0 0.005 0.01 PC1 79% var

mixtures clementine

Normalised covariance

0

-1

-0.01 -0.005

-3

-0.01 -0.005

0 0.005 0.01 PC1

fresh squeezed (NFC) fresh concentrate (RCOJ) pasteurised concentrate (FCOJ)

Origin of the discrimination -

ethanol P PC2

grapefruit orange

0

polyphenols ?

0 PC1

naringin

2.5

9 8.5 8 7.5 7 6.5 6 ppm

1.5

suc

unk 4.4 4.3 ppm

2 ppm

malic li

4.5

?

malic pro

loading 1

citric

glucose 5.5

5

4.5

4 ppm

3.5

3

1

Approaches for data analysis

sample l 15_4 30_4 13_4

t tyr 84089 153982 140869

multivariate, integrated sample l 15_4 30_4 13_4

t tyr

phe h

c. putr t

84089

20591

4937

153982

46018

11968

140869

21517

12189

multivariate, whole trace measurements s sample

univariate, integrated

Any markers? • Anova was performed on 35 signals representing most of the metabolites detected by 1H NMR – F value was significant for 32 signals – 25 showed h d hi high h F values l = potential t ti l markers discriminating OJ/GF

ANOVA AND INTENSITY PLOTS ANOVA on niacin 8.81ppm x 10

-7

Intensity plot on niacin -6 6

1.4

x 10

mixtures

12 10 8

90% 50%OJ

1.2

NMR In ntensitty

NMR In N ntensitty

F 52.29

1

0.8

6

0.6

4

0.4 0.2

2

NFC RCOJ FCOJ NFC RCOJ FCOJ

OJ

GF

0

NFC RCOJ FCOJ NFC RCOJ FCOJ

OJ

GF

• Even if niacin is 4 fold-diff fold diff to the mean, mean mixtures do not separate from pure OJ

Principal Component Analysis on 1H NMR spectra of fruit juices -3

Normalised covariance

x 10

3

3

2

2

1

1 PC2

PC2 2 10% var

x 10

0 -1

0 -1

-2 2

-2

-3

-3 -0.01 -0.005

grapefruit orange

0 0.005 0.01 PC1 79% var

-3

zoom

%OJ

70% 60% 50% 75% 90% 85% 72% ?% 51% 70% -4 4

-2 2

0 2 PC1

4

6 x 10

-3

mixtures % of grapefruit in mixture clementine needs to be high (>40%) for mixture to be discriminated

PCA on parts of spectra PCA on low f field region g x 10

0.01

-3

zoom

6

0.005 4

PC2 P

PC2 P

0 -0.005

85%OJ 70%OJ ?%

0

-0.01 -0 0.015 015 -0.02 -0.03

2

-2 -0.02

grapefruit rapefruit orange

-0.01 PC1

0

0.01

-10

-5

0 PC1

mixtures clementine

5 x 10

-3

PCA on high g field region g not as good (not shown)

Authenticity by liquid chromatography HESPERIDIN NARINGIN

700

Pea ak Intensityy

600 500 400 300 200 100 0

Pure Orange Juice

Pure Grapefruit Mixture (60% 60% OJ)

Detection of hesperidin (OJ marker) and naringin (GF marker) L field Low fi ld region i h hesp hesp naringin

h hesp

Mean OJ

naringin

7.08

Mean GF 8

7.5 ppm

7

6.5

7.06 7.04 ppm

7.02

6

HPLC markers seen by y NMR but signals affected by pH

6.19 6.18 6.17 6.16 6.15 ppm

Peak alignment done by Matlab macro written in house

Hesperidin (OJ) before

7.08

7.06 7.04 ppm

after

Matlab macro

7.02

N i i (GF) Naringin

7.08

7.06

7.04

Matlab ‘collation’

7.02

7.08

ppm

7.06

7.04

7.02

ppm

after

before Matlab macro

6.19 6.18 6.17 6.16 6.15

6.2

6.18

6.16 ppm

6.14

ANOVA HESPERIDIN 7.04

ppm pp

x 10

7.02 -6 6

ANOVA

5

6

F 61.27

NMR In ntensitty

7.06

NMR I N Intensiity

7.08

4

3

2

1

NFC RCOJ FCOJ NFC RCOJ FCOJ

OJ

GF

x 10

-6 6

Intensity plot

mixtures 5 4 3 2 1 0

NFC RCOJ FCOJ NFC RCOJ FCOJ

OJ

GF

ANOVA NARINGIN

x 10

-7

15 10 5 0

6.18 6.16 ppm x 10

6.14 -6 6

ANOVA

7

NMR In N ntensitty

6.2

6

F642.07

7

x 10

-6

I t Intensity it plot l t

6 5

5

4

4

3

3

2 2 1 1 0 0

NFC RCOJ FCOJ NFC RCOJ FCOJ

OJ

GF

-1

NFC RCOJ FCOJ NFC RCOJ FCOJ

OJ

GF

Discrimination according to process x 10

-3

Normalised covariance

ethanol

3 2

PC C2

1 0 -1

loading g 1

-2 -3

2.5 -0.01 -0.005

grapefruit orange

0 0.005 0.01 PC1

mixtures clementine

2

1.5

1

ppm

fresh squeezed q fresh concentrate Pasteurised concentrate

ANOVA according to process • At least two signals seem to be potential

markers for (not from concentrate) freshly squeezed juices x 10

8

F29.63

6

4

2

-4

2.5

ethanol

NM MR Intensity y

NM MR Inttensity y

x 10 -4

? 3.33ppm pp F22.94 prob-14

2

15 1.5

1

0.5

0

NFC RCOJ FCOJ NFC RCOJ FCOJ

OJ

GF

NFC RCOJ FCOJ NFC RCOJ FCOJ

OJ

GF

ANOVA according to process • Half a dozen signals g seem to show a trend in difference between NFC, RCOJ and FCOJ especially p y for grapefruit g p x 10

1.8

x 10

b-glucose 4.614ppm F81.71

1.6 1.4

-3

sucrose 5.25 ppm

2.5

NM MR Inte ensity

NM MR Inttensity y

2

-3

F65.3 2

1.5

1.2 1

NFC RCOJ FCOJ NFC RCOJ FCOJ

OJ

GF

1

NFC RCOJ FCOJ NFC RCOJ FCOJ

OJ

GF



1H

CONCLUSIONS

NMR spectra easy to obtain (same results for 400 MHz, not shown)

• Orange juice discriminated from grapefruit juice • Some new markers but mixtures with