Protein NMR Structure Dynamics Interaction function - GERM

Structure determination from NMR data is an non-linear inverse problem: Dihedral ... Protein dynamics leads to a non-linear averaging of NMR observables ...
36MB taille 2 téléchargements 321 vues
Cargèse BIP Marseille EcoleDécembre du GERM 2011 2013

Protein NMR Structure Dynamics Interaction function Bruno Kieffer Biomolecular NMR Team

Modern biology : towards complexity GFP Polymerase Chain Reaction

1995

ESI MS/MS High Througput Sequencing

RNA Seq

2000

Human Genome

2005

2010

Transcriptome Proteome

Interactome Metabolome

Bio-NMR Evolution milestones TROSY (A. Pervushin) K Wüthrich Protein. Solution Str.

1980

15N-13C

labelling Methods (Ad Bax)

Relaxation Dispersion (A. Palmer)

1990

2000

Methyl labelling (L. Kay)

RDC (J Prestegard, N. Tjandra)

Longitudinal Relax. Optimized spectr. SOFAST (P. Schanda)

2010

Protein : a complex polymer •  A naïve view of a protein Primary sequence ippdqqrlifagkqledgrtlsdyniqkestlhlvlrlrg gmqifvktltgktitldvepsdtienvkakiqdkegi

3D fold

Protein : a complex polymer •  A evolutionnary view

Protein : a complex polymer •  A thermodynamic view of a protein Lysosyme pH7.0

From Creighton, proteins Freeman 1993

Protein : a complex polymer •  A thermodynamic view of a protein

From Creighton, proteins Freeman 1993

NMR spectrum of a 12 kDa protein H2O

Buffer (TRIS)

aliphatic protons aromatic protons amides protons

Hα Methyls

8

NMR spectrum of a 12 kDa protein H2O

Spectre d une MVKQIESKTA FQEALDAAGD Protéine de 10 kDa

Buffer (TRIS)

KLVVVDFSAT WCGPCKMIKP FFHSLSEKYS NVIFLEVDVD DCQDVASECE VKCMPTFQFF KKGQKVGEFS GANKEKLEAT INELV

Valine 52

aliphatic Valine protons 65

aromatic protons amides protons

Hα Methyls

9

Resonance frequency of nuclei within a protein provide a probe for local environment

Unfolded protein

10

Folded protein

Resonance assignment and labelling HN Hβ, Hγ, Hδ...

2D NOESY spectrum of a 12 kDa protein Spectral assignments are performed thanks to a combination of isotopic labelling schemes and associated NMR experiments

HN Hα

HN HN

Hα Hβ, Hγ, Hδ...

Resonance assignment and labelling

Interaction or Resonance assignment and labelling Dynamics experiments

The 1H-15N HSQC : a relentless judge of the protein’s state

15N

1H

15N

The 1H-15N HSQC : a relentless judge of the protein’s state When defining the structural domain sequence boundaries

The 1H-15N HSQC : a relentless judge of the protein’s state When choosing the affinity purification tag

Measuring 1H-15N HSQC in-cell

Zach Serber, Philipp Selenko, Robert Hänsel, Sina Reckel, Frank Löhr, James E Ferrell, Jr, Gerhard Wagner & Volker Dötsch Nature Protocols 1, 2701 - 2709 (2007)

The use of NMR for protein control quality : the protealys project Aim: Design a method able to analyse therapeutic proteins within complex mixtures

Spectres RMN Spectromètre

Formule

Human insulin from two different companies

umuline Lilly

actrapid NovoNordisk

The proteins are identical The compositions are differents

Detection a single pair of amino-acid inversion Insuline humaine

actrapid NovoNordisk Insuline lispro

humalog NovoNordisk

inversion

15N-13C

labelling : protein backbone roadmap triple resonance experiments

Exp: HNCA

15N-13C

labelling : protein backbone roadmap triple resonance experiments

Identification of residue type The spectroscopic approach F,Y,H,W,C,S G

V,I

A

T

D,N

R,E,Q,K,P,M,L

Hadamac (E. Lescop et al. J. AM. CHEM. SOC. 2008, 130, 5014–5015)

Identification of residue type The spectroscopic approach

Hadamac (E. Lescop et al. J. AM. CHEM. SOC. 2008, 130, 5014–5015)

Identification of residue type The Biochemical approach : selective depletion in cyanobacteria expression system

[

12C

Carbon source: CO2 Energy: light Nitrogen source: NO-3 Inducer : NO-3

- 14N

] Ile

Identification of residue type The Biochemical approach : selective depletion in cyanobacteria expression system Addition of unlabelled ILE

Metabolic leakage

Selective labelling

Constant-time 1H-15N HSQC with N-CO filter

Cell-free expression system prevents metabolic leakage

Cell-free expression and stable isotope labelling strategies for membrane proteins. Sobhanifar S, Reckel S, Junge F, Schwarz D, Kai L, Karbyshev M, Löhr F, Bernhard F, Dötsch V. J Biomol NMR. 2010 p 33-43

J Biomol NMR (2012) 52:197–210

Towards large complexes selective methyl labelling Use of metabolic precursors Leads to both S and R isomers of V and L

Sprangers et al. Solution NMR of supramolecular complexes: providing new insights into function. Nat Meth (2007) vol. 4 (9) pp. 697-703

Hemisynthesis Leads to specifically the pro-S isomer

Stereospecific Isotopic Labeling of Methyl Groups for NMR Spectroscopic Studies of High-Molecular-Weight Proteins** Gans P. ,…, Jérôme Boisbouvier* Angew. Chem. Int. Ed. 2010, 49, 1958 –1962

selective methyl labelling: the malate synthase G (82 kDa)

Assignments of methyl groups using single aminoacid mutagenesis

Amero … Boisbouvier, J Biomol NMR (2011) 50:229–236

Protein structure determination

Improved structure calculation procedures and programs Structure determination from NMR data is an non-linear inverse problem:

Dihedral angles

NOEs

Improved structure calculation procedures and programs Protein dynamics leads to a non-linear averaging of NMR observables

Improved structure calculation procedures and programs Iterative and automated structure determination protocols allow to resolve NOE ambiguous assignments Initial fold

i=1 NOEs assignment, Artefact suppression Medium ambiguity accepted

i=2

... i=8

softwares: ARIA, UNIO

Rieping W., Habeck M., Bardiaux B., Bernard A., Malliavin T.E., Nilges M. (2007) ARIA2: automated NOE assignment and data integration in NMR structure calculation. Bioinformatics 23:381-382. Volk, J.; Herrmann, T.; Wüthrich, K. J. Biomol.NMR. 2008, 41, 127-138..

Use of Ambiguous Interaction Restraints for soft docking

Domingez C, Boelens R, Bonvin A, J. Am. Chem. Soc. 125, 1731-1737 (2003).

Use of Ambiguous Interaction Restraints for soft docking

Probing molecular interactions

KD =

koff kon

koff CH3

kon

+

CH3

Kinetics of the equilibrium defines the echange regime fast

Exchange rate

intermediate

slow

NMR spectrum

νbound

bound lifetime: (k on KD)-1 KD :

fs

ns

νfree

νbound

νfree

νbound

νfree

µs

ms

s

h

mM Weak binders

µM

nM strong binders

Interaction between a small ligand and a protein « by simple NMR » BSA + D-Trp Experimental conditions -  Unlabelled BSA 900 uM -  3 mm tube (< 1 nmol prot) -  700 MHz cryo TCI -  2 hours acquisition -  SOFAST METHYL-TROSY

08.4

16.6

13C

(ppm)

12.5

20.7

24.8

1.92

1.08

1.50 1H

0.66

0.24

(ppm) Quinternet...Kieffer, Chem. Eur. J. 2012, 18, 3969 – 3974

Fast pulsing rate reduces ligand signal Titration BSA/paracétamol [BSA] = 1.8 mM

I

100

90

14.7

a

23.0

I

[P] = 18 mM

13C

(ppm)

73 ms

P

BSA 100 61

CH3

1200 ms

b P

73 ms

2.18

1H

(ppm)

0.80

2.18

BSA 1H

(ppm)

0.80

(A)

(B) Δδ

Δδ 0.12

(C)

KdL = 35 ± 5 mM

17.1

0.04

type L

0.10 0.01 0.01

0.05

KdH = 45 ± 15 µM

type H 0

4000

13C

0.08

17.4

0

8000 10000 [L-Trp] µM

0

(D)

0

(ppm)

0.15

2000

320 13380 20000

10260

L

High

1280 3200

type C 1H

(ppm)

koff1 High

R

kon2

Low

koff2 High

Low

kon3 koff3

kon4 High

Low

R2L

koff4

960

5130

R1L kon1

640

7060

24450

0.98

10000 20000 [L-Trp] µM

150

Low

RL2

1920

0.91

Low affinity interaction are involved in signalling Example of the Retinoic Acid Receptor

RARγ

RARγ

RAR β

α

RAR RARα

SH3.3 domain of vinexin β

SH3 + RARg NTD peptide titration experiments

SH3-3



+

PSPPSPPPPPRVYK!

Modulation of RARγ activity by A/B phosphorylation P

EEMVPSS77PS79PPPPPRVYK P

S

S

S

S

S

S

S

S

Kd! 77S-79S

: 40 µM 140 µM 77S-79pS : 280 µM 77pS-79pS : 545 µM 77pS-79S :

Lalevee et al. Vinexin , The FASEB Journal (2010) vol. 24 (11) pp. 4523-4534

Chemical shift mapping of RARγ PRD-DBD on vinexin β SH3.3 ∆δ ppm (PRD.DBD – PRD)

SH3 sequence

binding surface

SH3/PRD : KD > 40µM SH3/PRD-DBD : KD = 12µM DBD RARγ

Chemical shift mapping of SH3 interaction site on RARγ DBD 9.5

9.0

8.5

8.0

110

7.5

7.0 110

T68N-HN G39N-HN

Disappearing correlations

K50N-HN G29N-HN

V34N-HN T55N-HN

S47N-HN M52N-HN

N70N-HN

115

S86N-HN

V67N-HN

115

F81N-HN

Q78N-HN S6N-HN

R46N-HN

(ppm)

R45N-HN C23N-HN S9N-HN

C80N-HN

t 1 - 15N

Y32N-HN S28N-HN

C72N-HN

M0N-HN

K60N-HN

R69N-HN

S7N-HN

Y74N-HN E38N-HN

V90N-HN

Y30N-HN

R71N-HN

S27N-HN

E88N-HN

N51N-HN

N24N-HN N61N-HN K66N-HN

Q49N-HN I48N-HN

120

D25N-HN

120

A89N-HN

L77N-HN

Unaffected correlations

E2N-HN

S36N-HN V22N-HN

K41N-HN

M85N-HN

C20N-HN

C37N-HN

E1N-HN R15N-HN

K26N-HN

K79N-HN

V16N-HN

R76N-HN

M3N-HN

F43N-HN

I63N-HN H31N-HN V4N-HN

C75N-HN

E82N-HN

D59N-HN N92N-HN

R91N-HN

Y17N-HN K18N-HN N65N-HN

125

125

C62N-HN

F44N-HN

K87N-HN R58N-HN

9.5

9.0

Shifting correlations

8.5

8.0

7.5

7.0

t 2 - 1H (ppm)

GAMEEMVPSSPSPPPPPRVYKPCFVCNDKSSGYHYG

VSSCEGCKGFFRRSIQKNMVYTCHRDKNCIINKVT RNRCQYCRLQKCFEVGMSKEAVRN

Building the 3D model of the SH3/DBD complex using HADDOCK

What about the DNA ? DNA : RARE DR0 Vinexin SH3.3 PRD-RARγ DBD

Revealing invisible states : Folding upon binding of KIX to KID phosphorylation of KID Ser 133 trigger the formation of a complex between CREB and CBP resulting in enhanced gene expression

Kenji Sugase, H. Jane Dyson & Peter E. Wright (2007) Nature 447, 1021-1025. Mechanism of coupled folding and binding of an intrinsically disordered protein.

Revealing invisible states : Folding upon binding of KIX to KID

Revealing invisible states : Folding upon binding of KIX to KID

fast exchange regime “encoutering” complexes

fast/intermediate three site exchange regime in the bound state

➫ The formation of transient complexes is involved in the protein recognition ➫ A intermediate complex (where αA is folded up to ~90%) is then formed without dissociation.

Evidencing conformer selection processes in allosteric regulation Two model mechanisms for allostery : Induced Fit

Conformational selection

Evidencing conformer selection processes in allosteric regulation

c-Myb MLL KIX !ex = 3.0 ± 0.3ms @ 27°C

➫ Binding of MLL transcription factor to KIX induces a redistribution of population towards conformations where c-Myb (pKID) binding site is preformed. ➫ This minor state is not seen in the free KIX protein Brüschweiler et al, J. Am. Chem. Soc. (2009) 131, 3063–3068

Evidencing conformer selection processes in allosteric regulation

Brüschweiler et al, J. Am. Chem. Soc. (2009) 131, 3063–3068

Evidencing conformer selection processes in allosteric regulation ➫ Identification of a hydrophobic cluster of residues bridging the two binding sites

Brüschweiler et al, J. Am. Chem. Soc. (2009) 131, 3063–3068

Exploring molecular mechanisms within the chromatin using NMR

• 

Chromatin has emerged as an active component of gene expression regulation.

• 

Post-translational modifications (PTM) of Histones are used to activate/ repress gene expression at specific loci.

Proton spectra of nucleosome preparations Signals from DNA imino-protons

T-A

G-C

• 

It is a large particle for NMR (Tc > 100 ns)

• 

It contains three distinct spectroscopic "territories" –  DNA –  Disordered flexible tails –  4 small proteins

Sharp signals from disordered tails

DOSY spectrum of nucleosome preparations from nuclear extracts treated by DNAase

Exploring molecular mechanisms within the chromatin using NMR

From Kato et al PNAS 2011

Mapping the interaction between HMGN2 and the nucleosome

conclusions •  NMR allows the investigation of energy landscapes of proteins, which is closely related to their function and their evolution. •  Recent methodological developments opened new time windows to explore the dynamics of proteins and their interactions. •  There is a need to develop sensitive probes to explore molecular mechanisms in more complex environments.

Plan •  Introduction : perspective historique •  La HSQC une porte sur l’intimité des protéines •  Assignments –  Attribution des signaux –  Marquage isotopique –  Méthodes modernes (cell-free expression systems) •  Détermination de structures des protéines –  ARIA / Soft docking

•  •  •  • 

Etude du repliement In-cell NMR Protéines intrinsèquement dépliée (repliement et interaction) Etudes d’interactions ligand-protéines –  Echelles de temps et d’affinité –  Observation des ligands –  Observation du récepteur: site spécifique –  Processus d’auto-assemblage