Non-stationarity and slow dynamics in fluid turbulence

existence of turbulent « states » axisym stat. mech. cascade models. Leprovost, Dubrulle, Chavanis,PRE (2005). Monchaux et al., PRL 96 (2006). Benzi PRL 95 ...
2MB taille 19 téléchargements 315 vues
Examples of non-stationarity and slow dynamics in turbulence (experimental observations) JFP, laboratoire de physique de l’Ecole normale supérieure de Lyon Alain Arnéodo, Laurent Chevillard, Jean Delour, Peter Holdsworth, Emmanuel Lévêque, Nicolas Mordant, Philippe Odier, Romain Volk VKS Collaboration: Mickael Berhanu, Mickael Bourgoin, Arnaud Chiffaudel, François Daviaud, Bérengère Dubrulle, Stephan Fauve, Romain Monchaux, Nicolas Plihon, François Pétrélis, Florent Ravelet

Fully developped turbulence

Flow forcing at large scale (non linear interactions) (energy transfer : ) Dissipation at small scale

Fully developed turbulence

Fully developed turbulence

Inertial range

Fully developed turbulence long time uncorrelated fluct short-time memory

Questions: • universality of small scale motion (independence from large scale forcing) • large scale / long time dynamics ?

Question: emergence of long time dynamics in turbulence ?

Exemple 1: motion of fluid particles

Exemple 2: dynamics of velocity gradients

Exemple 3: the dynamo instability

More questions …

The Kolmogorov picture (1 particle) • Random walks

• White acceleration, spectrum :

The Kolmogorov picture (1 particle) • Random walks

• Link with K41 theory in Eulerian framework

Lagrangian measurements Ott, Mann, J. Fluid Mech., 422, 207, (2000) Voth, Satyanarayan, Bodenschatz, Phys. Fluids, 10, 2268, (2000) Mordant, Pinton, Michel, J. Acoust. Soc. Am., 112, 108, (2002)

Particles ! 10 "m Rates ! 10 kHz Re ! 106

velocity spectrum Mordant, Metz, Michel, Pinton, Phys. Rev. Lett., 87, 214501, (2001)

RL(!) ! exp(- ! / TL) EL(") = v2 TL / (1+ TL2 "2) Kolmogorov EL(") = C0# "$2

Lagrangian acceleration Mordant, Lévêque, Pinton, New J. Phys, 6, 34 (2004)

around a vortex

! 500 g

Lagrangian acceleration Mordant, Crawford, Bodenschatz, Physica D, 193, (2004)

R% = 690 = 85 m/s2

Heisenberg-Yaglom scaling :

Lagrangian acceleration Mordant, Delour, Leveque, Michel, Arnéodo, Pinton, J. Stat. Phys., 113, 701, (2002)

Short-time correlation for the acceleration direction Long-time correaltion for the acceleration magnitude

Correlation of velocity increments • !u!0(t) = v(t+!0)-v(t) ->

C(t)= < u!0(t’) u!0(t’+t) >t’

DNS R%=75

exp R%=740

Lagrangian intermittency Mordant, Metz, Michel, Pinton, Phys. Rev. Lett., 87, 214501, (2001)

CASCADE (1 time stat, exponents)

scale

CORRELATED WALK (2 times stat, dynamics)

" !v = & " !'v time

" !'v correlated ?

A Lagrangian Random Walk

$%2

< log| u!0(t’)| - < log| u!0| > )( log| u!0(t’+t)| - < log| u!0| >t’ ( $%2 log(t)

MRW model Bacry, Delour, Muzy, Phys. Rev. E, 64, (2001).

stochastic equation for the velocity increments

‘K41’ theory : )(t) is *-correlated noise, Model, from observations :

G(t) : gaussian , white in time, and :

MRW model Mordant, Metz, Michel, Pinton, Phys. Rev. Lett., 87, 214501, (2001)

Langevin models of Lagrangian acceleration Aringazin & Mazhitov, Phys. Rev. E, 68, 026305, (2004)

when L(t) is *-correlated Gaussian white noise F(a)=-a

QUESTION : statistics f(+) ?

Langevin models of Lagrangian acceleration Aringazin & Mazhitov, Phys. Rev. E, 68, 026305, (2004)

• f(+) : ,-square distribution • f(+) : log-normal distribution • unifying concept : + = +(u) • +(u) = u2 : ,2 • +(u) = exp(u) : log-normal • associated Langevin eqn.

• link with Laval-Dubrulle-Nazarenko turbulence model

Two-time scales stochastic models Sawford, Phys. Fluids 3, 1577 (1991) A.M. Reynolds, Phys. Fluids 15, 2773 (2003)

• Sawford’s second order model

• Reynold’s refinement with exponential correlation in the noise

Question: emergence of long time dynamics in turbulence ?

Exemple 1: motion of fluid particles

Exemple 2: dynamics of velocity gradients

Exemple 3: the dynamo instability

More questions …

Magnetohydrodynamics B-eqn:

U-eq:

Induction at low Rm • magnetic Reynolds number • B0 applied + low Rm : quasistatic approximation

• induction is a mirror of velocity gradients

diffusion scale:

Measurements VK-Gallium Velocity feed-back

3D Hall probe

Velocity feed-back

Power

Power

R

Motor 1

B0- B0// Motor 2

60

60

40

40

20

20

0

0

applied B0

mean induced bz

-20 0

10

20

30

time (s)

40

50

60

-20 1 10

10

2

60 40 20 0 30

30.5

31

31.5

time (s)

32

32.5

10

3

10

4

10

5

histogram

Bind,z (G)

Bz (G)

Time dynamics

33

Time dynamics

Slow dynamics T >> .-1

K41 scaling B2(k) ! k-11/3

Time dynamics

Time dynamics Distance of induction profile to mean profile

Time dynamics Distance of induction profile to mean profile

Dynamo : a “Bullard” cycle • Spontaneous bifurcation to B!" state

• Positive loop-back induction cycle : B

B1 !

i

U

B2

B3 // B1 …

Dynamo : a “Bullard” cycle

M. Bourgoin et al., NJP 8 (2006)

Dynamo : a “Bullard” cycle

M. Bourgoin et al., NJP 8 (2006)

VKB: “on-off” bifurcation

M. Bourgoin et al., NJP 8 (2006) Aumaitre et al., PRL 95 (2005)

Slow dynamics with reversals • Coupled modes:

• Bifurcation with additive noise ?

De la Tore, Burguete, PRL 99 (2007) Narteau et al., EPSL 262 (2007)

Question: emergence of long time dynamics in turbulence ?

Exemple 1: motion of fluid particles

Exemple 2: dynamics of velocity gradients

Exemple 3: the dynamo instability

More questions …

The VKS dynamo experiment

Re ! 106

Rm ! 30

a turbulent dynamo

Monchaux et al., PRL, 98 (2007)

a turbulent dynamo

Axisym Cowling’s thm

Monchaux et al., PRL, 98 (2007)

Magnetic field reversals

Berhanu et al. EPL, 77 (2007)

Question: emergence of long time dynamics in turbulence ?

Exemple 1: motion of fluid particles

Exemple 2: dynamics of velocity gradients

Exemple 3: the dynamo instability

More questions / observations …

• long time dynamics in convective flows in Karman flows Resagk et al. PoF 18 (2004)

• existence of turbulent « states » axisym stat. mech. Leprovost, Dubrulle, Chavanis,PRE (2005) Monchaux et al., PRL 96 (2006)

cascade models

Chilla et al. EPJB 40 (2004)

Benzi PRL 95 (2005)

Lohse & Sugiyama, preprint

• long time dynamics in convective flows in Karman flows • existence of turbulent « states »

De la Tore et al. PRL 99 (2007)

axisym stat. mech. Leprovost, Dubrulle, Chavanis,PRE (2005) Monchaux et al., PRL 96 (2006)

cascade models Benzi PRL 95 (2005)

Ravelet et al. PRL 93 (2004)

• low Pm MHD turbulence & dynamo

slow B , fast U