Nanoscale resolution options for optical localization techniques

Jan 26, 2009 - Ion Beam. Global navigation through silicon with co-axial IR and ion column .... ted Si. Conductive. Channel. Subthreshold Slope ≅ 60mV / dec.
1MB taille 7 téléchargements 311 vues
berlin

Nanoscale Resolution Options for Optical Localization Techniques

C. Boit TU Berlin – Chair of Semiconductor Devices EUFANET Workshop on Optical Localization Techniques Toulouse, Jan 26, 2009

Nanoprobing of Identified Node se r La

● Resolution < 50nm ● Parallel lapping down to contact layer ● Isolated devices ● Low ohmic contact ● Destructive to circuit

Detector

Probe Tip

Tip

AFM Feedback

Piezo

Additonal Signals

AFP needles tungsten contacts IMD bulk-Si

PW

W NW bulk Silicon

Jan 26, 2009

EUFANET 09 Toulouse

2

Optical Backside Circuit Analysis • GHz regime managed by most dynamic techniques Laser • Feature Size Resolution: 2 levels of analysis LVP – Level 1: IR + SIL to identify critical area – Level 2: Nanoprobing to verify critical node – prep circuit destructive

CCD Photon Emission

increasing need for a high resolution optical localization technique Laser Stimulated Electrical Signal Jan 26, 2009

EUFANET 09 Toulouse

3

Trench Floor Planarity Global navigation through silicon with co-axial IR and ion column

IR-Microscope Ion Beam

DCG Systems - OptiFIB

ΔZ≈130nm

Jan 26, 2009

Co-planarity check of trench bottom to chip levels with interference rings (fringes) EUFANET 09 Toulouse

4

FIB Ultra Thin Back Surface Procedure ● mechanical thinning ● localized FIB trench - 1st endpoint on n-wells – voltage image contrast - 2nd endpoint on STI – material image contrast < 400nm remaining Si ● local high precision alignment n wells

poly p-diff actives n-diff 150µm ARC STI Jan 26, 2009

4 - 40000µm2 STI

EUFANET 09 Toulouse

5

AFP

frontside

backside

TUB Research @ ISTFA 07

● FIB backside process

● parallel lapping down to contact layer ● isolated devices ● low ohmic contact

● devices not isolated ● creation of new circuit nodes ● Circuit fully functional

● Destructive to circuit AFP needles tungsten contacts IMD bulk-Si

PW

FIB Pt W

D

S

G

NW bulk Silicon

Jan 26, 2009

EUFANET 09 Toulouse

6

UltraThin Si - Ideal Platform for NanoAnalysis Ultra Thin Backside Technique

IR Technique

Visible or UV Laser Stimulation Nanoprobing, C-AFM E-Beam Techniques: - Voltage probing - E Beam induced photocurrent

LADA, Dyn. LS

e-

Light

TUB Research

LVP, TRE LADA, Dyn. LS

Nano Probes

STI

n-well ≈350nm

M1 M2 Jan 26, 2009

EUFANET 09 Toulouse

7

Dual Gates: Ultra Thin Body not to scale

etc M2

M2 M1

Cu W

ILD

CoSi p-Poly p+ ≅ 20nm

≥ 100µm Jan 26, 2009

n-Poly STI STI

NW p-Poly

n+

BOX ≅0,3µm = Buried Oxide

≅1,5µm

PW n-Poly

SX SX

EUFANET 09 Toulouse

8

Interaction Dimensions • 20nm Gate length Technology • UTS (SOI PD) • UTB (SOI FD / Dual Gate etc)

100nm

20nm

100nm

40nm Jan 26, 2009

nm 0 2

m n 50

40nm

EUFANET 09 Toulouse

m n 20

m n 50 9

Backside Access: Transmission of Light in Silicon Spectral Absorption in Silicon Soref et al., IEEE J. of Quant. Elec., Vol. QE-23, No.1, January 1987

104

α (cm-1)

UTS: ∼ 350nm

105

Blue Light 430nm (2.8 eV): α ∼ 350nm-1

Concentration of free electrons N [x 1018 cm-3 ]

103

40 24

10

2

10

1

UTB: 20nm

T = 300 K

6

UV? EBeam?

0.32 undoped

100 0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

Photon Energy (eV) Jan 26, 2009

EUFANET 09 Toulouse

10

SNOM on UTB Resolution

Photon Emission

= f (tip geometry, working distance)

but independent of wavelength !

20nm

20nm III-V

Jan 26, 2009

Ge

EUFANET 09 Toulouse

STI STI

11

SNOM on UTB Photon Emission Laser Stimulation - transferred power? LVP - SNR?

20nm

20nm III-V

Jan 26, 2009

Ge

EUFANET 09 Toulouse

STI STI

12

SNOM on UTB Resolution = f (tip geometry, working distance)

but independent of wavelength !

20nm

20nm III-V

Jan 26, 2009

Ge

EUFANET 09 Toulouse

STI STI

13

SNOM on UTB Photon Emission LVP - SNR? Laser Stimulation - transferred power? Thermal LS when tip is scanning over STI 20nm

20nm III-V

Jan 26, 2009

Ge

EUFANET 09 Toulouse

STI STI

14

FET Delay Variation on Defined Node ● shorter wave length ● absorption depth ∼ 100nm ● optical confinement by FIB trench - waveguide -



● impact only on exposed transistor ● Resolution of stimulation by confinement

Jan 26, 2009

EUFANET 09 Toulouse

15

FIB Guided SNOM on UTB ● Better thermal management: ● Narrow FIB Trench to UTS ● Trench as waveguide? ● or for Fiber probing?

Adaption of Sidewalls to Fiber? 20nm

20nm III-V

Jan 26, 2009

Ge

EUFANET 09 Toulouse

STI STI

16

FIBbed SIL Solid Immersion Lens (SIL) created out of the bulk silicon material → perpendicular transition Si / air, no refraction sample surface (chip backside)

removed material

object plane

Jan 26, 2009

EUFANET 09 Toulouse

17

Results Images of the SIL (r ≈ 91 µm, t ≈ 34 µm) using a laser scanning microscope at wavelength λ = 1064 nm

30µm focused on SIL

Jan 26, 2009

30µm focused on background

EUFANET 09 Toulouse

18

Nanoscale Potential • Technique

TUB Research

Resolution

Potential

Comment

Optical through bulk Si (IR)

500nm

100nm (SIL)

Limited resolution

Nanoprobing

50nm

10nm

E Beam

100nm

20nm

Limited dynamics Material degradation?

Optical through ultra thin Silicon

300nm

< 100nm (SIL)

Realization complex

UV through ultra thin silicon

150nm

< 50nm

Material degradation?

Jan 26, 2009

EUFANET 09 Toulouse

19

Jan 26, 2009

EUFANET 09 Toulouse

20

Ultra Thin Body UTB SOI: Partially depleted = PD

VGS = 0

Poly DepleGate ted Si

Fully Depleted FD

BOX Si

|VGS| > |VT|

Conductive Channel

Subthreshold Slope ≅ 60mV / dec FD active layer ∼ 20nm => UTB Jan 26, 2009

EUFANET 09 Toulouse

21