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Alternatives to Re-Planning: Methods for Plan Re-Evaluation at Runtime Emmanuel Benazera RIACS, NASA ARC, Moffet Field, CA 94035 [email protected]



Abstract Current planning algorithms have difficulty handling the complexity that is due to an increase in domain uncertainty, and especially in the case of multi-dimensional continuous spaces. Therefore, they produce plans that do not take into account numerous situations that can occur at runtime, such as faults or other changes in the planning domain itself. Thus there is a gap between the plan generation and the reality experienced at runtime. Here we present two methods that allow the plan conditionals to be revised w.r.t. uncertainty on the system as estimated at runtime.



Introduction The need for autonomy and robustness in the face of uncertainty is growing as planetary rovers become more capable and as missions explore more distant planets. Recent progress in areas such as instrument placement (Pedersen et al. 2003; 2005) makes it possible to visit multiple rocks in a single communication cycle. This requires reasoning over much longer time frames, in more uncertain environments. Simple unconditional plans as used by the Mars Exploration Rovers (MER) will probably have a low probability of success in such context, so that the robot would spend almost all its time waiting for new orders from home. In the last decade, architectures for future planetary rover missions include a planner/scheduler, a health monitoring system, and an executive. The planner/scheduler generates a control program/plan that describes the sequence of run-time actions necessary to achieve mission goals. Since the rover’s environment is highly uncertain (Bresina et al. 2002), the control programs (also called plans) are contingency plans (Dearden et al. 2003) in that they involve conditional branches that are based on decision functions of the system state that the executive can evaluate in real time. The executive is responsible for the execution of the control programs, taking into account the current state of the system as estimated by the health monitoring system. This capability includes deciding the best branch in a plan when reaching a branch point, given an estimate of the current system state, inserting and replacing plan portions to react to faults and other unpredictable events. However, planners have difficulties handling certain situations, such as actions that carry no utility (typically used for responding to unlikely situations) and fault occurences, or to



prepare for a belief state update1 . First, actions with no reward can possibly be inserted anywhere in the plan at low cost, so the greedy approach that seeks to maximize the expected utility fails to position them efficiently. Second, planner domains describe a very limited set of faults, thus relying on a mostly nominal model of the world and system actions (e.g. no stuck wheels, broken navigation system, rocky environment,...). Moreover, fault models exponentially increase the complexity of the planning even if the faults have low probability of occurence as they can occur at any time within the plan. Finally, the health monitoring system returns an ever changing belief state over time that has to be taken into account. For these reasons, the response to unlikely situations and faults is better decided at execution: the health monitoring system passes a belief over the system state to the executive that decides which portion of the plan to execute, sometimes inserting/replacing wanted/unwanted plan blocks. More recent architectures try to mitigate these problems by moving towards unified planning and execution frameworks (Alami et al. 1998; Muscettola et al. 2002; Estlin et al. 2005). These architectures are discussed more fully at the end of this paper, however it is well understood that uncertainty in future values forces an agent to plan locally. For example, to mitigate this problem, (Muscettola et al. 2002) allows plans to include explicit calls to a deliberative planner. This comes back to finding place where to insert a branch, and as demonstrated in (Dearden et al. 2003), the branch point is usually not situated at the point that has the highest probability of failure. Now note that if the process of estimating a good branching point does not forcely require to do the planning, it doesn’t cost much to pre-plan the branch once the point has been identified. Therefore, the branch can be pre-planned and its values later updated during execution. As it will be explained later in this paper, re-evaluation of a plan is in no way equivalent to re-planning, but a re-evaluated plan can be found that is optimal w.r.t. the information on the uncertain system state and the original plan. We said that most planners do not handle well the complexity due to the presence of faults in a model and therefore rarely include faults within their planning domain. Moreover, major faults are well known and recoveries can be efficiently con1



POMPDs allow the latter if observable can be efficiently generated.



structed before execution. At runtime, a fault detection system, or more generally a state estimator will return a state value estimate that triggers one or more plan fragments for system recovery or opportunistic science. These plan fragments are often referred to as floating contingencies whose execution can be conditionned upon resources (including time) and/or system behavioral modes. Therefore in this paper we will refer to two types of contingencies: pre-planned branches on resources that are part of the main plan, and floating contingencies, that trigger in response to certain events and resource values. The paper focuses on techniques to re-evaluate the former, and studies the complexity added to them by the latter. The problem can be seen as one of re-evaluating the plan values, such as its utility, and updating the plan conditionals, i.e. the branch conditions. Typically, at runtime, the probability mass of the state estimate shifts among regions of the hybrid space (continuous resources plus discrete state). We adapt the pre-computed branch conditions to these changes by projecting the changes forward and backing up the resulting states. Our first approach is an adaptation of the classical Monte Carlo (MC) technique (Sutton & Barto 1998; Thrun 2000). Our second approach is based on decision theoretic techniques and converts the problem into a small Partially Observed Markov Decision Problem (POMDP)(see (Kaelbling, Littman, & Cassandra 1998) for an introduction and more references) which solving at runtime returns probabilistic decision lines that are optimal given the initial plan.



Preliminaries Here a plan can be seen as a tree whose nodes are known as the branch points. The value function for a node is a continuous function over the multi-dimensional resource state, i.e. a mapping from the resource space to the utility space, and that depends on downstream node value functions. Planning determines the conditions over the resource space that discriminate among the branches at a given branch point (Dearden et al. 2003). Typically, planning proceeds to a mapping from the system state space to the utility space, i.e. the utility obtained by executing the plan, that it seeks to maximize. Noting the system state s = (x, r) with x ∈ X the discrete state (or system modes), and r ∈ R the multi-dimensional continuous state (including time), the utility earned by executing a branch bi starting at s can be noted: X Z Vbi (s) = p((x′ , r′ ) | s, ai1 )[U (ai1 , (x′ , r′ )) x′ ∈X



R



+ VBi (x′ , r′ )]dr′



(1)



with ai1 the first action of branch bi , Bi the remaining portion of the branch, U (ai1 , (x′ , r′ )) the utility earned, and s′ the system state after executing ai1 following the probability distribution p(s′ | s, ai1 ). Over a belief state π(s), as estimated by the health monitoring system, we have: XZ Vbi (π(s)) = (2) Vbi (x, r)π(x, r)dr x∈X



R



And at a branch point where n branches are available, the best branch is decided according to: b∗ = arg max Vbi (π(s)) i∈[1,n]



(3)



This is similar to the Bellman equations for POMDPs(Boyan & Littman 2000). Each value function V (b) maps the resource space to the utility of the branch. The max operator of relation (3) defines an upper bound on the branch point overall utility value, and branch conditions are found at the functions intersections. At execution, deviations from the planning domain and information of the state estimate move these decision lines. There are several conditions and situations under which the plan value must be re-evaluated. First, when the execution encounters a branch point, any change in the Bellman equation functions, such as the belief b over the state s, the reward model U , the action cost model, requires that all branch functions at this branch point are re-evaluated. Second, if not at a branch point, but if a floating branch has to be inserted, then the plan equation is changed and the remaining portion of the main branch as well all future branch conditions must be reevaluated. For example, when inserting a branch bf , equation (1) becomes: X Z Vbf (s) = Vbf (s) + p((x′ , r′ ) | s, bf )VB (x′ , r′ )dr′ x′ ∈X



R



(4) where B is the remaining portion of the current plan to be executed after bf . The local value of bf is the expected reward from the actions within the floating branch itself. The remaining term is a representation of the end state of the local plan, including the probability of the resources remaining after executing the local plan. The remaining of the paper studies approaches to the fast re-evaluation of these decision lines.



The Monte-Carlo Approach to the Re-Evaluation of Contingency Plans Approximating branch average utility Applying Monte Carlo techniques to the approximation of equation (2) is straightforward: the integral over the multidimensional continuous space is turned into a sum by sampling N times from b(s) and p(s′ | s, a), and the utility is averaged over the successive runs. We note: X X Vˆbi (π(s)) = [U (ai1 , s′j ) + VˆBi (s′j )] (5) x∈X x′ ∈X



s′j



′



where ∼ p(s | sj , ai1 ) and sj ∼ b(s). The larger the N , the better the fit to the underlying probability distributions, and the better the approximation.



Plan simulation For simulating branches with MC, we use a prioretized pile of events including plan actions, and a set of constraints among them. The pile is filled up with actions whose execution is simulated by testing their temporal constraints and sampling their consumption before being rewarded and popped out.



Sampling decisions We sample the decision by deciding the path with highest utility for each sample. We write: N 1 X max Vˆb (π(s)) Vˆ dec (π(s)) = N j=1 i∈[1,n] i



p(bi | ∆r ) = (6)



In algorithm 1, each path is explored by each sample for the 1: for all j < N do 2: Proceed with MC on the first branch. 3: for all branches bi at branch point do 4: Apply this algorithm recursively to bi , with j = 1. 5: Return the highest utility at this branch point (max). 6: Return the averaged utility of the plan.



Algorithm 1: Recursive procedure for sampling decisions evaluation of the max operator. The averaged returned utility is near optimal, but the sampled decision for the best branch (the arg operator) depends on the sampled resource space that must be partitioned into subregions of identical decision. The next section covers the retrieval of the decision lines in the multi-dimensional resource space.



Floating contingencies Floating contingencies are a challenge to the simulator because they can trigger at anytime. The simulator uses random events to trigger these branches and specific dynamic constraints to handle their insertion. The complexity increase due to floating branches is a product of the number of plan actions, actions in the branch, and the number of these branches.



Bounding the resource space for deciding future branches Decision at branch points can be made based on the simulation results by executing the branch with the highest earned utility average. Simulation provides sufficient information for computing branch conditions at future branch points. This operation is performed at virtually no cost and can spare future simulations by constraining future decisions. Approximating branch decision lines thru piecewise constant value function approximation Our solution is to slice the resource domain into rectangular bins and to fit the branch value functions in each bin with a piecewise constant function, based on the MC samples. Function intersections are found at bin edges. Noting ∆r a bin in the resource space, we can write bi ’s value: XX Vˆbi (π(s)) = p(bi | ∆r )p(∆r )Vˆbi (∆r , x) (7) ∆r x∈X



i.e. as the sum of the average utilities of bi in each bin when it is the branch with the highest expected utility. More precisely: 1 X X ˆ Vˆbi (∆r , x) = (8) Vbi (sj ) nr∆ r ′ rj ∈∆r x ∈X



with s = (x, r) and sj = (x′ , rj ), is the average utility of bi on bin ∆r from the nr∆r samples rj it contains, 1 nr∆ r



X



δ(bi = arg max Vˆbi (π(sj )) (9) i∈[1,n]



rj ∈∆r



where δ is the Dirac function, is the probability for bi to be the branch with the highest utility over the samples of the bin, p(∆r ) =



nr∆ r N



(10)



is the probability of the bin itself. An optimal bin size W is 1: Proceed with algorithm 1 and collect samples at branch



point. 2: for all branch points in the contingency plan do 3: Compute the optimal bin size and slice the space into 4: 5: 6: 7:



bins. Compute statistics with equations (8), (9) and (10). Evaluate equation (7) for each branch. In each bin, identify the branch with the highest value. Identify new branch conditions where successive bins have different highest utility branches.



Algorithm 2: Branch conditions approximation thru piecewise constant value function approximation obtained, in the sense that it provides the most efficient unbiased estimation of the probability distribution function formed by the samples. We used W = 3.49σN −1/3 where σ is the standard deviation of the distribution, here estimated from the samples (D. 1976; A.J. 1991). The overall strategy is presented on algorithm 2. Branch conditions are obtained by comparing the branch with the highest utility for each bin: if two successive bins return different results, a branch condition exists at their edge. Thus, the precision of the approximation is directly dependent on the optimal bin size, that depends on the number of samples. Stutter at decision point can be overcome by fitting the successive piecewise constant approximations with more smoothly curve. Belief update on re-evaluated branch conditions The reevaluated decision functions are inequalities of the form r′ ≤ (≥)g(r). Given a state estimate π(s) at branch point, decision over n branches follows: XZ ∗ b = arg max Vbi (x, r)π(x, r)dr i∈[1,n]



≈ arg max



i∈[1,n]



x∈X



r≤g(r)



XX



, x) p(bi | ∆r′ )p(∆r′ )Vˆb (∆′r , x)π(r′(11)



x∈X ∆r′



with r′ such that ∀r′ ∈ ∆r′ , r′ ≤ g(r).



Discussion The major drawback of the Monte-Carlo approach is that it provides a probabilistic guarantee of its results, that is never absolute. This is the problem we partially adress in the next



section with the use of a decision theoretic formulation. Another work, (Jain & Varaiya 2004) finds bounds on the number of samples for the convergence of the expected reward for a class of policies.



Decision theoretic approach to plan re-evaluation



f ∈F



Another problem with the MC approach is that the decision is made based on a mapping from the continuous resource space to the utility space that forces the approximation of the decision lines. An alternative is to use a mapping from the belief space over the decisions to the utility space. The decision space is finite, made of the branch conditions of the original plan. The belief space over the decision is continuous and of dimension the number of decisions. This formulation leads to an enlarged space but allows the use of decision theoretic techniques to direcly incorporate the belief space in the computation of optimal decision lines. More precisely our problem can now be casted into a small POMDP whose actions are the plan branches, the states the branch conditions, the observations the system states.



Plan reduction to a POMDP A standard POMDP is made of a set of actions, a set of states, a set of transitions among states per action, and a set of observations. In our model, we abstract away the actions and use a branch an action for the POMDP. Our POMDP is then defined as a tuple (F, S, B.L, T, R) where: • F is a finite set of branch decision outcomes (as states), • S is a finite set of system states (as observations), • B is finite set of branches (as actions), • P (s | b, f ′ ) probability of state s given that branch b has been executed and has landed in f ′ , • P (f ′ | b, f ) probability of entering outcome f ′ after taking branch b in outcome f , • R(f, b) reward for taking branch b while in outcome f . The POMDP belief update can be expressed as ‘: P P (s | b, f ′ ) f ∈F P (f ′ | b, f )π(f ) ′ (12) πb (f , s) = p(s | b, π) where π is a probability distribution (belief) over F , given s and b, and: P (f ′ | b, s)p(b, s) P (s | b, f ′ ) = (13) p(f ′ ) The value of executing branch b under decision f and state s is: V (f, s) = R(f, b, s) X X P (si | f ′ , b)V (si , f ′ ) +γ P (f ′ | b, f ) f ′ ∈F



(14)



si ∈S



where in the absence of floating contingencies (because f can only lead to b): X P (f ′ | b, f ) = P (f ′ | b) = P (f ′ | b, s′ )p(s′ ) (15) s′ ∈S



and R(f, b, s) = Vb (b(s)), from equation (2). Finally the value of executing branch b from some belief state π and observing s is: X Vs (πb ) = π(f, s)V (f, s) (16) and the optimal value function is given by: X V (π) = max p(s)Vs (πb ) b∈B



(17)



s∈S



Simulation The successor states s′ and and the p(s′ ) of equation (15) are unknown and must be obtained through simulation. As a simulator we use the MC algorithm of the previous section and generate both the Vˆb (s) and the s′ in a depth first forward search in the plan tree.



Solving The solving of this POMDP returns a piecewise linear convex value function that is a mapping from the belief space over the decision outcomes to the highest expected plan uility. Optimal branch conditions are found at the intersections of maximized value functions and are now conjunctions of inequalities of the form P (r ≤ h(r)) ≤ c where r ≤ h(r) is the branch condition from the original plan and c a constan in [0, 1]. For any belief over an outcome, the solution returns the optimal policy, w.r.t. the original plan.



Floating contingencies Floating contingencies pose a serious problem within the decision theoretic framework because the possible interruption of any action within a branch leads to a potentially infinite number of actions (breaking up a branch an infinite number of times over resource and time values with non null probability). Approaches like (Younes & Simmons 2004) can be used here to handle the asynchronous events, but do not allow to include the events (here floating contingencies) within the policy (therefore the computation of their conditions is not possible). While we are not yet sure about the range of solutions to this problem, it seems realistic to research approximations of floating conditions over a single branch.



Results A contingency plan for the Mars exploration domain Our application is on a planetary rover plan. Consider the plan for a Mars rover on figure 1. It tells the rover to first navigate to a waypoint w0 , and there to decide whether to take a high resolution image of the point (HI res) or to move forward to a second waypoint w1 depending on the level of resources (here energy and time). After reaching w1 and digging in the soil, it must decide whether to move forward to waypoints w3 or w2 or to simply get an image at w1 and wait for further instructions. NIR is a spectral image of a site or rock. Action time and energy consumptions are represented as Gaussian bumps
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(a) Contingency plan for the Mars rover domain 20
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(c) Value functions of branches at branch point 2 (bpt2)



Figure 1: Branch value functions at branch point for a detailed rover problem of empirical mean and variance. In this example branch conditions at branch points bpt1 and bpt2 have the following parameters: α1 = 0.1, α2 = 2.1 and β2 = 2.2.



Our testbed includes a high level contingency planner (Dearden et al. 2003; Frank & Jonsson 2003), a hybrid modelbased particle filter as the health monitoring system (Hutter & Dearden 2003; Willeke & Dearden 2004) and a concurrent executive. The planner operates offline while the particle filter and the executive run concurrently. The planner uses a mission domain and nominal rover model and produces a concurrent plan with branch points at critical time and energy points. The executive is fed with the plan and follows branch conditions at branch point until it detects a plan re-evaluation is necessary. The particle filter uses raw data obtained from the rover sensors and estimates a hybrid state of the system and its environment: discrete wheel states (running, stopped, stucked), discrete terrain states (rocky, flat), sensor fault modes as well as numerous continuous variables to support them. We use pre-estimated action models for each of the faults.



N 100 500 2500 12500 62500 312500 500000



Value 14.21 13.618 13.8244 13.8008 13.7835 13.7717 13.777



Time 0.03 0.16 0.78 4.08 20.79 120.3 223.89



V dec 10.9 9.732 11.2992 11.9542 12.156 12.1214 12.1814



err 23.3 28.53 18.26 13.27 11.8 12 11.58



Table 1: Monte-Carlo decision sampling and branch condition re-evaluation based on MC samples. Results are as follows: N is the number of samples, V is the mean expected highest value obtained for the plan, V dec is the value obtained when using the re-evaluated branch conditions, err the error percentage to the simulated best value.
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Figure 2: Piecewise constant approximation of branch value functions from simulation samples. 11
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