Mössbauer, Raman, 2D infrared spectroscopy Molecular ... - GERM

probes. Mass Spectroscopy (HX MS) radical footprinting. Wales, Mass. ...... Cerdan et al., FEBS 408, 235 (1997). DNA. Protein. DNA + Protein ⇆ DNA-‐protein.
10MB taille 1 téléchargements 43 vues
2ème  école  de  RMN   Cargèse   18-­‐23  Mars  2013

Analysis  of  molecular  motions  by     Nuclear  Magnetic  Resonance (Mostly  high  resolution  liquid  state)

Carine  van  Heijenoort CNRS-­‐ICSN laboratoire  de  chimie  et  biologie  structurales [email protected]­‐gif.fr 0169823794

1

Multiplicity  of  proteins  states

Cargèse  2013

«  lock  &  key  » induced  Eit

3D  structure α  ↔  β

conformational  switch

order  →  disorder

virus/pathogen  penetration membrane  insertion Nucléosome  activation

Folding

Sequence

“Non  folding” Elexible  linkers display  of  sites entropic  bristles,  springs    and  clocks

Elexible  ensemble

disorder  →  order molecular  recognition virus/phages  assembly stepping  motors Dunker  et  al.,  Journal  of  Molecular  Graphics  and  Modelling  19,  26–59,  2001 Dobson,  C.,  Nature  426,  18-­‐25,  2003 Carine  van  Heijenoort  -­‐  RMN  et  mouvements  moléculaires

2

Cargèse  2013

Different  techniques  for  the  analysis  of  proteins  dynamics

X-­‐ray  cristallography

 

X-­‐Ray,  neutron  scattering

size/shape  modiSications

Doniach,  Chem.  Rev.  2001,  101  ;  Zacai,   science  2000,  288.

timescales  (ps-­‐ns)  for  1H  positions

Fluorescence

ensemble  /  single  molecule cellular  context

Weiss,  Nat.  Struct.  Biol.  2000,  7  ;  Yang,  Science   2003,  302  ;  Haustein,  Curr.  Opin.  Struct.  Biol.   2004,  14.  

Mass  Spectroscopy  (HX  MS) radical  footprinting

B  factors

time  scales static  disorder,  crystal  contacts,  ...

probes

large  molecular  assemblies

Wales,  Mass.  Spectrom.  Rev.  2006,  25  ;   Busenlehner,  Arch.  Biochem.  Biophys.  2005,   433.  Guan,  Trends.  Biochem.  Sci.  2005,  30.

Mössbauer,   Raman,   2D   infrared   spectroscopy ForceSields  ... Short  timescales  ...

Molecular  dynamics   NMR Boehr,  Chem.  Rev.  2006,  106,  3055.   Palmer,  Chem.  Rev.  2004,  104,  3623.

➫  10-­‐12↔  105  s ➫  Site-­‐speciSic  information   ➫   multiple   atomic   probes   1H,   2H,   15N,   13C,   31P,  ...

➫  isotope  labeling ➫  quantities ➫  size  limitation ➫  complexity  of  the  method  ?

➫  Simultaneous  monitoring  of  probes ➫   kinetic   &   thermodynamic   proSile   of  

dynamic  processes

Carine  van  Heijenoort  -­‐  RMN  et  mouvements  moléculaires

3

Cargèse  2013

How  motions  are  «  visible  »  in  NMR  ?

ü Molecular  motions  in/luence  NMR  parameters ‣ Motions  timescales  versus  NMR  timescales  ? ü Three  distinct  timescales  in  NMR o Equilibrium  constant  time  T1  /  Signal  lifetime  T2 § NMR  experiment    perturbation  of  spins  system § Typical  timescale  for  (macro)molecules  in  solution  :  100  ms  -­‐  s  (T1)  /  10ms-­‐s  (T2) § Determine  the  lowest  frequency  of  motions  that  can  be  characterized  during  one  NMR  experiment.

o Spectral  range  :  τ=1/Δν § Spectrum  features  :  chemical  shift  range,  couplings,  … § Averaging  if  the  interactions  by  motions  that  have  higher  frequencies § Perturbation  of  spectral  appearance  by  motions/processes  occuring  around  this  timescale

o “Larmor”  timescale:  τ=1/ω0 § Precession  frequency  of  the  spins  in  the  magnetic  Sield  B0=ω0/γ § EfSiciency   of   spins   state   transitions   during   the   relaxation   processes   is   determined   by   the   spectral   density  of  molecular  motions  around  these  frequencies.

Carine  van  Heijenoort  -­‐  RMN  et  mouvements  moléculaires

4

Cargèse  2013

How  motions  are  «  visible  »  in  NMR  ? Three  distinct  typical  timescales  in  NMR Return  to  equilibrium  :  T1 Signal  lifetime  :  T2 Spectral  range  :  τ=1/Δν Larmor  precession  :  τ=1/ω0

s

Carine  van  Heijenoort  -­‐  RMN  et  mouvements  moléculaires

ms

μs

ns

5

How  motions  are  «  visible  »  in  NMR  ?

Cargèse  2013

Functions

Folding  ;  order  ↔  disorder Interactions Catalytic  processes Regulation,  signalization

Effect  of  motions  on   spins  interaction

Types  of  motions

s

NMR  parameters

ms

Internal  motions

µs

ns

Macroscopic   diffusion

ps

Molecular   vibrations

Conformational  exchange Molecular   rotations Diffusion experiments

Dipolar  Couplings  averaging

Magnetization   exchange Spin  relaxation

Lineshape   modiEications

averaging  of   non-­‐secular   interactions

Averaging  of   spectral   components

T1,  T2

1/Δω

1/ω0

Signal  relaxation

frequencies   differences

nutation   frequencies

Carine  van  Heijenoort  -­‐  RMN  et  mouvements  moléculaires

6

Cargèse  2013

NMR  timescales 1.  Relaxation  times

ü Longitudinal  relaxation   time  constant   T1   characterizes   the  time  it  takes   to  the  spin   system  to  return  to  equilibrium.

Dynamical  processes  slower  than  T1 «real  time»  kinetics folding/unfolding Interactions,  exchange H/  D  exchange ...

ü It  determines  the  delay  beteen  two  scans ü Motions   slower   than   T1   can   not   be   characterized  by  one  NMR  scan. ü NB.   T1   depends   on   the   magnetic   Sield   strength   B0,  the   type  of  spin,  the  size  of   the   molecule,   the   local   dynamics   of   the   system,  the  temperature,  etc.    

Wüthrich, « NMR of proteins and nucleic acids », Wiley Interscience, 1986 Carine  van  Heijenoort  -­‐  RMN  et  mouvements  moléculaires

7

Cargèse  2013

NMR  timescales 1.  Relaxation  times

ü Transversal   relaxation   time   constant   T2   characterizes  the  lifetime  of  the  signal.

Mx (t) =

Meq sin(

0 t)exp(

t/T2 )

ü It   determines   the   linewidth   of   the   resonances ü Motions   slower   than   T1   can   not   be   characterized  by  one  NMR  scan. ü NB.   T1   depends   on   the   magnetic   Sield   strength   B0,  the   type  of  spin,  the  size  of   the   molecule,   the   local   dynamics   of   the   system,  the  temperature,  etc.    

1/(

0

Carine  van  Heijenoort  -­‐  RMN  et  mouvements  moléculaires

/2

2)

/2 8

NMR  timescales 1.  Relaxation  times

Cargèse  2013

ü Relaxation  contants  depends   on  the  magnetic  Sield  strength  B0,  the  type  of  spin,   the  size  of  the  molecule,  the  local  dynamics  of  the  system,  the  temperature,  etc.    

Longitudinal relaxation time constant for a system of 2 proton spins with rHH=0.2nm

relaxation times (s)

100

10

T1 400,600,800MHz

1

0,1 10-12

10-11

10-10

τc(s)

Carine  van  Heijenoort  -­‐  RMN  et  mouvements  moléculaires

10-9

10-8

9

How  motions  are  «  visible  »  in  NMR  ?

Cargèse  2013

Functions

Folding  ;  order  ↔  disorder Interactions Catalytic  processes Regulation,  signalization

Effect  of  motions  on   spins  interaction

Types  of  motions

s

NMR  parameters

ms

Internal  motions

µs

ns

Macroscopic   diffusion

ps

Molecular   vibrations

Conformational  exchange Molecular   rotations Diffusion experiments

Dipolar  Couplings  averaging

Magnetization   exchange Spin  relaxation

Lineshape   modiEications

averaging  of   non-­‐secular   interactions

Averaging  of   spectral   components

T1,  T2

1/Δω

1/ω0

Signal  relaxation

frequencies   differences

nutation   frequencies

Carine  van  Heijenoort  -­‐  RMN  et  mouvements  moléculaires

10

NMR  timescales 2.  «Spectral»  or  «chemical  shift»  timescale

Cargèse  2013

ü Largest   observable   difference   of   resonance  frequency  (spectral  width) ü Smallest   observable   difference   of   resonance  frequency  (resolution) ⌫(Hz) = ⌧spect

(ppm) ⇤ 10

6



B0 2⇡

1 = ⇡ ⌫(Hz)

ü Motions   slower   than   Δν have   no   effect   on  the  appearance  of  the  spectra. ü Δν depends   on   the   magnetic   Sield   strength  B0,  the  type  of  the  spins. ü Different   nuclei   or   same   nuclei   in   different  environments ü Δν depends   on   the   nature   of   the   interactions  between  the  spins. Carine  van  Heijenoort  -­‐  RMN  et  mouvements  moléculaires

B0=14.1T

Δω=13ppm

B

Δν=7800Hz

0=

Δω=0,2ppm

22 .3T

B0=14.1T B

τspect~100μs Δν=12350Hz

Δν=120Hz

0=

22 .3T

τspect~5-­‐10ms Δν=190Hz

11

NMR  timescales 2.  «Spectral»  or  «chemical  shift»  timescale

Cargèse  2013

ü Largest   observable   difference   of   resonance  frequency  (spectral  width) ü Smallest   observable   difference   of   resonance  frequency  (resolution) ⌫(Hz) = ⌧spect

(ppm) ⇤ 10

6



B0 2⇡

1 = ⇡ ⌫(Hz)

ü Motions   slower   than   Δν have   no   effect   on  the  appearance  of  the  spectra. ü Δν depends   on   the   magnetic   Sield   strength  B0,  the  type  of  the  spins. ü Different   nuclei   or   same   nuclei   in   different  environments ü Δν depends   on   the   nature   of   the   interactions  between  the  spins. Carine  van  Heijenoort  -­‐  RMN  et  mouvements  moléculaires

Δω(15Ν)=25ppm

Δω(1Η)=3,5ppm

B0=14,1T

Δν~1500Hz τspect~0,7ms

B0=14,1T

Δν~2000Hz τspect~0,5ms

12

NMR  timescales 2.  «Spectral»  or  «chemical  shift»  timescale

Cargèse  2013

ü Largest   observable   difference   of   resonance  frequency  (spectral  width) ü Smallest   observable   difference   of   resonance  frequency  (resolution) ⌫(Hz) = ⌧spect

(ppm) ⇤ 10

6



B0 2⇡

1 = ⇡ ⌫(Hz)

ü Motions   slower   than   Δν have   no   effect   on  the  appearance  of  the  spectra. ü Δν depends   on   the   magnetic   Sield   strength  B0,  the  type  of  the  spins. ü Different   nuclei   or   same   nuclei   in   different  environments ü Δν depends   on   the   nature   of   the   interactions  between  the  spins. Carine  van  Heijenoort  -­‐  RMN  et  mouvements  moléculaires

Δω(15Ν)=1,5ppm

Δω(1Η)=0,5ppm

B0=14,1T

Δν~100Hz τspect~10ms

B0=14,1T

Δν~300Hz τspect~3ms

Same  nucleus  ;  two  different  conformations 13

NMR  timescales 2.  «Spectral»  or  «chemical  shift»  timescale

Cargèse  2013

( )

Δν Hz =

( ) ∗ 10

Δω ppm

−6



τ spect =

∗ γB 0

1 Δν(Hz )





Δω(15Ν)=1,5ppm

Δω(1Η)=0,5ppm

B0=14,1T

Δν~100Hz τspect~10ms

B0=14,1T

Δν~300Hz τspect~3ms

Same  nucleus  ;  two  different  conformations Carine  van  Heijenoort  -­‐  RMN  et  mouvements  moléculaires

14

NMR  timescales 2.  «Spectral»  or  «chemical  shift»  timescale

Cargèse  2013

•  Dipolar  interaction  between  spins  magnetic  moment

ü Largest   observable   difference   of   resonance  frequency  (spectral  width) DD Hˆ IS

ü Smallest   observable   difference   of   resonance  frequency  (resolution) ⌫(Hz) = ⌧spect

(ppm) ⇤ 10

6

B0 ⇤ 2⇡

 

(

)

E/  ≤  104-­‐105  Hz



1 = ⇡ ⌫(Hz)

ü Motions   slower   than   Δν have   no   effect   € on  the  appearance  of  the  spectra. ü Δν depends   on   the   magnetic   Sield   strength  B0,  the  type  of  the  spins. ü Different   nuclei   or   same   nuclei   in   different  environments ü Δν depends   on   the   nature   of   the   interactions  between  the  spins. € Carine  van  Heijenoort  -­‐  RMN  et  mouvements  moléculaires

µ 0γ I γ S  ⎛ 3cos 2 θ IS −1⎞ ˆ ˆ ˆ ˆ =− ⎜ ⎟ 3 I z S z − I.S 3 2 4 πrIS ⎝ ⎠

•  Chemical  shift  anisotropy c −c Hˆ ICSA = −γ S || ⊥ B0 3cos 2 θ −1 Iˆz 3

(

)

E/  ≤  104-­‐105  Hz

•  Quadrupolar  interaction  spin/electric  Sield I  >  1/2

(

)

Hˆ IQ ≅ ω IQ 3 Iˆz2 − Iˆ.Iˆ ; ω IQ =

3eQI VzzI (θ ) 4 I (2I −1)

E/  ~  2.105  Hz  (2H)  ;  E/  ~  3.106  Hz  (14N)

•  Unpaired  electron 15

NMR  timescales 2.  «Spectral»  or  «chemical  shift»  timescale

Cargèse  2013

•  Averaging  of  the  secular  interactions  by  the  motions

ü Largest   observable   difference   of   resonance  frequency  (spectral  width) ü Smallest   observable   difference   of   resonance  frequency  (resolution) ⌫(Hz) = ⌧spect

(ppm) ⇤ 10

6



B0 2⇡

1 = ⇡ ⌫(Hz)

ü Motions   slower   than   Δν have   no   effect   on  the  appearance  of  the  spectra. ü Δν depends   on   the   magnetic   Sield   strength  B0,  the  type  of  the  spins. ü Different   nuclei   or   same   nuclei   in   different  environments ü Δν depends   on   the   nature   of   the   interactions  between  the  spins. Carine  van  Heijenoort  -­‐  RMN  et  mouvements  moléculaires

16

NMR  timescales 2.  «Spectral»  or  «chemical  shift»  timescale

Cargèse  2013

•  Averaging  of  the  secular  interactions  by  the  motions

ü Largest   observable   difference   of   resonance  frequency  (spectral  width) ü Smallest   observable   difference   of   resonance  frequency  (resolution) ⌫(Hz) = ⌧spect

(ppm) ⇤ 10

6



B0 2⇡

1 = ⇡ ⌫(Hz)

ü Motions   slower   than   Δν have   no   effect   on  the  appearance  of  the  spectra. ü Δν depends   on   the   magnetic   Sield   strength  B0,  the  type  of  the  spins. ü Different   nuclei   or   same   nuclei   in   different  environments ü Δν depends   on   the   nature   of   the   interactions  between  the  spins. Carine  van  Heijenoort  -­‐  RMN  et  mouvements  moléculaires

17

NMR  timescales 2.  «Spectral»  or  «chemical  shift»  timescale

Cargèse  2013

•  Averaging  of  the  secular  interactions  by  the  motions

ü Largest   observable   difference   of   resonance  frequency  (spectral  width) ü Smallest   observable   difference   of   resonance  frequency  (resolution) ⌫(Hz) = ⌧spect

(ppm) ⇤ 10

6



B0 2⇡

1 = ⇡ ⌫(Hz)

ü Motions   slower   than   Δν have   no   effect   on  the  appearance  of  the  spectra. ü Δν depends   on   the   magnetic   Sield   strength  B0,  the  type  of  the  spins. ü Different   nuclei   or   same   nuclei   in   different  environments ü Δν depends   on   the   nature   of   the   interactions  between  the  spins.

Averaging  of  the   chemical  shift   anisotropy (31P)

Burnell  et  al.,  Biochim.  Biophys.  Acta  603,  63  (1980) Carine  van  Heijenoort  -­‐  RMN  et  mouvements  moléculaires

18

NMR  timescales 2.  «Spectral»  or  «chemical  shift»  timescale

Cargèse  2013

•  Using  motions  to  average  interactions

ü Largest   observable   difference   of   resonance  frequency  (spectral  width) Lipids  +  water

⌫(Hz) = ⌧spect

(ppm) ⇤ 10

6



B0 2⇡

1 = ⇡ ⌫(Hz)

ü Motions   slower   than   Δν have   no   effect   on  the  appearance  of  the  spectra. ü Δν depends   on   the   magnetic   Sield   strength  B0,  the  type  of  the  spins. ü Different   nuclei   or   same   nuclei   in   different  environments ü Δν depends   on   the   nature   of   the   interactions  between  the  spins. Carine  van  Heijenoort  -­‐  RMN  et  mouvements  moléculaires

Magic  angle  Rotation  ωr=5000Hz

ü Smallest   observable   difference   of   resonance  frequency  (resolution)

Static

Glycine  powder

8

4

0

8

4

0

1H  (kHz)

2

1

0

2

1

0

1H  (kHz)

Davis, Auger & Hodges Biophysical Journal 69:1917-1932 (1995) Gross et al., J. Magn. Res. 106, 187-190 (1995) Carlotti, Aussenac & Dufourc Biochim. Biophys. Acta. 1564:156-164 (2002) 19

How  motions  are  «  visible  »  in  NMR  ?

Cargèse  2013

Functions

Folding  ;  order  ↔  disorder Interactions Catalytic  processes Regulation,  signalization

Effect  of  motions  on   spins  interaction

Types  of  motions

s

NMR  parameters

ms

Internal  motions

µs

ns

Macroscopic   diffusion

ps

Molecular   vibrations

Conformational  exchange Molecular   rotations Diffusion experiments

Dipolar  Couplings  averaging

Magnetization   exchange Spin  relaxation

Lineshape   modiEications

averaging  of   non-­‐secular   interactions

Averaging  of   spectral   components

T1,  T2

1/Δω

1/ω0

Signal  relaxation

frequencies   differences

nutation   frequencies

Carine  van  Heijenoort  -­‐  RMN  et  mouvements  moléculaires

20

NMR  timescales 3.  Larmor  timescale

Cargèse  2013

ü Resonance   frequencies   of   the   spin   (i.e.   difference   of   energy   between   the   different   observable   states   of   the   spin   system)

|!0 | = | B0 | 1 ⌧Larmor = !0

ββ ωI

ωI+ωS

βα

ωI -ωS

αβ

ωI

ωS ü Motions   in   this   timescale   have   no   effect   on  the  appearance  of  the  spectra. ü Motions in this timescale are responsible for the efficiency of the relaxation processes.

ωS

αα B0=14,1T

|ωI|=2π.600MHz ; τL(I)=265ps |ωS|=2π.60MHz ; τL(S)=2,65ns

ü   The   relationship   between   «motions»   and  relaxation  rate  constants  is  indirect.

Carine  van  Heijenoort  -­‐  RMN  et  mouvements  moléculaires

21

NMR  timescales 3.  Larmor  timescale

Cargèse  2013

ez

B0+Blocal(t) ü Resonance   frequencies   of   the   spin   (i.e.   difference   of   energy   between   the   different   observable   states   of   the   spin   system)

|!0 | = | B0 | 1 ⌧Larmor = !0

ey ex

Blocal(t)     100μM)

conformational   changes   occur   upon   binding.   Association  rate   constants   can   thus  vary   a   lot   and   low  afSinities   can  be  associated   with  slow   exchange   regime.   This   is   often   the   case   for   interactions   involving   peptides   or   intrinsically   disordered   proteins. Beware   of   multi-­‐sites   binding:   strong   afSinities   can   then   be   associated   with   fast   exchange   regime.

38

Characterization  of    dynamic  processes  in  the  spectral  timescale conformational  exchange

Cargèse  2013

Intermolecular  processes

P

kon

+ L

U2AF65 conformation depends on Py tract strength

PL kof f

Pf Lf

Exchange regime & RNA binding affinity

Pb

ITC Kd

Lb

33 µM

kex = kon [P ] + kof f ωb

kex = kon [L] + kof f

Py tract “strength”

ωB

ωA

18 µM 16 µM 7.1 µM

ωf

[P ][L] kof f Kd = = [P L] kon

Carine  van  Heijenoort  -­‐  RMN  et  mouvements  moléculaires

1.3 µM (Michael  Sattler personal  communication)

39

Characterization  of    dynamic  processes  in  the  spectral  timescale Some  methods  to  characterize  conformational  exchange k1

1/πΔν

ms “Slow”   intermediate   exchange  

Coalescence

Cargèse  2013

µs

A ωA

“Fast”   intermediate   exchange

B

A

k

ωA

1

ωB

B

ωB

Ea

B ωA

A

longitudinal   magnetization   exchange

thermodynamic parameters Kd = k1 /k 1 = pB /pA G=

Lineshapes  analysis weighted  average   values

δapp  =  pAδA  +pBδB

ωB

RT ln K

kinetic parameters kex = 1/ ex = k1 + k 1 = k1 /pB = k kex (T ) = k0 exp ( Ea /kT )

1 /pA

R2apparent  =  R2  +  Rex Δω ωA

Carine  van  Heijenoort  -­‐  RMN  et  mouvements  moléculaires

ωB

40

Characterization  of    dynamic  processes  in  the  spectral  timescale Some  methods  to  characterize  conformational  exchange

Cargèse  2013

Lineshape  perturbation  

1/πΔν

ms

µs “Fast”   intermediate   exchange

Coalescence

“Slow”   intermediate   exchange  

Changing  the  exchange  regime  by  varying  the  temperature

R2+k

(Δω)

2

− 4k

1 ⎛ k ⎞ S ω = ⎜⎜1 + ⎟⎟L ω, R2 + k − D 2 ⎝ D⎠ 1 ⎛ k ⎞ + ⎜⎜1 − ⎟⎟L ω, R2 + k + D 2 ⎝ D⎠

()

2

D=





( (

2

k −

( ) Δω 2

⎛ E ⎞ k T = k 0 exp⎜⎜− a ⎟⎟ ⎝ RBT ⎠

()

Carine  van  Heijenoort  -­‐  RMN  et  mouvements  moléculaires

) )

2

{13C}  N,N’  diméthylformamide  gaz,  B0=4,7T

Ea=90,1kJ.mol-­‐1  ;  k0=1,16.104Hz   Ross  &  True,  J.  Am.  Chem.  Soc.  106,  2451  (1984) 41

Characterization  of    dynamic  processes  in  the  spectral  timescale Some  methods  to  characterize  conformational  exchange

Cargèse  2013

Lineshape  perturbation

g(⇥) = S

(1 + ⇤ /k)P + QR P 2 + R2

P = 4⇤ 2 [k Q= R=

1

(

2

/4

⇥2 +

2

/4) +

/4⇤]

2⇤⇥/k 2⇤⇥(1 + 2⇤ /k)

largeur de raie en absence d’´echange ;



EA kT = k298 exp RB

1 298

1 T

= ⇥A

⇥B

⇥⌅

-­‐>  Ea  =  50,6kJ/mol

Fig. 2. Observed (a) and calculated (b) 188.3MHz 19F-n.m.r. spectra of 3',5'-difluoromethotrexate bound to L. casei dihydrofolate reductase. The sample contained slightly less than one molar equivalent of difluoromethotrexate, so that all the ligand is bound to the enzyme. The small sharp resonance marked X represents a small amount ( obs

= ff

f

+ fb

b

Robs = ff Rf + fb Rb

R2,obs

= pEL R2,EL + pL R2,L +

pEL p2L (

EL

2 L)

kof f

43

Characterization  of    dynamic  processes  in  the  spectral  timescale Some  methods  to  characterize  conformational  exchange

ms “Slow”   intermediate   exchange  

fb ff

=

1/πΔν Coalescence

Cargèse  2013

Temperature  variation µs “Fast”   intermediate   exchange

Vbound Vbound +Vf ree

fP L fP fP L R2obs (L) = R2 (L) + kon [P ] = R2 (L) + kof f fL R2obs (P L) = R2 (P L) + kof f R2obs (P ) = R2 (P ) + kon [L] = R2 (P ) + kof f

Carine  van  Heijenoort  -­‐  RMN  et  mouvements  moléculaires

‣ R2  decreases  when  T  increases ‣ kex  increases  when  T  increases   R2obs = R2,T exp(Ew /Rb T ) + kT exp( Ek /Rb T ) Fig. 5. The temperature dependence of the linewidth of the N1-proton resonance of trimethoprim in its complex with dihydrofolate reductase, presented as an Arrhenius plot [ln (pi x linewidth) vs 1/T]. The points are experimental data, the error bars indicating the estimated maximum uncertainty in linewidth (+ 2 Hz). The line was calculated using the following parameters: W0 (273K)=32Hz; Ea(W0)=13 kJ/mole; kex(313K)=160s-1; Ea(exchange)=75 kJ/mole, where W0 is the natural linewidth (in the absence of exchange) and Ea denotes activation energy. (from Bevan et al. (1985), Eur. Biophys. J. 11, 211.

Changing  protein  or  ligand  concentration.

44

Characterization  of    dynamic  processes  in  the  spectral  timescale Some  methods  to  characterize  conformational  exchange ms “Slow”   intermediate   exchange  

1/πΔν Coalescence

Cargèse  2013

µs “Fast”  intermediate   exchange

Titration  :  disappearance/appearance  of  peaks  

Protein

DNA

DNA  +  Protein    ⇆    DNA-­‐protein Carine  van  Heijenoort  -­‐  RMN  et  mouvements  moléculaires

Cerdan  et  al.,  FEBS  408,  235  (1997)

45

Characterization  of    dynamic  processes  in  the  spectral  timescale Some  methods  to  characterize  conformational  exchange

Cargèse  2013

ms “Slow”   intermediate   exchange  



MAz (t) MBz (t)



a (t) = AA aBA (t)

t1

Vb (⌧m ) = xb e

τm

⌧m

aAB (t) aBB (t)



Coalescence

1/πΔν

µs

DNA  +  Protein    ⇆    DNA-­‐protein [DNA]/[Prot]=2

“Fast”  intermediate   exchange

MAz (0) MBz (0)

t2 

cosh(D⌧m ) sinh(D⌧m ) D  Vf (⌧m ) = xf e ⌧m cosh(D⌧m ) + sinh(D⌧m ) D k Vcrosspeak (⌧m ) = xb xf e ⌧m sinh(D⌧m ) D q 1 1 2 + x x k2 = (R1b + R1f ); = (R1b R1f ); D = b f 2 2 Carine  van  Heijenoort  -­‐  RMN  et  mouvements  moléculaires



kex=14±2Hz τex=74±7ms

Cerdan  et  al.,  FEBS  408,  235  (1997)

46

Characterization  of    dynamic  processes  in  the  spectral  timescale Some  methods  to  characterize  conformational  exchange

Cargèse  2013

1/πΔν

“Slow”   intermediate   exchange  

µs

2D  longitudinal  magnetization  exchange  experiment  (EXSY)

“Fast”  intermediate   exchange

Coalescence

ms

Diagonal Peaks

1

Cross Peaks 

MAz (t) MBz (t)

( /2)

=



aAA (t) aBA (t)

( /2) 1

2

1 0 1

2

2

MAz (0) MBz (0)

k

Vb (⌧m ) = xb e

4 ⌧m

k

m

>2

3

t2

m

3

Cross Peaks k m 2