Lucas & Kanade Revisited History Image Registration Applications

Bainbridge-Smith & Lane (IVC 1997). • Gleicher (CVPR 1997). • Sclaroff & Isidoro (ICCV 1998). • Cootes, Edwards, & Taylor (ECCV 1998). Image Registration.
561KB taille 1 téléchargements 401 vues
Iterative Image Registration: Lucas & Kanade Revisited

Every writer creates his own precursors. His work modifies our conception of the past, as it will modify the future. Jorge Luis Borges

Kentaro Toyama Vision Technology Group Microsoft Research

History • • • • • • • • • • • LK

Image Registration

Lucas & Kanade (IUW 1981) Bergen, Anandan, Hanna, Hingorani (ECCV 1992) Shi & Tomasi (CVPR 1994) Szeliski & Coughlan (CVPR 1994) Szeliski (WACV 1994) Black & Jepson (ECCV 1996) Hager & Belhumeur (CVPR 1996) Bainbridge-Smith & Lane (IVC 1997) Gleicher (CVPR 1997) Sclaroff & Isidoro (ICCV 1998) Cootes, Edwards, & Taylor (ECCV 1998) BAHH

ST

SC

S

BJ

HB

BL

G

SI

CET

Applications • Stereo

Applications

LK

BAHH

ST

SC

S

BJ

HB

BL

G

SI

CET

1

Applications

Applications

• Stereo • Dense optic flow

LK

BAHH

ST

SC

• Stereo • Dense optic flow • Image mosaics

S

BJ

HB

BL

G

SI

CET

LK

BAHH

ST

Applications • • • •

LK

ST

SC

• • • • •

S

BJ

HB

S

BJ

HB

BL

G

SI

CET

BL

G

SI

CET

Applications

Stereo Dense optic flow Image mosaics Tracking

BAHH

SC

BL

G

SI

CET

LK

Stereo Dense optic flow Image mosaics Tracking Recognition

BAHH

ST

SC

?

S

BJ

HB

L&K Derivation 1 Lucas & Kanade Derivation

I0(x)

#1

2

L&K Derivation 1 h

L&K Derivation 1 h

I0(x)

I0(x+h)

I(x)

L&K Derivation 1 h

L&K Derivation 1 I0(x)

I(x)

I0(x)

I(x)

L&K Derivation 1

R

L&K Derivation 1 h0

I0(x)

I(x)

I0(x)

I0(x)

I(x)

3

L&K Derivation 1

L&K Derivation 1

I0(x+h0)

I(x)

I0(x+h1)

I(x)

L&K Derivation 1

L&K Derivation 1

I0(x+hk)

I(x)

I0(x+hf)

I(x)

L&K Derivation 2 Lucas & Kanade Derivation

• Sum-of-squared-difference (SSD) error

E(h) = Σ [ I(x) - I0(x+h) ]2 xεR

#2

E(h)

Σ [ I(x) - I0(x) - hI0’(x) ]2 xεR

4

L&K Derivation 2

Comparison

Σ 2[I0’(x)(I(x) - I0(x) ) - hI0’(x)2]

Σ

x

h

xεR

w(x)[I(x) - I0(x)] I0’(x)

Σ

=0 h

Σ

xεR

I0’(x)(I(x) - I0(x))

Σ

xεR

Σ

x

h

I0’(x)2

x

w(x)

I0’(x)[I(x) - I0(x)]

Σ

x

I0’(x)2

Comparison h

h

Σ

x

w(x)[I(x) - I0(x)] I0’(x)

Σ Σ

x

x

Generalizations

w(x)

I0’(x)[I(x) - I0(x)]

Σ

x

I0’(x)2

Original

Original • Dimension of image

E( h ) =

Σ [ I( x + h ) -

x εR

I0 (x) ] 2

E( h ) =

Σ [ I( x + h ) -

x εR

I0 (x) ] 2

1-dimensional

LK

BAHH

ST

SC

S

BJ

HB

BL

G

SI

CET

5

Generalization 1a

Generalization 1b

• Dimension of image

E( h ) =

• Dimension of image

Σ [ I( x + h ) -

xεR

I0 (x) ] 2

E( h ) =

2D:

LK

BAHH

ST

Σ [ I( x + h ) -

I0 (x) ] 2

xεR

Homogeneous 2D:

SC

S

BJ

HB

BL

G

SI

CET

LK

BAHH

ST

SC

Problem A

S

BJ

HB

BL

G

SI

CET

Problem A Local minima:

Does the iteration converge?

LK

BAHH

ST

SC

S

BJ

HB

BL

G

SI

CET

Problem A

Problem B Zero gradient:

Local minima:

-Σ I0’(x)(I(x) - I0(x)) xεR

h

Σ

xεR

h is undefined if

I0’(x)2

Σ

xεR LK

BAHH

ST

SC

S

BJ

I0’(x)2 HB

BL

is zero G

SI

CET

6

Problem B

Problem B’

Zero gradient:

Aperture problem:

hy



(x)(I(x) - I0(x))

xεR

2

Σ

xεR

? LK

BAHH

Problem B’

ST

BAHH

Solutions to A & B

BL

G

SI

CET

SC

S

BJ

HB

BL

G

SI

CET

G

SI

CET

• Possible solutions:

– Manual intervention – Zero motion default

S

ST

Solutions to A & B

• Possible solutions:

SC

HB

– Manual intervention

LK

ST

BJ

• Possible solutions:

?

BAHH

S

Solutions to A & B

No gradient along one direction:

LK

SC

– Manual intervention – Zero motion default – Coefficient “dampening”

BJ

HB

BL

G

SI

CET

LK

BAHH

ST

SC

S

BJ

HB

BL

7

Solutions to A & B

Solutions to A & B

• Possible solutions: – – – –

LK

• Possible solutions:

Manual intervention Zero motion default Coefficient “dampening” Reliance on good features

BAHH

ST

SC

S

BJ

– – – – –

HB

BL

G

SI

CET

LK

Manual intervention Zero motion default Coefficient “dampening” Reliance on good features Temporal filtering

BAHH

Solutions to A & B

LK

ST

SC

S

S

BJ

HB

BL

G

SI

CET

• Possible solutions:

Manual intervention Zero motion default Coefficient “dampening” Reliance on good features Temporal filtering Spatial interpolation / hierarchical estimation

BAHH

SC

Solutions to A & B

• Possible solutions: – – – – – –

ST

BJ

HB

BL

G

SI

– – – – – – – CET

LK

Manual intervention Zero motion default Coefficient “dampening” Reliance on good features Temporal filtering Spatial interpolation / hierarchical estimation Higher-order terms

BAHH

ST

SC

Original

S

BJ

HB

BL

G

SI

CET

Original • Transformations/warping of image

E( h ) =

Σ [ I( x + h ) -

xεR

I0 (x) ] 2

E( h ) =

Σ [ I( x + h ) -

xεR

I0 (x) ] 2

Translations:

LK

BAHH

ST

SC

S

BJ

HB

BL

G

SI

CET

8

Problem C

Generalization 2a • Transformations/warping of image

What about other types of motion?

E(A, h) =

Σ [ I(Ax+ h ) -

xεR

I0 (x) ] 2

Affine:

LK

BAHH

ST

Generalization 2a

SC

S

BJ

HB

BL

G

SI

CET

Generalization 2b • Transformations/warping of image

E( A) = Affine:

Σ [ I(

xεR

A x ) - I0 (x) ] 2

Planar perspective:

LK

BAHH

ST

Generalization 2b

SC

S

BJ

HB

BL

G

SI

CET

Generalization 2c • Transformations/warping of image

Affine

+

E( h ) = Planar perspective:

Σ [ I( f(x, h)) -

xεR

I0 (x) ] 2

Other parametrized transformations

LK

BAHH

ST

SC

S

BJ

HB

BL

G

SI

CET

9

Generalization 2c

Problem B” -Σ I0’(x)(I(x) - I0(x)) xεR

h

Σ

xεR

I0’(x)2

Generalized aperture problem:

~ h

Other parametrized transformations

LK

BAHH

-(JTJ)-1 J (I(f(x,h)) - I0(x)) SC

ST

Problem B”

S

BJ

HB

BL

G

SI

CET

Original

Generalized aperture problem:

E( h ) =

Σ [ I( x + h ) -

xεR

I0 (x) ] 2

?

Original

Generalization 3

• Image type

E( h ) =

• Image type

Σ [ I( x + h ) -

xεR

I0 (x) ] 2

E( h ) =

Σ ||I( x + h ) -

xεR

Grayscale images

LK

BAHH

ST

SC

S

BJ

HB

I0(x) ||2

Color images

BL

G

SI

CET

LK

BAHH

ST

SC

S

BJ

HB

BL

G

SI

CET

10

Original

Original • Constancy assumption

E( h ) =

Σ [ I( x + h ) -

xεR

I0 (x) ] 2

E( h ) =

Σ [ I( x + h ) -

I0 (x) ] 2

xεR

Brightness constancy

LK

BAHH

ST

Problem C

SC

S

BJ

HB

BL

G

SI

CET

Generalization 4a • Constancy assumption

What if illumination changes?

E( h,α,β )= Σ [ I( x + h ) - αI0(x)+β] 2 xεR

Linear brightness constancy

LK

BAHH

ST

Generalization 4a

SC

S

BJ

HB

BL

G

SI

CET

Generalization 4b • Constancy assumption

E ( h,λ) =

Σ [ I( x + h ) - λΤB(x)] 2

xεR

Illumination subspace constancy

LK

BAHH

ST

SC

S

BJ

HB

BL

G

SI

CET

11

Problem C’

Generalization 4c • Constancy assumption

E ( h,λ) =

What if the texture changes?

Σ [ I( x + h ) - λΤB(x)] 2

xεR

Texture subspace constancy

LK

BAHH

ST

Problem D

SC

S

BJ

HB

BL

G

SI

CET

SI

CET

SI

CET

Solutions to D • Faster convergence: – Coarse-to-fine, filtering, interpolation, etc.

Convergence is slower as #parameters increases.

LK

BAHH

ST

Solutions to D

ST

SC

S

BJ

HB

BL

G

• Faster convergence:

– Coarse-to-fine, filtering, interpolation, etc. – Selective parametrization

BAHH

S

Solutions to D

• Faster convergence:

LK

SC

BJ

HB

BL

G

– Coarse-to-fine, filtering, interpolation, etc. – Selective parametrization – Offline precomputation

SI

CET

LK

BAHH

ST

SC

S

BJ

HB

BL

G

12

Solutions to D

Solutions to D

• Faster convergence:

• Difference decomposition

– Coarse-to-fine, filtering, interpolation, etc. – Selective parametrization – Offline precomputation • Difference decomposition

LK

BAHH

ST

SC

S

BJ

HB

BL

G

SI

CET

Solutions to D

Solutions to D

• Difference decomposition

• Faster convergence: – Coarse-to-fine, filtering, interpolation, etc. – Selective parametrization – Offline precomputation • Difference decomposition

– Improvements in gradient descent

LK

Solutions to D

BAHH

ST

SC

S

BJ

HB

BL

G

SI

CET

Solutions to D

• Faster convergence:

• Multiple estimates / state-space sampling

– Coarse-to-fine, filtering, interpolation, etc. – Selective parametrization – Offline precomputation • Difference decomposition

– Improvements in gradient descent • Multiple estimates of spatial derivatives

LK

BAHH

ST

SC

S

BJ

HB

BL

G

SI

CET

13

Generalizations

Original • Error norm

Modifications made so far:

Σ [ I( x + h ) -

x εR

I0 (x) ] 2

E( h ) =

Σ [ I( x + h ) -

I0 (x) ] 2

xεR

Squared difference:

LK

BAHH

ST

Problem E

SC

S

BJ

HB

BL

G

SI

CET

SI

CET

Generalization 5a • Error norm

E( h ) =

What about outliers?

Σ ρ ( I( x + h ) -

xεR

I0 (x) )

Robust error norm:

LK

BAHH

ST

SC

Original

S

BJ

HB

BL

G

Original • Image region / pixel weighting

E( h ) =

Σ [ I( x + h ) -

xεR

I0 (x) ] 2

E( h ) =

Σ [ I( x + h ) -

xεR

I0 (x) ] 2

Rectangular:

LK

BAHH

ST

SC

S

BJ

HB

BL

G

SI

CET

14

Problem E’

Generalization 6a • Image region / pixel weighting

E( h ) =

What about background clutter?

Σ [ I( x + h ) -

xεR

I0 (x) ] 2

Irregular:

LK

BAHH

ST

Problem E”

SC

S

BJ

HB

BL

G

SI

CET

Generalization 6b • Image region / pixel weighting

E( h ) =

What about foreground occlusion?

Σ [ I( x + h ) -

xεR

I0 (x) ] 2w(x)

Weighted sum:

LK

Generalizations

BAHH

ST

Σ [ I( x + h ) -

S

BJ

HB

BL

G

SI

CET

Generalizations: Summary

Modifications made so far:

x εR

SC

I0 (x) ]

2

E( h ) =

E( h ) =

Σ [ I( x + h ) -

x εR

I0 (x) ] 2

Σ ρ ( I( f(x, h)) - λΒ(x) ) w(x)

xεR

15

Foresight • • • • • • • • • • • LK

Summary

Lucas & Kanade (IUW 1981) Bergen, Anandan, Hanna, Hingorani (ECCV 1992) Shi & Tomasi (CVPR 1994) Szeliski & Coughlan (CVPR 1994) Szeliski (WACV 1994) Black & Jepson (ECCV 1996) Hager & Belhumeur (CVPR 1996) Bainbridge-Smith & Lane (IVC 1997) Gleicher (CVPR 1997) Sclaroff & Isidoro (ICCV 1998) Cootes, Edwards, & Taylor (ECCV 1998) BAHH

ST

SC

S

BJ

HB

BL

• Generalizations – – – – – – G

SI

– – – – –

Local minima Aperture effect Illumination changes Convergence issues Outliers and occlusions

Summary L&K ?

• Mitigation of aperture effect:

Y maybe Y Y n

– – – – – – –

Summary • Better convergence: – Coarse-to-fine, filtering, etc. – Selective parametrization – Offline precomputation • Difference decomposition

– Improvements in gradient descent • Multiple estimates of spatial derivatives

Y Y n Y n Y

CET

Summary • Common problems:

Dimension of image Image transformations / motion models Pixel type Constancy assumption Error norm Image mask

L&K ?

Manual intervention Zero motion default Coefficient “dampening” Elimination of poor textures Temporal filtering Spatial interpolation / hierarchical Higher-order terms

L&K ? n n n n Y Y n

Hindsight L&K ? Y n maybe maybe maybe maybe

• • • • • • • • • • •

Lucas & Kanade (IUW 1981) Bergen, Anandan, Hanna, Hingorani (ECCV 1992) Shi & Tomasi (CVPR 1994) Szeliski & Coughlan (CVPR 1994) Szeliski (WACV 1994) Black & Jepson (ECCV 1996) Hager & Belhumeur (CVPR 1996) Bainbridge-Smith & Lane (IVC 1997) Gleicher (CVPR 1997) Sclaroff & Isidoro (ICCV 1998) Cootes, Edwards, & Taylor (ECCV 1998)

16