Lucas & Kanade Revisited History Image Registration Applications

Spatial interpolation / hierarchical estimation. LK .... Coarse-to-fine, filtering, interpolation, etc. LK. BAHH. ST. S. BJ ... Image region / pixel weighting h ) = Σ x ∈R.
402KB taille 11 téléchargements 274 vues
Iterative Image Registration: Lucas & Kanade Revisited

Every writer creates his own precursors. His work modifies our conception of the past, as it will modify the future. Jorge Luis Borges

Kentaro Toyama Vision Technology Group Microsoft Research (with additions by F. Devernay, INRIA)

History • • • • • • • • • • •

Image Registration

Lucas & Kanade (IUW 1981) Bergen, Anandan, Hanna, Hingorani (ECCV 1992) Shi & Tomasi (CVPR 1994) Szeliski & Coughlan (CVPR 1994) Szeliski (WACV 1994) Black & Jepson (ECCV 1996) Hager & Belhumeur (CVPR 1996) Bainbridge-Smith & Lane (IVC 1997) Gleicher (CVPR 1997) Sclaroff & Isidoro (ICCV 1998) Cootes, Edwards, & Taylor (ECCV 1998)

Applications • Stereo

Applications

Applications • Stereo • Dense optic flow

Applications • Stereo • Dense optic flow • Image mosaics

Applications • • • •

Stereo Dense optic flow Image mosaics Tracking

Applications • • • • •

Stereo Dense optic flow Image mosaics Tracking Recognition

L&K Derivation 1 Lucas & Kanade Derivation

=

+ →



L&K Derivation 1

+



L&K Derivation 1



L&K Derivation 1

L&K Derivation 1











≈ ∈

L&K Derivation 1

L&K Derivation 1



≈ ∈



← ∈

L&K Derivation 1



+ ∈

L&K Derivation 1

− +

+





L&K Derivation 1

+



+ ∈

+

− +

+

− +

+

L&K Derivation 1

− +

+

+



+ ∈

L&K Derivation 2 Lucas & Kanade Derivation

• Sum-of-squared-difference (SSD) error

Σ

!

Σ

!

∈R



∈R

!

"

L&K Derivation 2 ∂ ∂



Σ



"

∈R

Σ

!

"

∈R

!

!

Σ

∈R

Comparison "





"

!

Σ

"

Σ Σ

"

!

Σ

"

Comparison ≈



!

Σ

"

Generalizations

Σ Σ

"

Σ

! "

Original

Original • Dimension of image

Σ

∈R

$

!

0

Σ

∈R

$

!

0

1-dimensional

#

Generalization 1a • Dimension of image

Σ

• Dimension of image

!

$

∈R

2D:

Generalization 1b

0

=

Σ

!

$

∈R

=

Homogeneous 2D:

Problem A

0

Problem A Local minima:

Does the iteration converge?

Problem A Local minima:

Problem B Zero gradient:



!Σ " ∈R

!

Σ

"

∈R

h is undefined if

Σ

∈R

"

is zero

%

Problem B Zero gradient:

Problem B’ Aperture problem:





∈R

∂ ∂

Σ

∈R

Problem B’ No gradient along one direction:

Solutions to A & B • Possible solutions: – Manual intervention – Zero motion default

! ∂ ∂

Solutions to A & B • Possible solutions: – Manual intervention

Solutions to A & B • Possible solutions: – Manual intervention – Zero motion default – Coefficient “dampening”

&

Solutions to A & B • Possible solutions:

Solutions to A & B • Possible solutions:

– Manual intervention – Zero motion default – Coefficient “dampening” – Reliance on good features

– Manual intervention – Zero motion default – Coefficient “dampening” – Reliance on good features – Temporal filtering

Solutions to A & B • Possible solutions:

Solutions to A & B • Possible solutions:

– Manual intervention – Zero motion default – Coefficient “dampening” – Reliance on good features – Temporal filtering – Spatial interpolation / hierarchical estimation

– Manual intervention – Zero motion default – Coefficient “dampening” – Reliance on good features – Temporal filtering – Spatial interpolation / hierarchical estimation – Higher-order terms

Original

Original • Transformations/warping of image

Σ

∈R

$

!

0

Σ

∈R

Translations:

$

! =

0

δ δ

'

Problem C

Generalization 2a • Transformations/warping of image

What about other types of motion?

Σ

∈R

Affine:

Generalization 2a

$

!

0

=

=

δ δ

Generalization 2b • Transformations/warping of image

Σ

!

∈R

)*+

=

=

δ δ

Planar perspective:

0

=

# &

Generalization 2b

%

'

Generalization 2c • Transformations/warping of image

Affine

+

Σ

∈R

Planar perspective:

=

# &

%

!

0

Other parametrized transformations

'

(

Generalization 2c

Generalization 2c

with

Other parametrized transformations

Problem B” ≈

!Σ " ∈R

Σ

∈R

Problem B” Generalized aperture problem:

! "

Generalized aperture problem:

,≈ !

!

!

Good features to track • Shi & Tomasi, 1994 • Avoid the generalized aperture problem: Good features maximize the smallest eigenvalue of JTJ • If f is limited to translation,

(Compare with Harris & Stephen)

Original

Σ

∈R

$

!

0

Original

Generalization 3

• Image type

Σ

∈R

• Image type

$

!

Σ

0

∈R

$

Grayscale images

Color images

Original

Original

!

0

!

0

• Constancy assumption

Σ

∈R

$

!

Σ

0

∈R

$

Brightness constancy

Problem C

Generalization 4a • Constancy assumption

What if illumination changes?

- α, β

Σ

∈R

$



0

Linear brightness constancy



Generalization 4a

Generalization 4b • Constancy assumption

λ

Σ

∈R

$

! λΤ

Illumination subspace constancy

Generalization 4b

Problem C’

• Constancy assumption

λ

Σ

∈R

$

! λΤ

What if the texture changes?

Illumination subspace constancy

Generalization 4c

Problem D

• Constancy assumption

λ

Σ

∈R

$

! λΤ

Texture subspace constancy

Convergence is slower as #parameters increases.

Solutions to D • Faster convergence:

Solutions to D • Faster convergence:

– Coarse-to-fine, filtering, interpolation, etc.

– Coarse-to-fine, filtering, interpolation, etc. – Selective parametrization

Solutions to D

Solutions to D

• Faster convergence: – Coarse-to-fine, filtering, interpolation, etc. – Selective parametrization – Offline precomputation

• Faster convergence: – Coarse-to-fine, filtering, interpolation, etc. – Selective parametrization – Offline precomputation • Difference decomposition

Solutions to D • Difference decomposition

Solutions to D • Difference decomposition

Solutions to D

Solutions to D

• Faster convergence:

• Faster convergence:

– Coarse-to-fine, filtering, interpolation, etc. – Selective parametrization – Offline precomputation • Difference decomposition

– Coarse-to-fine, filtering, interpolation, etc. – Selective parametrization – Offline precomputation • Difference decomposition

– Improvements in gradient descent

– Improvements in gradient descent • Multiple estimates of spatial derivatives

Solutions to D

Generalizations

• Multiple estimates / state-space sampling

Modifications made so far:

Σ

R

Original

$

!

Problem E

• Error norm

Σ

∈R

$

!

Squared difference:

0

What about outliers?

0

Generalization 5a

Original

• Error norm

Σρ

$

∈R

=

Robust error norm:

!

0

Σ

∈R

$

!

0

+

Original

Problem E’

• Image region / pixel weighting

Σ

∈R

$

!

0

. /0102341205 6734)8541 1 *7

Rectangular:

Generalization 6a

Problem E”

• Image region / pixel weighting

Σ

∈R

$

!

0

What about foreground occlusion?

77*6407+

#

Generalization 6b • Image region / pixel weighting

Σ

$

∈R

!

Generalizations Modifications made so far:

0

Σ

$

∈R

!

0

Weighted sum:

Generalization 6c • Image region / pixel weighting

Σ

$

∈R

!

Σ 0

Sampled:

Foresight • • • • • • • • • • •

Generalizations: Summary

Lucas & Kanade (IUW 1981) Bergen, Anandan, Hanna, Hingorani (ECCV 1992) Shi & Tomasi (CVPR 1994) Szeliski & Coughlan (CVPR 1994) Szeliski (WACV 1994) Black & Jepson (ECCV 1996) Hager & Belhumeur (CVPR 1996) Bainbridge-Smith & Lane (IVC 1997) Gleicher (CVPR 1997) Sclaroff & Isidoro (ICCV 1998) Cootes, Edwards, & Taylor (ECCV 1998)

$

∈R

Σρ ∈R

!

0

! λΒ

Summary • Generalizations

L&K ?

– Dimension of image – Image transformations / motion models – Pixel type – Constancy assumption – Error norm – Image mask

Y Y n Y n Y

%

Summary • Common problems: – Local minima – Aperture effect – Illumination changes – Convergence issues – Outliers and occlusions

Summary L&K ?

• Mitigation of aperture effect:

Y maybe Y Y n

– Manual intervention – Zero motion default – Coefficient “dampening” – Elimination of poor textures – Temporal filtering – Spatial interpolation / hierarchical – Higher-order terms

Summary • Better convergence: – Coarse-to-fine, filtering, etc. – Selective parametrization – Offline precomputation • Difference decomposition

– Improvements in gradient descent • Multiple estimates of spatial derivatives

L&K ? n n n n Y Y n

Hindsight L&K ? Y n maybe maybe maybe maybe

• • • • • • • • • • •

Lucas & Kanade (IUW 1981) Bergen, Anandan, Hanna, Hingorani (ECCV 1992) Shi & Tomasi (CVPR 1994) Szeliski & Coughlan (CVPR 1994) Szeliski (WACV 1994) Black & Jepson (ECCV 1996) Hager & Belhumeur (CVPR 1996) Bainbridge-Smith & Lane (IVC 1997) Gleicher (CVPR 1997) Sclaroff & Isidoro (ICCV 1998) Cootes, Edwards, & Taylor (ECCV 1998)

&