LinCMOS PROGRAMMABLE LOW-POWER ... - LED

1. POST OFFICE BOX 655303 •DALLAS, TEXAS 75265. D Input Offset Voltage .... is available, including small-outline and chip-carrier versions for high-density ... MHz φm. Phase margin. 46°. 40°. 34°. AVD. Large-signal differential voltage ..... f B. 25°C. 46° φm. Phase margin. VI = 10 mV,. CL = 20 pF, f = B1,. See Figure 100.
1MB taille 0 téléchargements 307 vues
TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

D D D D D D D D

OFFSET N1 IN – IN + GND

1

8

2

7

3

6

4

5

BIAS SELECT VDD OUT OFFSET N2

FK PACKAGE (TOP VIEW)

NC OFFSET N1 NC BIAS SELECT NC

D

D, JG, OR P PACKAGE (TOP VIEW)

Input Offset Voltage Drift . . . Typically 0.1 µV/Month, Including the First 30 Days Wide Range of Supply Voltages Over Specified Temperature Range: 0°C to 70°C . . . 3 V to 16 V – 40°C to 85°C . . . 4 V to 16 V – 55°C to 125°C . . . 5 V to 16 V Single-Supply Operation Common-Mode Input Voltage Range Extends Below the Negative Rail (C-Suffix and I-Suffix Types) Low Noise . . . 25 nV/√Hz Typically at f = 1 kHz (High-Bias Mode) Output Voltage Range includes Negative Rail High Input Impedance . . . 1012 Ω Typ ESD-Protection Circuitry Small-Outline Package Option Also Available in Tape and Reel Designed-In Latch-Up Immunity

NC IN – NC IN + NC

4

3 2 1 20 19 18

5

17

6

16

7

15

8

14 9 10 11 12 13

NC VDD NC OUT NC

NC GND NC OFFSET N2 NC

D

description

The TLC271 operational amplifier combines a wide range of input offset voltage grades with low NC – No internal connection offset voltage drift and high input impedance. In addition, the TLC271 offers a bias-select mode that allows the user to select the best combination of power dissipation and ac performance for a particular application. These devices use Texas Instruments silicon-gate LinCMOS technology, which provides offset voltage stability far exceeding the stability available with conventional metal-gate processes. AVAILABLE OPTIONS PACKAGE TA

VIOmax AT 25°C

SMALL OUTLINE (D)

CHIP CARRIER (FK)

CERAMIC DIP (JG)

PLASTIC DIP (P)

0C 0°C to 70°C

2 mV 5 mV 10 mV

TLC271BCD TLC271ACD TLC271CD





TLC271BCP TLC271ACP TLC271CP

– 40 40°C C to 85°C

2 mV 5 mV 10 mV

TLC271BID TLC271AID TLC271ID





TLC271BIP TLC271AIP TLC271IP

– 55°C to 125°C

10 mV

TLC271MD

TLC271MFK

TLC271MJG

TLC271MP

The D package is available taped and reeled. Add R suffix to the device type (e.g., TLC271BCDR).

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. LinCMOS is a trademark of Texas Instruments Incorporated. Copyright  1997, Texas Instruments Incorporated

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

1

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

8DEVICE FEATURES PARAMETER†

BIAS-SELECT MODE MEDIUM

PD SR

3375

525

50

µW

3.6

0.4

0.03

V/µs

Vn B1

25

32

68

0.5

0.09

MHz

170

480

V/mV

1.7

AVD 23 † Typical at VDD = 5 V, TA = 25°C

LOW

UNIT

HIGH

nV/√Hz

description (continued) Using the bias-select option, these cost-effective devices can be programmed to span a wide range of applications that previously required BiFET, NFET or bipolar technology. Three offset voltage grades are available (C-suffix and I-suffix types), ranging from the low-cost TLC271 (10 mV) to the TLC271B (2 mV) low-offset version. The extremely high input impedance and low bias currents, in conjunction with good common-mode rejection and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs. In general, many features associated with bipolar technology are available in LinCMOS operational amplifiers, without the power penalties of bipolar technology. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are all easily designed with the TLC271. The devices also exhibit low-voltage single-supply operation, making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input voltage range includes the negative rail. A wide range of packaging options is available, including small-outline and chip-carrier versions for high-density system applications. The device inputs and output are designed to withstand – 100-mA surge currents without sustaining latch-up. The TLC271 incorporates internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in the degradation of the device parametric performance. The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from – 40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of – 55°C to 125°C.

bias-select feature The TLC271 offers a bias-select feature that allows the user to select any one of three bias levels depending on the level of performance desired. The tradeoffs between bias levels involve ac performance and power dissipation (see Table 1).

2

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

bias-select feature (continued) Table 1. Effect of Bias Selection on Performance MODE

TYPICAL PARAMETER VALUES C, VDD = 5 V TA = 25 25°C,

HIGH BIAS RL = 10 kΩ

MEDIUM BIAS RL = 100 kΩ

LOW BIAS RL = 1 MΩ

UNIT mW

PD SR

Power dissipation

3.4

0.5

0.05

Slew rate

3.6

0.4

0.03

Vn B1

Equivalent input noise voltage at f = 1 kHz

25

32

68

Unity-gain bandwidth

1.7

0.5

0.09

φm AVD

Phase margin

46°

40°

34°

23

170

480

Large-signal differential voltage amplification

V/µs nV/√Hz MHz V/mV

bias selection Bias selection is achieved by connecting the bias select pin to one of three voltage levels (see Figure 1). For medium-bias applications, it is recommended that the bias select pin be connected to the midpoint between the supply rails. This procedure is simple in split-supply applications, since this point is ground. In single-supply applications, the medium-bias mode necessitates using a voltage divider as indicated in Figure 1. The use of large-value resistors in the voltage divider reduces the current drain of the divider from the supply line. However, large-value resistors used in conjunction with a large-value capacitor require significant time to charge up to the supply midpoint after the supply is switched on. A voltage other than the midpoint can be used if it is within the voltages specified in Figure 1.

bias selection (continued) VDD

Low To the Bias Select Pin

1 MΩ

BIAS MODE

Medium Medium

VDD 1 V to VDD – 1 V

High

GND

Low High 1 MΩ

BIAS-SELECT VOLTAGE (single supply)

0.01 µF

Figure 1. Bias Selection for Single-Supply Applications

high-bias mode In the high-bias mode, the TLC271 series features low offset voltage drift, high input impedance, and low noise. Speed in this mode approaches that of BiFET devices but at only a fraction of the power dissipation. Unity-gain bandwidth is typically greater than 1 MHz.

medium-bias mode The TLC271 in the medium-bias mode features low offset voltage drift, high input impedance, and low noise. Speed in this mode is similar to general-purpose bipolar devices but power dissipation is only a fraction of that consumed by bipolar devices.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

3

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

low-bias mode In the low-bias mode, the TLC271 features low offset voltage drift, high input impedance, extremely low power consumption, and high differential voltage gain. ORDER OF CONTENTS TOPIC

BIAS MODE

schematic

all

absolute maximum ratings

all

recommended operating conditions

all

electrical characteristics operating characteristics typical characteristics

high (Figures 2 – 33)

electrical characteristics operating characteristics typical characteristics

medium (Figures 34 – 65)

electrical characteristics operating characteristics typical characteristics

low (Figures 66 – 97)

parameter measurement information

all

application information

all

equivalent schematic VDD

P3

P12

P9A R6

P4 P2

P1

P5

P9B

P11

R2

IN – R1

P10

N5

IN +

N11 P6A

C1

R5

P6B

P7B

P7A

P8

N12

N3

N9 N6 N7

N1

N2 N4

R3

D1

D2

N13

R7

R4

OFFSET OFFSET N1 N2

4

N10

OUT

POST OFFICE BOX 655303

GND

• DALLAS, TEXAS 75265

BIAS SELECT

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

absolute maximum ratings over operating free-air temperature (unless otherwise noted)† Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± VDD Input voltage range, VI (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to VDD Input current, II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 5 mA Output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 30 mA Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unlimited Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package . . . . . . . . . . . . . . . . . 260°C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package . . . . . . . . . . . . . . . . . . . . 300°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, except differential voltages, are with respect to network ground. 2. Differential voltages are at IN+ with respect to IN –. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded (see application section). DISSIPATION RATING TABLE PACKAGE

TA ≤ 25°C POWER RATING

DERATING FACTOR ABOVE TA = 25°C

TA = 70°C POWER RATING

TA = 85°C POWER RATING

TA = 125°C POWER RATING

D

725 mW

5.8 mW/°C

464 mW

377 mW

145 mW

FK

1375 mW

11.0 mW/°C

880 mW

715 mW

275 mW

JG

1050 mW

8.4 mW/°C

672 mW

546 mW

210 mW

P

1000 mW

8.0 mW/°C

640 mW

520 mW

200 mW

recommended operating conditions

Supply voltage, VDD Common mode input voltage, Common-mode voltage VIC

VDD = 5 V VDD = 10 V

Operating free-air temperature, TA

POST OFFICE BOX 655303

C SUFFIX

I SUFFIX

M SUFFIX

MIN

MIN

MAX

MIN

MAX

MAX

3

16

4

16

5

16

– 0.2

3.5

– 0.2

3.5

0

3.5

– 0.2

8.5

– 0.2

8.5

0

8.5

0

70

– 40

85

– 55

125

• DALLAS, TEXAS 75265

UNIT V V °C

5

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

HIGH-BIAS MODE electrical characteristics at specified free-air temperature (unless otherwise noted) TLC271C, TLC271AC, TLC271BC TEST CONDITIONS

PARAMETER

Input offset voltage

TLC271AC

VDD = 5 V MIN TYP MAX

25°C

TLC271C VIO

TA†

VO = 1.4 14V V, VIC = 0 V,, RS = 50 Ω, RL = 10 kΩ

TLC271BC

1.1

Full range 25°C

0.9

Full range 25°C

0.34

IIO

Input offset current (see Note 4)

VO = VDD /2,, VIC = VDD /2

25°C

0.1

70°C

7

IIB

Input bias current (see Note 4)

VO = VDD /2,, VIC = VDD /2

25°C

0.6

70°C

40

VOH

VOL

AVD

CMRR

kSVR II(SEL) IDD

High-level output voltage

Low-level output voltage

L i l diff ti l Large-signal differential voltage am lification amplification

Common-mode rejection ratio

25°C to 70°C

1.8

25°C

– 0.2 to 4

Full range

– 0.2 to 3.5

VID = –100 100 mV, V IOL = 0

kΩ RL = 10 kΩ, See Note 6

VIC = VICRmin

5

0.9 0.39

5 2

µV/°C

2 0.1 300

7

300

0.7 600

50 – 0.2 to 9

600

– 0.3 to 9.2

– 0.2 to 8.5

25°C

3.2

3.8

8

8.5

0°C

3

3.8

7.8

8.5

70°C

3

3.8

7.8

8.4

V

25°C

0

50

0

50

0°C

0

50

0

50

70°C

0

50

0

50

25°C

5

23

10

36

0°C

4

27

7.5

42

70°C

4

20

7.5

32

25°C

65

80

65

85

0°C

60

84

60

88

70°C

60

85

60

88

25°C

65

95

65

95

0°C

60

94

60

94

70°C

60

96

60

96

mV

V/mV

dB

Input current (BIAS SELECT)

VI(SEL) = 0

25°C

– 1.4

VO = VDD /2, VIC = VDD /2, N lload No d

25°C

675

1600

950

2000

0°C

775

1800

1125

2200

70°C

575

1300

750

1700

• DALLAS, TEXAS 75265

pA

V

VDD = 5 V to t 10 V VO = 1.4 14V

POST OFFICE BOX 655303

pA

V

Supply-voltage S l lt rejection j ti ratio ti (∆VDD /∆VIO)

Supply current

mV

3

dB µA

– 1.9

† Full range is 0°C to 70°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. 6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 10 V, VO = 1 V to 6 V.

6

10

6.5

2

– 0.3 to 4.2

UNIT

12

3

αVIO

VID = 100 mV, V RL = 10 kΩ

1.1

6.5

Full range

Common-mode Common mode input voltage range (see Note 5)

10 12

Average temperature coefficient of input offset voltage

VICR

VDD = 10 V TYP MAX

MIN

µA

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

HIGH-BIAS MODE electrical characteristics at specified free-air temperature (unless otherwise noted) TLC271I, TLC271AI, TLC271BI TEST CONDITIONS

PARAMETER

Input offset voltage

TLC271AI

VDD = 5 V MIN TYP MAX

25°C

TLC271I VIO

TA†

VO = 1.4 14V V, VIC = 0 V,, RS = 50 Ω, RL = 10 kΩ

TLC271BI

1.1

Full range 25°C

0.9

25°C

0.34

Full range

IIO

Input offset current (see Note 4)

VO = VDD /2,, VIC = VDD /2

25°C

0.1

85°C

24

IIB

Input bias current (see Note 4)

VO = VDD /2,, VIC = VDD /2

25°C

0.6

85°C

200

VOH

VOL

AVD

CMRR

kSVR II(SEL) IDD

25°C to 85°C

1.8

25°C

– 0.2 to 4

High-level output voltage

Low-level output voltage

L i l diff ti l Large-signal differential voltage am lification amplification

Common-mode rejection ratio

VID = –100 100 mV, V IOL = 0

kΩ RL = 10 kΩ, See Note 6

VIC = VICRmin

5

0.9

Full range

– 0.2 to 3.5

10 5 7

2

0.39

3.5 µV/°C

0.1 1000

26

2000

220

1000

0.7 – 0.2 to 9

2000

– 0.3 to 9.2

pA pA

V

– 0.2 to 8.5

V

25°C

3.2

3.8

8

8.5

– 40°C

3

3.8

7.8

8.5

85°C

3

3.8

7.8

8.5

V

25°C

0

50

0

50

– 40°C

0

50

0

50

85°C

0

50

0

50

25°C

5

23

10

36

– 40°C

3.5

32

7

46

85°C

3.5

19

7

31

25°C

65

80

65

85

– 40°C

60

81

60

87

85°C

60

86

60

88

25°C

65

95

65

95

– 40°C

60

92

60

92

85°C

60

96

60

96

mV

V/mV

dB

Supply-voltage S l lt rejection j ti ratio ti (∆VDD /∆VIO)

VDD = 5 V to t 10 V VO = 1.4 14V

Input current (BIAS SELECT)

VI(SEL) = 0

25°C

– 1.4

VO = VDD /2, VIC = VDD /2, N lload No d

25°C

675

1600

950

2000

– 40°C

950

2200

1375

2500

85°C

525

1200

725

1600

Supply current

mV

2

2

– 0.3 to 4.2

UNIT

13

3.5

αVIO

VID = 100 mV, V RL = 10 kΩ

1.1

7

Average temperature coefficient of input offset voltage

VICR

10 13

Full range

Common-mode input voltage range (see Note 5)

VDD = 10 V TYP MAX

MIN

dB µA

– 1.9

µA

† Full range is – 40°C to 85°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. 6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 10 V, VO = 1 V to 6 V.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

7

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

HIGH-BIAS MODE electrical characteristics at specified free-air temperature (unless otherwise noted) TLC271M PARAMETER

VIO

Input offset voltage

αVIO

Average temperature coefficient of input offset voltage

IIO

Input offset current (see Note 4)

IIB

VICR

VOH

VOL

AVD

CMRR

Input bias current (see Note 4)

TEST CONDITIONS VO = 1.4 V, VIC = 0 V,, RS = 50 Ω, RL = 10 kΩ

TA†

25°C

Low-level output voltage

L i l diff ti l Large-signal differential voltage am lification amplification

Common-mode rejection ratio

11 1.1

VDD = 10 V TYP MAX

VO = VDD /2,, VIC = VDD /2 VO = VDD /2,, VIC = VDD /2

10

11 1.1

12

12

25°C to 125°C

2.1

2.2

µV/°C

25°C

0.1

0.1

pA

125°C

1.4

25°C

0.6

125°C

9

25°C

0 to 4

Full range

0 to 3.5

15

1.8

15

0.7 35

– 0.3 to 4.2

10 0 to 9

35

– 0.3 to 9.2

0 to 8.5

V

3.2

3.8

8

8.5

3

3.8

7.8

8.5

125°C

3

3.8

7.8

8.4

25°C

0

50

0

50

VID = –100 100 mV, V IOL = 0

– 55°C

0

50

0

50

125°C

0

50

0

50

25°C

5

23

10

36

kΩ RL = 10 kΩ, See Note 6

– 55°C

3.5

35

7

50

125°C

3.5

16

7

27

25°C

65

80

65

85

– 55°C

60

81

60

87

125°C

60

84

60

86

25°C

65

95

65

95

– 55°C

60

90

60

90

125°C

60

97

60

VDD = 5 V to t 10 V VO = 1 1.4 4V

II(SEL)

Input current (BIAS SELECT)

VI(SEL) = 0

IDD

Supply current

VO = VDD /2, VIC = VDD /2, N lload No d

25°C

– 1.4

V

dB

dB

97 µA

25°C

675

1600

950

2000

– 55°C

1000

2500

1475

3000

125°C

475

1100

625

1400

• DALLAS, TEXAS 75265

mV

V/mV

– 1.9

† Full range is – 55°C to 125°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. 6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 10 V, VO = 1 V to 6 V.

POST OFFICE BOX 655303

nA V

25°C

VIC = VICRmin

nA pA

– 55°C

Supply-voltage S l lt rejection j ti ratio ti (∆VDD /∆VIO)

8

10

VID = 100 mV, V RL = 10 kΩ

kSVR

UNIT

MIN

mV Full range

Common-mode input voltage g range (see Note 5)

High-level output voltage

VDD = 5 V MIN TYP MAX

µA

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

HIGH-BIAS MODE operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER

TEST CONDITIONS

TA

TLC271C, TLC271AC, TLC271BC MIN

VI(PP) ( )=1V SR

Slew rate at unity gain

RL = 10 kΩ, CL = 20 pF, pF See Figure 98 VI(PP) ( ) = 2.5 V

Vn

Equivalent input noise voltage

f = 1 kHz,, See Figure 99

RS = 20 Ω,,

BOM

Maximum output-swing bandwidth

VO = VOH , RL = 10 kΩ, kΩ

CL = 20 pF, F See Figure 98

VI = 10 mV, V See Figure 100

CL = 20 pF, F

B1

φm

Unity-gain bandwidth

Phase margin

VI = 10 mV, mV CL = 20 pF, F,

f = B1, See Figure 100

TYP

25°C

3.6

0°C

4

70°C

3

25°C

2.9

0°C

3.1

70°C

2.5

25°C

25

25°C

320

0°C

340

70°C

260

25°C

1.7

0°C

2

70°C

1.3

25°C

46°

0°C

47°

70°C

44°

UNIT

MAX

V/µs

nV/√Hz

kHz

MHz

operating characteristics at specified free-air temperature, VDD = 10 V PARAMETER

TEST CONDITIONS

TA

TLC271C, TLC271AC, TLC271BC MIN

VI(PP) ( )=1V SR

Slew rate at unity gain

RL = 10 kΩ, CL = 20 pF, pF See Figure 98 VI(PP) ( ) = 5.5 V

Vn

Equivalent input noise voltage

f = 1 kHz,, See Figure 99

RS = 20 Ω,,

BOM

Maximum output-swing bandwidth

VO = VOH, RL = 10 kΩ, kΩ

CL = 20 pF, F See Figure 98

VI = 10 mV, V See Figure 100

CL = 20 pF, F

B1

φm

Unity-gain bandwidth

Phase margin

f = B1, CL = 20 pF, F,

POST OFFICE BOX 655303

VI = 10 mV, mV See Figure 100

• DALLAS, TEXAS 75265

TYP

25°C

5.3

0°C

5.9

70°C

4.3

25°C

4.6

0°C

5.1

70°C

3.8

25°C

25

25°C

200

0°C

220

70°C

140

25°C

2.2

0°C

2.5

70°C

1.8

25°C

49°

0°C

50°

70°C

46°

UNIT

MAX

V/µs

nV/√Hz

kHz

MHz

9

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

HIGH-BIAS MODE operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER

TEST CONDITIONS

TA

TLC271I, TLC271AI, TLC271BI MIN

VI(PP) ( )=1V SR

Slew rate at unity gain

RL = 10 kΩ, CL = 20 pF, pF See Figure 98 VI(PP) ( ) = 2.5 V

Vn

Equivalent input noise voltage

f = 1 kHz,, See Figure 99

RS = 20 Ω,,

BOM

Maximum output-swing bandwidth

VO = VOH, RL = 10 kΩ, kΩ

CL = 20 pF, F See Figure 98

VI = 10 mV, V See Figure 100

CL = 20 pF, F

B1

φm

Unity-gain bandwidth

Phase margin

VI = 10 mV, mV CL = 20 pF F,

f = B1, See Figure 100

TYP

25°C

3.6

– 40°C

4.5

85°C

2.8

25°C

2.9

– 40°C

3.5

85°C

2.3

25°C

25

25°C

320

– 40°C

380

85°C

250

25°C

1.7

– 40°C

2.6

85°C

1.2

25°C

46°

– 40°C

49°

85°C

43°

UNIT

MAX

V/µs

nV/√Hz

kHz

MHz

operating characteristics at specified free-air temperature, VDD = 10 V PARAMETER

TEST CONDITIONS

TA

TLC271I, TLC271AI, TLC271BI MIN

VI(PP) ( )=1V SR

Slew rate at unity gain

RL = 10 kΩ, CL = 20 pF, pF See Figure 98 VI(PP) ( ) = 5.5 V

Vn

Equivalent input noise voltage

f = 1 kHz,, See Figure 99

RS = 20 Ω,,

BOM

Maximum output-swing bandwidth

VO = VOH, RL = 10 kΩ, kΩ

CL = 20 pF, F See Figure 98

B1

φm

10

Unity-gain bandwidth

Phase margin

VI = 10 mV, V See Figure 100

VI = 10 mV, mV CL = 20 pF F,

POST OFFICE BOX 655303

CL = 20 pF, F

ff= B1, See Figure 100

• DALLAS, TEXAS 75265

TYP

25°C

5.3

– 40°C

6.8

85°C

4

25°C

4.6

– 40°C

5.8

85°C

3.5

25°C

25

25°C

200

– 40°C

260

85°C

130

25°C

2.2

– 40°C

3.1

85°C

1.7

25°C

49°

– 40°C

52°

85°C

46°

UNIT

MAX

V/µs

nV/√Hz

kHz

MHz

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

HIGH-BIAS MODE operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER

TEST CONDITIONS

VI(PP) ( )=1V SR

Slew rate at unity gain

RL = 10 kΩ, CL = 20 pF, pF See Figure 98 VI(PP) ( ) = 2.5 V

Vn

Equivalent input noise voltage

f = 1 kHz,, See Figure 99

RS = 20 Ω,,

BOM

Maximum output-swing bandwidth

VO = VOH, RL = 10 kΩ, kΩ

CL = 20 pF, F See Figure 98

B1

φm

Unity-gain bandwidth

Phase margin

VI = 10 mV, V See Figure 100

mV VI = 10 mV, CL = 20 pF, F,

CL = 20 pF, F

f = B1, See Figure 100

TA

TLC271M MIN

TYP

25°C

3.6

– 55°C

4.7

125°C

2.3

25°C

2.9

– 55°C

3.7

125°C

2

25°C

25

25°C

320

– 55°C

400

125°C

230

25°C

1.7

– 55°C

2.9

125°C

1.1

25°C

46°

– 55°C

49°

125°C

41°

MAX

UNIT

V/µs

nV/√Hz

kHz

MHz

operating characteristics at specified free-air temperature, VDD = 10 V PARAMETER

TEST CONDITIONS

VI(PP) ( )=1V SR

Slew rate at unity gain

RL = 10 kΩ, CL = 20 pF, pF See Figure 98 VI(PP) ( ) = 5.5 V RS = 20 Ω,,

Vn

Equivalent input noise voltage

f = 1 kHz,, See Figure 99

BOM

Maximum output-swing bandwidth

VO = VOH, RL = 10 kΩ, kΩ

CL = 20 pF, F See Figure 98

VI = 10 mV, V See Figure 100

CL = 20 pF, F

B1

φm

Unity-gain bandwidth

Phase margin

f = B1, CL = 20 pF, F,

POST OFFICE BOX 655303

mV VI = 10 mV, See Figure 100

• DALLAS, TEXAS 75265

TA

TLC271M MIN

TYP

25°C

5.3

– 55°C

7.1

125°C

3.1

25°C

4.6

– 55°C

6.1

125°C

2.7

25°C

25

25°C

200

– 55°C

280

125°C

110

25°C

2.2

– 55°C

3.4

125°C

1.6

25°C

49°

– 55°C

52°

125°C

44°

MAX

UNIT

V/µs

nV/√Hz

kHz

MHz

11

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

TYPICAL CHARACTERISTICS (HIGH-BIAS MODE) Table of Graphs FIGURE

12

VIO αVIO

Input offset voltage

Distribution

2, 3

Temperature coefficient

Distribution

4, 5

VOH

High-level g output voltage g

High-level output vs High level out ut current vs Supply y voltage g vs Free-air temperature

6, 7 8 9

VOL

Low level output voltage Low-level

vs Common-mode Common mode input in ut voltage vs Differential input voltage g vs Free-air temperature vs Low-level output current

10, 11 12 13 14, 15

AVD

Large-signal g g differential voltage g amplification

vs Supply Su ly voltage vs Free-air temperature vs Frequency

16 17 28, 29

IIB IIO

Input bias current

vs Free-air temperature

18

Input offset current

vs Free-air temperature

18

VIC

Common-mode input voltage

vs Supply voltage

19

IDD

Supply current

vs Supply y voltage g vs Free-air temperature

20 21

SR

Slew rate

vs Supply y voltage g vs Free-air temperature

22 23

Bias-select current

vs Supply voltage

24

VO(PP)

Maximum peak-to-peak output voltage

vs Frequency

25

B1

Unity gain bandwidth Unity-gain

vs Free-air temperature vs Supply voltage

26 27

AVD

Large-signal differential voltage amplification

vs Frequency

φm

Phase margin g

vs Supply Su ly voltage vs Free-air temperature vs Capacitive load

Vn

Equivalent input noise voltage

vs Frequency

33

Phase shift

vs Frequency

28, 29

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

28, 29 30 31 32

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)† DISTRIBUTION OF TLC271 INPUT OFFSET VOLTAGE

Percentage of Units – %

50

ÎÎÎÎÎÎÎÎÎÎÎÎ

60

ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ 753 Amplifiers Tested From 6 Wafer Lots VDD = 10 V

753 Amplifiers Tested From 6 Wafer Lots VDD = 5 V TA = 25°C P Package

50 Percentage of Units – %

60

DISTRIBUTION OF TLC271 INPUT OFFSET VOLTAGE

40

30

20

TA = 25°C P Package

40

30

20

10

10

0 –5 –4 –3 –2 –1 0 1 2 3 VIO – Input Offset Voltage – mV

4

0 –5 –4 –3 –2 –1 0 1 2 3 VIO – Input Offset Voltage – mV

5

DISTRIBUTION OF TLC271 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT

40

ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ 324 Amplifiers Tested From 8 Wafer Lots VDD = 5 V TA = 25°C to 125°C P Package Outliers: (1) 20.5 µV/°C

30

20

10

DISTRIBUTION OF TLC271 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT

60

50 Percentage of Units – %

Percentage of Units – %

50

5

Figure 3

Figure 2

60

4

40

30

ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 324 Amplifiers Tested From 8 Wafer lots VDD = 10 V TA = 25°C to 125°C P Package Outliers: (1) 21.2 µV/°C

20

10

0 2 4 6 8 – 10 – 8 – 6 – 4 – 2 0 αVIO – Temperature Coefficient – µV/°C

10

0 – 10 – 8 – 6 – 4 – 2 0 2 4 6 8 αVIO – Temperature Coefficient – µV/°C

Figure 4

10

Figure 5

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

13

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)† HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT

HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT 16

VID = 100 mV TA = 25°C

VOH VOH – High-Level Output Voltage – V

VOH VOH – High-Level Output Voltage – V

5

4

VDD = 5 V

3 VDD = 4 V VDD = 3 V

2

ÁÁÁ ÁÁÁ ÁÁÁ

VDD = 16 V

0 –2 –4 –6 –8 IOH – High-Level Output Current – mA

10

ÎÎÎÎÎ ÎÎÎÎÎ

8

VDD = 10 V

6 4 2

0

– 10

0

–5

– 15 – 20 – 25

– 30

– 35 – 40

Figure 7

HIGH-LEVEL OUTPUT VOLTAGE vs SUPPLY VOLTAGE

HIGH-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE

16

VDD – 1.6 VID = 100 mV RL = 10 kΩ TA = 25°C

14

VOH – High-Level Output Voltage – V VOH

VOH – High-Level Output Voltage – V VOH

– 10

IOH – High-Level Output Current – mA

Figure 6

12 10

ÁÁ ÁÁ

VID = 100 mV TA = 25°C

12

ÁÁ ÁÁ ÁÁ

1

0

14

8 6

– 1.7 VDD = 5 V

IOH = – 5 mA VID = 100 mA

– 1.8 – 1.9 –2 VDD = 10 V – 2.1

ÁÁ ÁÁ

4 2 0 0

2

4 6 8 10 12 VDD – Supply Voltage – V

14

16

– 2.2 – 2.3 – 2.4 – 75

– 50 – 25 0 20 50 75 100 TA – Free-Air Temperature – °C

Figure 8

Figure 9

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

14

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

125

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)† LOW-LEVEL OUTPUT VOLTAGE vs COMMON-MODE INPUT VOLTAGE 500

VDD = 5 V IOL = 5 mA TA = 25°C

650

VOL VOL– Low-Level Output Voltage – mV

VOL VOL– Low-Level Output Voltage – mV

700

LOW-LEVEL OUTPUT VOLTAGE vs COMMON-MODE INPUT VOLTAGE

600

ÎÎÎÎÎÎ ÎÎÎÎÎÎ

550

VID = – 100 mV

500 450

ÁÁ ÁÁ

450

400 VID = – 100 mV VID = – 1 V

350

VID = – 2.5 V

ÁÁÁ ÁÁÁ

400 VID = – 1 V

350 300 0

VDD = 10 V IOL = 5 mA TA = 25°C

1 2 3 VIC – Common-Mode Input Voltage – V

300

250

4

0

1 3 5 7 9 2 4 6 8 VIC – Common-Mode Input Voltage – V

Figure 10

Figure 11

LOW-LEVEL OUTPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE

LOW-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE 900

IOL = 5 mA VIC = VID/2 TA = 25°C

700

VOL VOL– Low-Level Output Voltage – mV

VOL VOL– Low-Level Output Voltage – mV

800

600

ÎÎÎÎ ÎÎÎÎ

500

VDD = 5 V

400 300

ÁÁ ÁÁ

10

VDD = 10 V

ÁÁ ÁÁ

200 100 0 0

–1

– 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10 VID – Differential Input Voltage – V

800

IOL = 5 mA VID = – 1 V VIC = 0.5 V

700

ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ VDD = 5 V

600 500 400

VDD = 10 V

300 200 100 0 – 75

– 50

Figure 12

– 25 0 25 50 75 100 TA – Free-Air Temperature – °C

125

Figure 13

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

15

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)† LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT

LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT 3 VID = – 1 V VIC = 0.5 V TA = 25°C

0.9 0.8

VOL VOL– Low-Level Output Voltage – mV

VOL VOL– Low-Level Output Voltage – mV

1

ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ

VDD = 5 V

0.7

VDD = 4 V

0.6

VDD = 3 V

0.5 0.4

ÁÁ ÁÁ ÁÁ

0.3

ÁÁ ÁÁ

0.2 0.1 0 0

1 2 3 4 5 6 7 IOL – Low-Level Output Current – mA

8

VID = –1 V VIC = 0.5 V TA = 25°C

2.5

2 VDD = 10 V 1.5

1

0.5

0 0

5 10 15 20 25 IOL – Low-Level Output Current – mA

Figure 14

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE

AVD AVD– Large-Signal Differential Voltage Amplification – V/mV

RL = 10 kΩ

ÁÁ ÁÁ ÁÁ

50

40

ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ 0°C

85°C

30

125°C

ÁÁ ÁÁ ÁÁ

20

10

0 2

4 6 8 10 12 VDD – Supply Voltage – V

14

RL = 10 kΩ

45

25°C

0

ÎÎÎÎÎ ÎÎÎÎÎ

50

TA = – 55°C

AVD AVD– Large-Signal Differential Voltage Amplification – V/mV

ÎÎÎÎ ÎÎÎÎ

16

40

VDD = 10 V

35 30 25 20

VDD = 5 V

15 10 5 0 – 75

– 50

Figure 16

– 25 0 25 50 75 100 TA – Free-Air Temperature – °C

Figure 17

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

16

30

Figure 15

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs SUPPLY VOLTAGE

60

VDD = 16 V

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

125

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)† COMMON-MODE INPUT VOLTAGE (POSITIVE LIMIT) vs SUPPLY VOLTAGE

INPUT BIAS CURRENT AND INPUT OFFSET CURRENT vs FREE-AIR TEMPERATURE

ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÎÎ ÎÎ ÎÎ ÎÎ

10000

16

1000

V IC – Common-Mode Input Voltage – V

IIB I IO – Input Bias and IIB and IIO Input Offset Currents – nA

VDD = 10 V VIC = 5 V See Note A

IIB

100

IIO

10

1

TA = 25°C 14 12 10 8 6 4 2 0

0.1 25

125 45 65 85 105 TA – Free-Air Temperature – °C NOTE A: The typical values of input bias current and input offset current below 5 pA were determined mathematically.

0

2

4 6 8 10 12 VDD – Supply Voltage – V

SUPPLY CURRENT vs FREE-AIR TEMPERATURE

SUPPLY CURRENT vs SUPPLY VOLTAGE

ÎÎÎÎ ÎÎÎÎ

2

VO = VDD /2 No Load

TA =– 55°C

ÎÎÎ ÎÎÎ ÁÁ ÁÁ ÁÁ 0°C

1.5

25°C

ÁÁÁ ÁÁÁ

1

70°C

125°C

0.5

0 0

2

ÎÎÎÎÎ ÎÎÎÎÎ VO = VDD /2 No Load

IDD I DD – Supply Current – mA

IDD I DD – Supply Current – mA

2

16

Figure 19

Figure 18

2.5

14

4 6 8 10 12 VDD – Supply Voltage – V

14

16

1.5

VDD = 10 V 1

VDD = 5 V 0.5

0 – 75

– 50

Figure 20

– 25 0 25 50 75 100 TA – Free-Air Temperature – °C

125

Figure 21

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

17

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)† SLEW RATE vs FREE-AIR TEMPERATURE

SLEW RATE vs SUPPLY VOLTAGE 8

6

7

SR – Slew Rate – V/ µus s

SR – Slew Rate – V/ µus s

7

5 4 3

4 3

1

1

2

4 6 8 10 12 VDD – Supply Voltage – V

14

VDD = 5 V VI(PP) = 1 V

– 50

– 25 0 25 50 75 100 TA – Free-Air Temperature – °C

Figure 22

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY

TA = 25°C VI(SEL) = 0

Bias-Select Current – ua µA

– 2.4 – 2.1 – 1.8 – 1.5 – 1.2 – 0.9 – 0.6 – 0.3 0 2

4 6 8 10 12 VDD – Supply Voltage – V

14

16

VO(PP) – Maximum Peak-to-Peak Output Voltage – V

– 3

0

125

Figure 23

BIAS-SELECT CURRENT vs SUPPLY VOLTAGE

– 2.7

ÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎ VDD = 5 V VI(PP) = 2.5 V

0 – 75

16

AV = 1 RL = 10 kΩ CL = 20 pF See Figure 99 VDD = 10 V VI(PP) = 1 V

5

2

0

VDD = 10 V VI(PP) = 5.5 V

6

2

0

ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ

8

AV = 1 VI(PP) = 1 V RL = 10 kΩ CL = 20 pF TA = 25°C See Figure 98

ÎÎÎÎ ÎÎÎÎ

10

VDD = 10 V

9 8

ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ TA = 125°C TA = 25°C TA = 55°C

7 6

ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ

5

VDD = 5 V

4 3

RL = 10 kΩ See Figure 98

2 1 0 10

Figure 24

100 1000 f – Frequency – kHz

10000

Figure 25

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

18

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)† UNITY-GAIN BANDWIDTH vs FREE-AIR TEMPERATURE 2.5

VDD = 5 V VI = 10 mV CL = 20 pF See Figure 100

B1 B1 – Unity-Gain Bandwidth – MHz

B1 B1 – Unity-Gain Bandwidth – MHz

3

UNITY-GAIN BANDWIDTH vs SUPPLY VOLTAGE

2.5

2

1.5

1 – 75

– 50

– 25 0 25 50 75 100 TA – Free-Air Temperature – °C

VI = 10 mV CL = 20 pF TA = 25°C See Figure 100

2

1.5

1

125

0

2

4 6 8 10 12 VDD – Supply Voltage – V

Figure 26

14

16

Figure 27 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY

107

ÁÁ ÁÁ

105



104

30° AVD

103

60°

102

90°

Phase Shift

AVD AVD– Large-Signal Differential Voltage Amplification

106

VDD = 5 V RL = 10 kΩ TA = 25°C

Phase Shift 101

120°

1

150°

0.1 10

100

1k 10 k 100 k f – Frequency – Hz

1M

180° 10 M

Figure 28

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

19

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)† LARGE-SCALE DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY 107

VDD = 10 V RL = 10 kΩ TA = 25°C

ÁÁ ÁÁ

105



104

30° AVD

103

60°

102

90°

Phase Shift

AVD AVD– Large-Signal Differential Voltage Amplification

106

Phase Shift 101

120°

1

150°

0.1 100

10

1k 10 k 100 k f – Frequency – Hz

1M

180° 10 M

Figure 29 PHASE MARGIN vs SUPPLY VOLTAGE

PHASE MARGIN vs FREE-AIR TEMPERATURE

53°

50° VDD = 5 V VI = 10 mV CL = 20 pF See Figure 100

52° 48° φm m – Phase Margin

φm m – Phase Margin

51° 50° 49°

ÁÁ ÁÁ

ÁÁ ÁÁ

48° VI = 10 mV CL = 20 pF TA = 25°C See Figure 100

47° 46° 45° 0

2

4 6 8 10 12 VDD – Supply Voltage – V

14

16

46°

44°

42°

40° – 75 – 50 – 25 0 25 50 75 100 TA – Free-Air Temperature – °C

Figure 30

Figure 31

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

20

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

125

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)†

50° VDD = 5 mV VI = 10 mV TA = 25°C See Figure 100

φm m – Phase Margin

45°

ÁÁ ÁÁ ÁÁ ÁÁ

40°

ÁÁ ÁÁ

35°

30°

25° 0

20

40 60 80 CL – Capacitive Load – pF

100

VN nV/ Hz V n– Equivalent Input Noise Voltage – nV/Hz

PHASE MARGIN vs CAPACITIVE LOAD

EQUIVALENT NOISE VOLTAGE vs FREQUENCY

ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ

400

VDD = 5 V RS = 20 Ω TA = 25°C See Figure 99

350 300 250 200 150 100 50 0 1

Figure 32

10 100 f – Frequency – Hz

1000

Figure 33

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

21

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

MEDIUM-BIAS MODE electrical characteristics at specified free-air temperature (unless otherwise noted) TLC271C, TLC271AC, TLC271BC PARAMETER

Input offset voltage

TLC271AC

VDD = 5 V MIN TYP MAX

25°C

TLC271C VIO

TA†

TEST CONDITIONS

VO = 1.4 1 4 V, V VIC = 0 RS = 50 Ω, RI = 100 kΩ

TLC271BC

1.1

Full range 25°C

0.9

25°C

0.25

Full range

IIO

Input offset current (see Note 4)

VO = VDD /2,, VIC = VDD /2

25°C

0.1

70°C

7

IIB

Input bias current (see Note 4)

VO = VDD /2,, VIC = VDD /2

25°C

0.6

70°C

40

VOL

AVD

CMRR

25°C to 70°C

1.7

25°C

– 0.2 to 4

High-level output voltage

Full range

– 0.2 to 3.5

Low-level output voltage

L i l diff ti l Large-signal differential voltage am lification amplification

Common-mode rejection ratio

VID = 100 mV, V RL = 100 kΩ

VID = –100 100 mV, V IOL = 0

kΩ RL = 100 kΩ, See Note 6

VIC = VICRmin

5

0.9

10 5 6.5

2

0.26

3 µV/°C

0.1 300

7

300

0.7 600

50 – 0.2 to 9

600

–0.3 to 9.2

3.2

3.9

8

8.7

0°C

3

3.9

7.8

8.7

70°C

3

4

7.8

8.7

V

25°C

0

50

0

50

0°C

0

50

0

50

0

50

0

50

25°C

25

170

25

275

0°C

15

200

15

320

70°C

15

140

15

230

25°C

65

91

65

94

0°C

60

91

60

94

70°C

60

92

60

94

25°C

70

93

70

93

0°C

60

92

60

92

70°C

60

94

60

dB

VDD = 5 V to t 10 V VO = 1.4 14V

II(SEL)

Input current (BIAS SELECT)

VI(SEL) = VDD /2

25°C

– 130 105

280

143

300

Supply current

VO = VDD /2, VIC = VDD /2, No load

25°C

IDD

0°C

125

320

173

400

70°C

85

220

110

280

dB

94 – 160

† Full range is 0°C to 70°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. 6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 10 V, VO = 1 V to 6 V.

• DALLAS, TEXAS 75265

mV

V/mV

Supply-voltage S l lt rejection j ti ratio ti (∆VDD /∆VIO)

POST OFFICE BOX 655303

pA

V

kSVR

22

pA

V

– 0.2 to 8.5

25°C

70°C

mV

2

2.1

– 0.3 to 4.2

UNIT

12

3

αVIO

VOH

1.1

6.5

Average temperature coefficient of input offset voltage

VICR

10 12

Full range

Common-mode input voltage range (see Note 5)

VDD = 10 V TYP MAX

MIN

nA µA

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

MEDIUM-BIAS MODE electrical characteristics at specified free-air temperature (unless otherwise noted) TLC271I, TLC271AI, TLC271BI TEST CONDITIONS

PARAMETER

Input offset voltage

TLC271AI

VDD = 5 V MIN TYP MAX

25°C

TLC271I VIO

TA†

VO = 1.4 14V V, VIC = 0 V,, RS = 50 Ω, RL = 100 kΩ

TLC271BI

1.1

Full range 25°C

0.9

25°C

0.25

Full range

IIO

Input offset current (see Note 4)

VO = VDD /2,, VIC = VDD /2

25°C

0.1

85°C

24

IIB

Input bias current (see Note 4)

VO = VDD /2,, VIC = VDD /2

25°C

0.6

85°C

200

VOL

AVD

CMRR

25°C to 85°C

1.7

25°C

– 0.2 to 4

High-level output voltage

Low-level output voltage

L i l diff ti l Large-signal differential voltage am lification amplification

Common-mode rejection ratio

VID = 100 mV, V RL = 100 kΩ

VID = –100 100 mV, V IOL = 0

kΩ RL = 100 kΩ, See Note 6

VIC = VICRmin

kSVR

Supply-voltage S l lt rejection j ti ratio ti (∆VDD /∆VIO)

VDD = 5 V to t 10 V VO = 1.4 14V

II(SEL)

Input current (BIAS SELECT)

VI(SEL) = VDD /2

IDD

Supply current

VO = VDD /2, VIC = VDD /2, No load

5

0.9

Full range

– 0.2 to 3.5

10 5 7

2

0.26

3.5 µV/°C

0.1 1000

26

2000

220

1000

0.7 – 0.2 to 9

2000

– 0.3 to 9.2

25°C

3.2

3.9

8

8.7

3

3.9

7.8

8.7

85°C

3

4

7.8

8.7

V

25°C

0

50

0

50

– 40°C

0

50

0

50

0

50

0

50

25°C

25

170

25

275

– 40°C

15

270

15

390

85°C

15

130

15

220

25°C

65

91

65

94

– 40°C

60

90

60

93

85°C

60

90

60

94

25°C

70

93

70

93

– 40°C

60

91

60

91

85°C

60

94

60

– 130

pA

V

– 40°C

25°C

pA

V

– 0.2 to 8.5

85°C

mV

2

2.1

– 0.3 to 4.2

UNIT

13

3.5

αVIO

VOH

1.1

7

Average temperature coefficient of input offset voltage

VICR

10 13

Full range

Common-mode input voltage range (see Note 5)

VDD = 10 V TYP MAX

MIN

mV

V/mV

dB

dB

94 – 160

nA

25°C

105

280

143

300

– 40°C

158

400

225

450

85°C

80

200

103

260

µA

† Full range is – 40°C to 85°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. 6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 10 V, VO = 1 V to 6 V.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

23

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

MEDIUM-BIAS MODE electrical characteristics at specified free-air temperature (unless otherwise noted) TLC271M PARAMETER

VIO

Input offset voltage

TEST CONDITIONS VO = 1.4 V, VIC = 0 V, RS = 50 Ω, RL = 100 kΩ

TA†

VDD = 5 V MIN TYP MAX

25°C

1.1

Full range

Average temperature coefficient of input offset voltage

IIO

Input offset current (see Note 4)

VO = VDD /2,, VIC = VDD /2

IIB

Input bias current (see Note 4)

VO = VDD /2,, VIC = VDD /2

25°C

0.6

125°C

9

VICR

VOH

VOL

AVD

CMRR

High-level output voltage

Low-level output voltage

Large-signal L i l diff differential ti l voltage am amplification lification

Common-mode rejection ratio

10

1.1

12

αVIO

25°C to 125°C

1.7

25°C

0.1

125°C

1.4

25°C

0 to 4

Full range

0 to 3.5

Common-mode input voltage range (see Note 5)

VDD = 10 V TYP MAX 10

µV/°C

0.1 15

1.8

pA 15

0.7 35

10 0 to 9

– 0.3 to 9.2

0 to 8.5

V

25°C

3.2

3.9

8

8.7

– 55°C

3

3.9

7.8

8.6

125°C

3

4

7.8

8.6

25°C

0

50

0

50

VID = –100 100 mV, V IOL = 0

– 55°C

0

50

0

50

125°C

0

50

0

50

25°C

25

170

25

275

RL = 10 kΩ See Note 6

– 55°C

15

290

15

420

125°C

15

120

15

190

25°C

65

91

65

94

– 55°C

60

89

60

93

125°C

60

91

60

93

25°C

70

93

70

93

– 55°C

60

91

60

91

125°C

60

94

60

V

dB

t 10 V VDD = 5 V to VO = 1.4 14V

II(SEL)

Input current (BIAS SELECT)

VI(SEL) = VDD /2

25°C

– 130

VO = VDD /2, VIC = VDD /2, No load

25°C

105

280

143

300

– 55°C

170

440

245

500

125°C

70

180

90

240

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

dB

94 – 160

† Full range is – 55°C to 125°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. 6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 10 V, VO = 1 V to 6 V.

24

mV

V/mV

S l lt j ti ratio ti Supply-voltage rejection (∆VDD /∆VIO)

Supply current

nA V

kSVR

IDD

nA pA

35

VID = 100 mV, V RL = 100 kΩ

VIC = VICRmin

mV

12 2.1

– 0.3 to 4.2

UNIT

MIN

nA µA

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

MEDIUM-BIAS MODE operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER

TEST CONDITIONS

TA

TLC271C, TLC271AC, TLC271BC MIN

VI(PP) ( )=1V SR

Slew rate at unity gain

RL = 100 kΩ, CL = 20 pF, pF See Figure 98 VI(PP) ( ) = 2.5 V

Vn

BOM

B1

φm

Equivalent input noise voltage

f = 1 kHz, See Figure 99

RS = 20 Ω,

Maximum output-swing bandwidth

VO = VOH, RL = 100 kΩ kΩ,

CL = 20 pF, F See Figure 98

VI = 10 mV, V See Figure 100

CL = 20 pF, F

Unity-gain bandwidth

Phase margin

VI = 10 mV, mV CL = 20 pF F,

f = B1, See Figure 100

TYP

25°C

0.43

0°C

0.46

70°C

0.36

25°C

0.40

0°C

0.43

70°C

0.34

25°C

32

25°C

55

0°C

60

70°C

50

25°C

525

0°C

600

70°C

400

25°C

40°

0°C

41°

70°C

39°

UNIT

MAX

V/µs

nV/√Hz

kHz

kHz

operating characteristics at specified free-air temperature, VDD = 10 V PARAMETER

TEST CONDITIONS

TA

TLC271C, TLC271AC, TLC271BC MIN

VI(PP) ( )=1V SR

Slew rate at unity gain

RL = 100 kΩ, CL = 20 pF, pF See Figure 98 VI(PP) ( ) = 5.5 V

Vn

BOM

B1

φm

Equivalent input noise voltage

f = 1 kHz, See Figure 99

RS = 20 Ω,

Maximum output-swing bandwidth

VO = VOH, RL = 100 kΩ kΩ,

CL = 20 pF, F See Figure 98

VI = 10 mV, V See Figure 100

F CL = 20 pF,

Unity-gain bandwidth

Phase margin

VI = 10 mV, mV CL = 20 pF F,

POST OFFICE BOX 655303

f = B1, See Figure 100

• DALLAS, TEXAS 75265

TYP

25°C

0.62

0°C

0.67

70°C

0.51

25°C

0.56

0°C

0.61

70°C

0.46

25°C

32

25°C

35

0°C

40

70°C

30

25°C

635

0°C

710

70°C

510

25°C

43°

0°C

44°

70°C

42°

UNIT

MAX

V/µs

nV/√Hz

kHz

kHz

25

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

MEDIUM-BIAS MODE operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER

TEST CONDITIONS

TA

TLC271I, TLC271AI, TLC271BI MIN

VI(PP) ( )=1V SR

Slew rate at unity gain

RL = 100 kΩ, CL = 20 pF, pF See Figure 98 VI(PP) ( ) = 2.5 V

Vn

BOM

B1

φm

Equivalent input noise voltage

f = 1 kHz, See Figure 99

RS = 20 Ω,

Maximum output-swing bandwidth

VO = VOH, RL = 100 kΩ kΩ,

CL = 20 pF, F See Figure 98

VI = 10 mV, V See Figure 100

CL = 20 pF, F

Unity-gain bandwidth

Phase margin

VI = 10 mV, mV CL = 20 pF F,

f = B1, See Figure 100

TYP

25°C

0.43

– 40°C

0.51

85°C

0.35

25°C

0.40

– 40°C

0.48

85°C

0.32

25°C

32

25°C

55

– 40°C

75

85°C

45

25°C

525

– 40°C

770

85°C

370

25°C

40°

– 40°C

43°

85°C

38°

UNIT

MAX

V/µs

nV/√Hz

kHz

MHz

operating characteristics at specified free-air temperature, VDD = 10 V PARAMETER

TEST CONDITIONS

TA

TLC271I, TLC271AI, TLC271BI MIN

VI(PP) ( )=1V SR

Slew rate at unity gain

RL = 100 kΩ, CL = 20 pF, pF See Figure 98 VI(PP) ( ) = 5.5 V

Vn

BOM

B1

φm

26

Equivalent input noise voltage

f = 1 kHz, See Figure 99

RS = 20 Ω,

Maximum output-swing bandwidth

VO = VOH,3 3 RL = 100 kΩ kΩ,

CL = 20 pF, F See Figure 98

V VI = 10 mV, See Figure 100

F CL = 20 pF,

Unity-gain bandwidth

Phase margin

VI = 10 mV, mV CL = 20 pF F,

POST OFFICE BOX 655303

f = B1, See Figure 100

• DALLAS, TEXAS 75265

TYP

25°C

0.62

– 40°C

0.77

85°C

0.47

25°C

0.56

– 40°C

0.70

85°C

0.44

25°C

32

25°C

35

– 40°C

45

85°C

25

25°C

635

– 40°C

880

85°C

480

25°C

43°

– 40°C

46°

85°C

41°

UNIT

MAX

V/µs

nV/√Hz

kHz

kHz

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

MEDIUM-BIAS MODE operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER

TEST CONDITIONS

VI(PP) ( )=1V SR

Slew rate at unity gain

RL = 100 kΩ, CL = 20 pF, pF See Figure 98 VI(PP) ( ) = 2.5 V

Vn

Equivalent input noise voltage

f = 1 kHz, See Figure 99

RS = 20 Ω,

BOM

Maximum output-swing bandwidth

VO = VOH, RL = 100 kΩ kΩ,

CL = 20 pF, F See Figure 98

VI = 10 mV, V See Figure 100

CL = 20 pF, F

B1

φm

Unity-gain bandwidth

Phase margin

mV VI = 10 mV, CL = 20 pF F,

f = B1, See Figure 100

TA

TLC271M MIN

TYP

25°C

0.43

– 55°C

0.54

125°C

0.29

25°C

0.40

– 55°C

0.50

125°C

0.28

25°C

32

25°C

55

– 55°C

80

125°C

40

25°C

525

– 55°C

850

125°C

330

25°C

40°

– 55°C

43°

125°C

36°

MAX

UNIT

V/µs

nV/√Hz

kHz

kHz

operating characteristics at specified free-air temperature, VDD = 10 V PARAMETER

TEST CONDITIONS

VI(PP) ( )=1V SR

Slew rate at unity gain

RL = 100 kΩ, CL = 20 pF, pF See Figure 98 VI(PP) ( ) = 5.5 V

Vn

Equivalent input noise voltage

f = 1 kHz, See Figure 99

BOM

Maximum output-swing bandwidth

VO = VOH, RL = 100 kΩ kΩ,

B1

φm

Unity-gain bandwidth

Phase margin

VI = 10 mV, V See Figure 100

mV VI = 10 mV, CL = 20 pF F,

POST OFFICE BOX 655303

RS = 20 Ω,

CL = 20 pF, F See Figure 98

CL = 20 pF, F

f = B1, See Figure 100

• DALLAS, TEXAS 75265

TA

TLC271M MIN

TYP

25°C

0.62

– 55°C

0.81

125°C

0.38

25°C

0.56

– 55°C

0.73

125°C

0.35

25°C

32

25°C

35

– 55°C

50

125°C

20

25°C

635

– 55°C

960

125°C

440

25°C

43°

– 55°C

47°

125°C

39°

MAX

UNIT

V/µs

nV/√Hz

kHz

kHz

27

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE) Table of Graphs FIGURE

28

VIO αVIO

Input offset voltage

Distribution

34, 35

Temperature coefficient

Distribution

36, 37

VOH

High-level g output voltage g

High-level output vs High level out ut current vs Supply y voltage g vs Free-air temperature

38, 39 40 41

VOL

Low level output voltage Low-level

vs Common-mode Common mode input in ut voltage vs Differential input voltage g vs Free-air temperature vs Low-level output current

42, 43 44 45 46, 47

AVD

Large-signal g g differential voltage g amplification

vs Supply Su ly voltage vs Free-air temperature vs Frequency

48 49 60, 61

IIB IIO

Input bias current

vs Free-air temperature

50

Input offset current

vs Free-air temperature

50

VI

Maximum Input voltage

vs Supply voltage

51

IDD

Supply current

vs Supply y voltage g vs Free-air temperature

52 53

SR

Slew rate

vs Supply y voltage g vs Free-air temperature

54 55

Bias-select current

vs Supply voltage

56

VO(PP)

Maximum peak-to-peak output voltage

vs Frequency

57

B1

Unity gain bandwidth Unity-gain

vs Free-air temperature vs Supply voltage

58 59

φm

Phase margin g

vs Supply Su ly voltage vs Free-air temperature vs Capacitive load

62 63 64

Vn

Equivalent input noise voltage

vs Frequency

65

Phase shift

vs Frequency

60, 61

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)† DISTRIBUTION OF TLC271 INPUT OFFSET VOLTAGE

DISTRIBUTION OF TLC271 INPUT OFFSET VOLTAGE

Percentage of Units – %

50

40

ÎÎÎÎÎÎÎÎÎÎÎ ÁÁÁÁ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÁÁÁÁ ÎÎÎÎ ÁÁÁÁ

60

612 Amplifiers Tested From 6 Wafer Lots VDD = 5 V TA = 25°C N Package

50 Percentage of Units – %

60

30

20

40

ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÁÁÁÁ ÎÎÎÎ ÁÁÁÁ ÎÎÎÎ ÁÁÁÁ ÁÁÁÁ 612 Amplifiers Tested From 6 Wafer Lots VDD = 5 V TA = 25°C N Package

30

20

10

10

0

0 –5

–4

–3 –2 –1 0 1 2 3 VIO – Input Offset Voltage – mV

4

–5

5

–4

–3 –2 –1 0 1 2 3 VIO – Input Offset Voltage – mV

DISTRIBUTION OF TLC271 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT

DISTRIBUTION OF TLC271 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT

ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ

60

ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ

60

224 Amplifiers Tested From 6 Water Lots VDD = 5 V TA = 25°C to 125°C P Package Outliers: (1) 33.0 µV/°C

50 Percentage of Units – %

Percentage of Units – %

40

5

Figure 35

Figure 34

50

4

30

20

10

40

224 Amplifiers Tested From 6 Water Lots VDD = 10 V TA = 25°C to 125°C P Package Outliers: (1) 34.6 µV/°C

30

20

10

0 – 10 – 8 – 6 – 4 – 2 0 2 4 6 8 αVIO – Temperature Coefficient – µV/°C

10

0 – 10 – 8 – 6 – 4 – 2 0 2 4 6 8 αVIO – Temperature Coefficient – µV/°C

Figure 36

10

Figure 37

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

29

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)† HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT

HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT 16 VID = 100 mV TA = 25°C

V VOH OH – High-Level Output Voltage – V

V VOH OH – High-Level Output Voltage – V

5

4

VDD = 5 V

3 VDD = 4 V VDD = 3 V

2

ÁÁÁ ÁÁÁ

VID = 100 mV TA = 25°C

14 VDD = 16 V 12 10 8 VDD = 10 V 6

ÁÁÁ ÁÁÁ

1

4 2

0

0 0

–2 –4 –6 –8 IOH – High-Level Output Current – mA

0

– 10

– 5 – 10 – 15 – 20 – 25 – 30 – 35 – 40 IOH – High-Level Output Current – mA

Figure 38

Figure 39

HIGH-LEVEL OUTPUT VOLTAGE vs SUPPLY VOLTAGE VDD – 1.6

VID = 100 mV RL = 10 kΩ TA = 25°C

14

V VOH OH – High-Level Output Voltage – V

V VOH OH – High-Level Output Voltage – V

16

HIGH-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE

12 10

ÁÁÁ ÁÁÁ ÁÁÁ

8 6

IOH = – 5 mA VID = 100 mA

– 1.7 VDD = 5 V – 1.8 – 1.9 –2 VDD = 10 V – 2.1

ÁÁ ÁÁ

4 2 0 0

2

4 6 8 10 12 VDD – Supply Voltage – V

14

16

– 2.2 – 2.3 – 2.4 – 75

– 50 – 25 0 20 50 75 100 TA – Free-Air Temperature – °C

Figure 40

Figure 41

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

30

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

125

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)† LOW-LEVEL OUTPUT VOLTAGE vs COMMON-MODE INPUT VOLTAGE 500

VDD = 5 V IOL = 5 mA TA = 25°C

650

VOL VOL – Low-Level Output Voltage – mV

VOL VOL – Low-Level Output Voltage – mV

700

LOW-LEVEL OUTPUT VOLTAGE vs COMMON-MODE INPUT VOLTAGE

600

ÎÎÎÎÎÎ ÎÎÎÎÎÎ

550

VID = – 100 mV

500 450

ÁÁ ÎÎÎÎ ÁÁ

450

400 VID = – 100 mV VID = – 1 V

350

VID = – 2.5 V

ÁÁÁ ÁÁÁ

400

VID = – 1 V

350

300

0

VDD = 10 V IOL= 5 mA TA = 25°C

1 2 3 VIC – Common-Mode Input Voltage – V

300

250

4

0

1 3 5 6 7 9 2 4 8 VIC – Common-Mode Input Voltage – V

Figure 42

Figure 43

LOW-LEVEL OUTPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE

VOL VOL – Low-Level Output Voltage – mV

IOL = 5 mA VIC = |VID/2| TA = 25°C

700 600 500 VDD = 5 V 400 300

ÁÁ ÁÁ ÁÁ

LOW-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE 900 VOL VOL – Low-Level Output Voltage – mV

ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ

800

10

800

IOL = 5 mA VID = – 1 V VIC = 0.5 V

700 VDD = 5 V

600 500 400

VDD = 10 V

ÁÁÁ ÁÁÁ ÁÁÁ

VDD = 10 V

200 100

300 200 100

0 0

–1

–2 –3 –4 –5 –6 –7 –8 VID – Differential Input Voltage – V

– 9 – 10

0 – 75

– 50

Figure 44

– 25 0 25 50 75 100 TA – Free-Air Temperature – °C

125

Figure 45

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

31

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)† LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT 1

3 VOL VOL – Low-Level Output Voltage – V

VID = – 1 V VIC = 0.5 V TA = 25°C

0.9 VOL VOL – Low-Level Output Voltage – V

LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT

0.8 VDD = 5 V 0.7 VDD = 4 V 0.6 VDD = 3 V 0.5 0.4

ÁÁ ÁÁ ÁÁ

0.3

ÁÁ ÁÁ

0.2 0.1 0 0

1 2 3 4 5 6 7 IOL – Low-Level Output Current – mA

ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ

VID = – 1 V VIC = 0.5 V TA = 25°C

2.5

2

VDD = 10 V

1.5

1

0.5

0

8

0

5 10 15 20 25 IOL – Low-Level Output Current – mA

Figure 46

ÁÁ ÁÁ ÁÁ

400

ÎÎÎÎÎ ÎÎÎÎÎ RL = 100 kΩ

0°C

300

70°C

ÎÎÎÎÁÁ ÁÁ ÁÁ 85°C

TA = 125°C

150 100 50 0 0

2

4 6 8 10 12 VDD – Supply Voltage – V

14

16

RL = 100 kΩ

450

– 40°C

25°C

200

ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ

500 TA = – 55°C

350

250

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE

AVD AVD– Large-Signal Differential Voltage Amplification – V/mV

AVD AVD– Large-Signal Differential Voltage Amplification – V/mV

450

400 350

VDD = 10 V

300 250

ÎÎÎÎÎ ÎÎÎÎÎ

200 150

VDD = 5 V

100 50 0 – 75

– 50

Figure 48

– 25 0 25 50 75 100 TA – Free-Air Temperature – °C

Figure 49

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

32

30

Figure 47

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs SUPPLY VOLTAGE

500

VDD = 16 V

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

125

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)† INPUT BIAS CURRENT AND INPUT OFFSET CURRENT vs FREE-AIR TEMPERATURE

ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÎÎ ÎÎÎ ÎÎÎ

16

ÎÎÎÎ TA = 25°C

VDD = 10 V VIC = 5 V See Note A

14 VII – Maximum Input Voltage – V V

IIB I IO – Input Bias and IIB and IIO Input Offset Currents – pA

10000

MAXIMUM INPUT VOLTAGE vs SUPPLY VOLTAGE

1000

IIB

100

IIO

10

1

12 10 8 6 4 2

0.1 25

35

45

55

65

75

85

0

95 105 115 125

0

2

TA – Free-Air Temperature – °C NOTE A: The typical values of input bias current and input offset current below 5 pA were determined mathematically.

10

12

14

16

SUPPLY CURRENT vs FREE-AIR TEMPERATURE

400

ÁÁÁÁÁ ÁÁÁÁÁ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ

250

VO = VDD/2 No Load

225

TA = –55°C

200

300 – 40°C 250 0°C

200

25°C

ÁÁÁ ÁÁÁ

150

70°C

100

125°C

50

IIDD DD – Supply Current – mA

IIDD DD – Supply Current – mA

8

Figure 51

SUPPLY CURRENT vs SUPPLY VOLTAGE

350

6

VDD – Supply Voltage – V

Figure 50

VO = VDD/2 No Load

4

175 150

VDD = 10 V

125

ÁÁ ÁÁ

100

VDD = 5 V

75 50 25

0 0

2

4 6 8 10 12 VDD – Supply Voltage – V

14

16

0 – 75

– 50

Figure 52

– 25 0 25 50 75 100 TA – Free-Air Temperature – °C

125

Figure 53

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

33

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)† SLEW RATE vs SUPPLY VOLTAGE

ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ

0.9

0.6

0.8 SR – Slew Rate – V/ µ s

0.7

ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÎÎÎÎÎÎ ÁÁÁÁÁ ÎÎÎÎÎÎ

0.9

AV = 1 VI(PP) = 1 V RL = 100 kΩ CL = 20 pF TA = 25°C See Figure 99

0.8 SR – Slew Rate – V/ µ s

SLEW RATE vs FREE-AIR TEMPERATURE

0.5

VDD = 10 V VI(PP) = 5.5 V

0.7

VDD = 10 V VI(PP) = 1 V

0.6 0.5

ÁÁÁÁ ÎÎÎÎÎ ÁÁÁÁÁ ÎÎÎÎÎ ÁÁÁÁ ÁÁÁÁÁ

0.4 0.4

VDD = 5 V VI(PP) = 1 V

0.3

0.3 0

2

4 6 8 10 12 VDD – Supply Voltage – V

14

0.2 – 75

16

– 50

TA = 25°C VI(SEL) = 1/2 VDD

– 210 – 180 – 150 –120 – 90 – 60 –30 0 0

2

4 6 8 10 12 VDD – Supply Voltage – V

14

16

VO(PP) – Maximum Peak-to-Peak Output Voltage – V

Bias-Select Current – nA

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY

ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ

– 240

125

Figure 55

BIAS-SELECT CURRENT vs SUPPLY VOLTAGE

– 270

VDD = 5 V VI(PP) = 2.5 V

– 25 0 25 50 75 100 TA – Free-Air Temperature – °C

Figure 54

– 300

AV = 1 RL = 10 kΩ CL = 20 pF See Figure 99

10

ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÁÁÁÁ ÁÁÁÁ

9

VDD = 10 V

8 7 6 5

ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ TA = 125°C TA = 25°C TA = – 55°C

VDD = 5 V

4 3

RL = 100 kΩ See Figure 99

2 1 0 1

Figure 56

10 100 f – Frequency – kHz

1000

Figure 57

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

34

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)† UNITY-GAIN BANDWIDTH vs SUPPLY VOLTAGE

UNITY-GAIN BANDWIDTH vs FREE-AIR TEMPERATURE

ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁ

800

700

VI = 10 mV CL = 20 pF TA = 25°C See Figure 101

750

600

500

400

300 – 75

ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ

800

VDD = 5 V VI = 10 mV CL = 20 pF See Figure 101

B1 B1– Unity-Gain Bandwidth – MHz

B1 B1– Unity-Gain Bandwidth – MHz

900

700 650 600 550 500 450 400

– 50

– 25 0 25 50 75 100 TA – Free-Air Temperature – °C

0

125

2

4 6 8 10 12 VDD – Supply Voltage – V

Figure 58

14

16

Figure 59 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY

ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÎÎÎ ÎÎÎ

ÁÁ ÁÁ ÁÁ

VDD = 5 V RL = 100 kΩ TA = 25°C

106 105 104

0° 30°

AVD

103 102

60° 90°

Phase Shift

AVD AVD– Large-Signal Differential Voltage Amplification

107

Phase Shift 101

120°

1

150°

0.1

1

10

100 1k 10 f – Frequency – Hz

100 K

180° 1M

Figure 60

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

35

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)† LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY

ÁÁÁÁÁ ÎÎÎÎÎ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÎÎÎÎ VDD = 10 V RL = 100 kΩ TA = 25°C

106 105



104

30°

AVD

103

ÁÁ ÁÁ ÁÁ

60°

102

90°

Phase Shift

AVD AVD– Large-Signal Differential Voltage Amplification

107

Phase Shift

101

120°

1

150°

0.1 1

10

100 1k 10 k f – Frequency – Hz

100 k

180° 1M

Figure 61 PHASE MARGIN vs SUPPLY VOLTAGE

PHASE MARGIN vs FREE-AIR TEMPERATURE

50°

45° VI = 10 mV CL = 20 pF TA = 25°C See Figure 100

43° φm m – Phase Margin

φm m – Phase Margin

48°

VDD = 5 V VI = 10 mV CL = 20 pF See Figure 100

46°

ÁÁ ÁÁ ÁÁ

41°

ÁÁ ÁÁ ÁÁ

44°

42°

39°

37°

40°

38° 0

2

4 6 8 10 12 VDD – Supply Voltage – V

14

16

35° – 75

– 50

Figure 62

– 25 0 25 50 75 100 TA – Free-Air Temperature – °C

Figure 63

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

36

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

125

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)†

44° VDD = 5 V VI = 10 mV TA = 25°C See Figure 100

φm m – Phase Margin

42° 40°

EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY

ÁÁÁ ÁÁÁ ÁÁÁ

38°

ÁÁ ÁÁ

36° 34° 32° 30°

Vn V n– Equivalent Input Noise Voltage –nV/ nV/Hz Hz

PHASE MARGIN vs CAPACITIVE LOAD

300 VDD = 5 V RS = 20 Ω TA = 25°C See Figure 99

250

200

150

100

50

0

28° 0

20

40 60 80 CL – Capacitive Load – pF

100

1

Figure 64

10 100 f – Frequency – Hz

1000

Figure 65

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

37

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

LOW-BIAS MODE electrical characteristics at specified free-air temperature (unless otherwise noted) TLC271C, TLC271AC, TLC271BC TEST CONDITIONS

PARAMETER

Input offset voltage

TLC271AC

VDD = 5 V MIN TYP MAX

25°C

TLC271C VIO

TA†

VO = 1.4 1 4 V, V VIC = 0 V,, RS = 50 Ω, RI = 1 MΩ

TLC271BC

1.1

Full range 25°C

0.9

25°C

0.24

Full range

IIO

Input offset current (see Note 4)

VO = VDD /2,, VIC = VDD /2

25°C

0.1

70°C

7

IIB

Input bias current (see Note 4)

VO = VDD /2,, VIC = VDD /2

25°C

0.6

70°C

40

VOH

VOL

AVD

CMRR

High-level output voltage

25°C to 70°C

1.1

25°C

– 0.2 to 4

Full range

– 0.2 to 3.5

Low-level output voltage

L i l diff ti l Large-signal differential voltage am lification amplification

Common-mode rejection ratio

VID = –100 100 mV, V IOL = 0

MΩ RL= 1 MΩ, See Note 6

VIC = VICRmin

1.1

5

0.9

10 5 6.5

2

0.26

3 µV/°C

0.1 300

8

300

0.7 600

50 – 0.2 to 9

600

– 0.3 to 9.2

– 0.2 to 8.5

25°C

3.2

4.1

8

8.9

0°C

3

4.1

7.8

8.9

70°C

3

4.2

7.8

8.9

V

25°C

0

50

0

50

0°C

0

50

0

50

70°C

0

50

0

50

25°C

50

520

50

870

0°C

50

700

50

1030

70°C

50

380

50

660

25°C

65

94

65

97

0°C

60

95

60

97

70°C

60

95

60

97

25°C

70

97

70

97

0°C

60

97

60

97

70°C

60

98

60

98

dB

VI(SEL) = VDD

25°C

65

VO = VDD /2, VIC = VDD /2, N lload No d

25°C

10

17

14

23

0°C

12

21

18

33

70°C 8 14 11 † Full range is 0°C to 70°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. 6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 10 V, VO = 1 V to 6 V.

20

38

Supply current

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

mV

V/mV

Input current (BIAS SELECT)

IDD

pA

V

VDD = 5 V to t 10 V VO = 1.4 14V

II(SEL)

pA

V

Supply-voltage S l lt rejection j ti ratio ti (∆VDD /∆VIO)

kSVR

mV

2

1

– 0.3 to 4.2

UNIT

12

3

αVIO

V VID = 100 mV, RL= 1 MΩ

10

6.5

Average temperature coefficient of input offset voltage

VICR

VDD = 10 V TYP MAX

12

Full range

Common-mode input voltage range (see Note 5)

MIN

dB

95

nA µA

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

LOW-BIAS MODE electrical characteristics at specified free-air temperature (unless otherwise noted) TLC271I, TLC271AI, TLC271BI TEST CONDITIONS

PARAMETER

Input offset voltage

TLC271AI

VDD = 5 V MIN TYP MAX

25°C

TLC271I VIO

TA†

VO = 1 1.4 4V V, VIC = 0 V,, RS = 50 Ω, RL = 1 MΩ

TLC271BI

1.1

Full range 25°C

0.9

25°C

0.24

Full range

IIO

Input offset current (see Note 4)

VO = VDD /2,, VIC = VDD /2

25°C

0.1

85°C

24

IIB

Input bias current (see Note 4)

VO = VDD /2,, VIC = VDD /2

25°C

0.6

85°C

200

VOH

VOL

AVD

CMRR

High-level output voltage

Low-level output voltage

L i l diff ti l Large-signal differential voltage am lification amplification

Common-mode rejection ratio

VID = – 100 mV, V IOL = 0

RL= 1 MΩ See Note 6

VIC = VICRmin

1.1

25°C to 85°C

1.1

25°C

– 0.2 to 4

5

0.9

Full range

– 0.2 to 3.5

10 5 7

2

0.26

3.5 µV/°C

0.1 1000

26

2000

220

1000

0.7 – 0.2 to 9

2000

– 0.3 to 9.2

– 0.2 to 8.5

25°C

3

4.1

8

8.9

– 40°C

3

4.1

7.8

8.9

85°C

3

4.2

7.8

8.9

V

25°C

0

50

0

50

– 40°C

0

50

0

50

85°C

0

50

0

50

25°C

50

520

50

870

– 40°C

50

900

50

1550

85°C

50

330

50

585

25°C

65

94

65

97

– 40°C

60

95

60

97

85°C

60

95

60

98

25°C

70

97

70

97

– 40°C

60

97

60

97

85°C

60

98

60

98

dB

VI(SEL) = VDD

25°C

65

VO = VDD /2, VIC = VDD /2, N lload No d

25°C

10

17

14

23

– 40°C

16

27

25

43

85°C 17 13 10 † Full range is – 40 to 85°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. 6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 10 V, VO = 1 V to 6 V.

18

Supply current

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

mV

V/mV

Input current (BIAS SELECT)

IDD

pA

V

VDD = 5 V to t 10 V VO = 1 1.4 4V

II(SEL)

pA

V

Supply-voltage S l lt rejection j ti ratio ti (∆VDD /∆VIO)

kSVR

mV

2

1

– 0.3 to 4.2

UNIT

13

3.5

αVIO

VID = 100 mV, V RL= 1 MΩ

10

7

Average temperature coefficient of input offset voltage

VICR

VDD = 10 V TYP MAX

13

Full range

Common-mode input voltage range (see Note 5)

MIN

dB

95

nA µA

39

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

LOW-BIAS MODE electrical characteristics at specified free-air temperature (unless otherwise noted) TLC271M PARAMETER

VIO

Input offset voltage

TEST CONDITIONS

TA†

VO = 1.4 V, VIC = 0 V,

25°C

RS = 50 Ω, RL = 1 MΩ

Full range

VDD = 5 V MIN TYP MAX 1.1

IIO

Input offset current (see Note 4)

VO = VDD /2,, VIC = VDD /2

IIB

Input bias current (see Note 4)

VO = VDD /2,, VIC = VDD /2

25°C

0.6

125°C

9

VOL

AVD

CMRR

25°C to 125°C

1.4

25°C

0.1

125°C

1.4

Low-level output voltage

L i l diff ti l Large-signal differential voltage am lification amplification

Common-mode rejection ratio

1.1

10 12

0.1 15

1.8

0 to 3.5

25°C

3.2

4.1

8

8.9

– 55°C

3

4.1

7.8

8.8

125°C

3

4.2

7.8

9

MΩ RL= 1 MΩ, See Note 6

VIC = VICRmin

– 0.3 to 4.2

10

Full range

VID = – 100 mV, V IOL = 0

pA 15

0.7 35

25°C

VID = 100 mV, V RL= 1 MΩ

µV/°C

1.4

0 to 4

Common-mode input voltage range (see Note 5)

High-level output voltage

10

0 to 9

– 0.3 to 9.2

0 to 8.5

V

V

25°C

0

50

0

50

– 55°C

0

50

0

50

125°C

0

50

0

50

25°C

50

520

50

870

– 55°C

25

1000

25

1775

125°C

25

200

25

380

25°C

65

94

65

97

– 55°C

60

95

60

97

125°C

60

85

60

91

25°C

70

97

70

97

– 55°C

60

97

60

97

125°C

60

98

60

98

dB

VI(SEL) = VDD

25°C

65

VO = VDD /2, VIC = VDD /2, N lload No d

25°C

10

17

14

23

– 55°C

17

30

28

48

125°C 7 12 9 † Full range is – 55°C to 125°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically. 5. This range also applies to each input individually. 6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 10 V, VO = 1 V to 6 V.

15

40

Supply current

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

mV

V/mV

Input current (BIAS SELECT)

IDD

nA V

VDD = 5 V to t 10 V VO = 1 1.4 4V

II(SEL)

nA pA

35

Supply-voltage S l lt rejection j ti ratio ti (∆VDD /∆VIO)

kSVR

UNIT

mV

Average temperature coefficient of input offset voltage

VOH

VDD = 10 V TYP MAX

12

αVIO

VICR

MIN

dB

95

nA µA

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

LOW-BIAS MODE operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER

TEST CONDITIONS

TA

TLC271C, TLC271AC, TLC271BC MIN

VI(PP) ( )=1V SR

Slew rate at unity gain

RL = 1 MΩ, CL = 20 pF, pF See Figure 98 VI(PP) ( ) = 2.5 V

Vn

BOM

B1

φm

Equivalent input noise voltage

f = 1 kHz, See Figure 99

RS = 20 Ω,

Maximum output-swing bandwidth

VO = VOH, RL = 1 MΩ MΩ,

CL = 20 pF, F See Figure 98

VI = 10 mV, V See Figure 100

CL = 20 pF, F

Unity-gain bandwidth

Phase margin

VI = 10 mV, mV CL = 20 pF F,

f = B1, See Figure 100

TYP

25°C

0.03

0°C

0.04

70°C

0.03

25°C

0.03

0°C

0.03

70°C

0.02

25°C

68

25°C

5

0°C

6

70°C

4.5

25°C

85

0°C

100

70°C

65

25°C

34°

0°C

36°

70°C

30°

UNIT

MAX

V/µs

nV/√Hz

kHz

kHz

operating characteristics at specified free-air temperature, VDD = 10 V PARAMETER

TEST CONDITIONS

TA

TLC271C, TLC271AC, TLC271BC MIN

VI(PP) ( )=1V SR

Slew rate at unity gain

RL = 1 MΩ, CL = 20 pF, pF See Figure 98 VI(PP) ( ) = 5.5 V

Vn

BOM

B1

φm

Equivalent input noise voltage

f = 1 kHz, See Figure 99

RS = 20 Ω,

Maximum output-swing bandwidth

VO = VOH, RL = 1 MΩ MΩ,

CL = 20 pF, F See Figure 98

mV VI = 10 mV, See Figure 100

F CL = 20 pF,

VI = 10 mV, mV CL = 20 pF F,

f = B1, See Figure 100

Unity-gain bandwidth

Phase margin

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TYP

25°C

0.05

0°C

0.05

70°C

0.04

25°C

0.04

0°C

0.05

70°C

0.04

25°C

68

25°C

1

0°C

1.3

70°C

0.9

25°C

110

0°C

125

70°C

90

25°C

38°

0°C

40°

70°C

34°

UNIT

MAX

V/µs

nV/√Hz

kHz

kHz

41

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

LOW-BIAS MODE operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER

TEST CONDITIONS

TA

TLC271I, TLC271AI, TLC271BI MIN

VI(PP) ( )=1V SR

Slew rate at unity gain

RL = 1 MΩ, CL = 20 pF, pF See Figure 98 VI(PP) ( ) = 2.5 V

Vn

BOM

B1

φm

Equivalent input noise voltage

f = 1 kHz, See Figure 99

RS = 20 Ω,

Maximum output-swing bandwidth

VO = VOH, RL = 1 MΩ MΩ,

CL = 20 pF, F See Figure 98

VI = 10 mV, V See Figure 100

CL = 20 pF, F

Unity-gain bandwidth

Phase margin

VI = 10 mV, mV CL = 20 pF F,

f = B1, See Figure 100

TYP

25°C

0.03

– 40°C

0.04

85°C

0.03

25°C

0.03

– 40°C

0.04

85°C

0.02

25°C

68

25°C

5

– 40°C

7

85°C

4

25°C

85

– 40°C

130

85°C

55

25°C

34°

– 40°C

38°

85°C

28°

UNIT

MAX

V/µs

nV/√Hz

kHz

MHz

operating characteristics at specified free-air temperature, VDD = 10 V PARAMETER

TEST CONDITIONS

TA

TLC271C, TLC271AC, TLC271BC MIN

VI(PP) ( )=1V SR

Slew rate at unity gain

RL = 1 MΩ, CL = 20 pF, pF See Figure 98 VI(PP) ( ) = 5.5 V

Vn

BOM

B1

φm

42

Equivalent input noise voltage

f = 1 kHz, See Figure 99

RS = 20 Ω,

Maximum output-swing bandwidth

VO = VOH, RL = 1 MΩ MΩ,

CL = 20 pF, F See Figure 98

V VI = 10 mV, See Figure 100

F CL = 20 pF,

Unity-gain bandwidth

Phase margin

VI = 10 mV,l mV l CL = 20 pF F,

POST OFFICE BOX 655303

f = B1, See Figure 100

• DALLAS, TEXAS 75265

TYP

25°C

0.05

– 40°C

0.06

85°C

0.03

25°C

0.04

– 40°C

0.05

85°C

0.03

25°C

68

25°C

1

– 40°C

1.4

85°C

0.8

25°C

110

– 40°C

155

85°C

80

25°C

38°

– 40°C

42°

85°C

32°

UNIT

MAX

V/µs

nV/√Hz

kHz

MHz

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

LOW-BIAS MODE operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER

TEST CONDITIONS

VI(PP) ( )=1V SR

Slew rate at unity gain

RL = 1 MΩ, CL = 20 pF, pF See Figure 98 VI(PP) ( ) = 2.5 V

Vn

Equivalent input noise voltage

f = 1 kHz, See Figure 99

RS = 20 Ω,

BOM

Maximum output-swing bandwidth

VO = VOH, RL = 1 MΩ MΩ,

CL = 20 pF, F See Figure 98

VI = 10 mV, V See Figure 100

CL = 20 pF, F

B1

φm

Unity-gain bandwidth

Phase margin

mV VI = 10 mV, CL = 20 pF F,

f = B1, See Figure 100

TA

TLC271M MIN

TYP

25°C

0.03

– 55°C

0.04

125°C

0.02

25°C

0.03

– 55°C

0.04

125°C

0.02

25°C

68

25°C

5

– 55°C

8

125°C

3

25°C

85

– 55°C

140

125°C

45

25°C

34°

– 55°C

39°

125°C

25°

MAX

UNIT

V/µs

nV/√Hz

kHz

kHz

operating characteristics at specified free-air temperature, VDD = 10 V PARAMETER

TEST CONDITIONS

VI(PP) ( )=1V SR

Slew rate at unity gain

RL = 1 MΩ, CL = 20 pF, pF See Figure 98 VI(PP) ( ) = 5.5 V

Vn

Equivalent input noise voltage

f = 1 kHz, See Figure 99

BOM

Maximum output-swing bandwidth

VO = VOH, RL = 1 MΩ MΩ,

B1

φm

Unity-gain bandwidth

Phase margin

VI = 10 mV, V See Figure 100

mV VI = 10 mV, CL = 20 pF F,

POST OFFICE BOX 655303

RS = 20 Ω,

CL = 20 pF, F See Figure 98

CL = 20 pF, F

f = B1, See Figure 100

• DALLAS, TEXAS 75265

TA

TLC271M MIN

TYP

25°C

0.05

– 55°C

0.06

125°C

0.03

25°C

0.04

– 55°C

0.06

125°C

0.03

25°C

68

25°C

1

– 55°C

1.5

125°C

0.7

25°C

110

– 55°C

165

125°C

70

25°C

38°

– 55°C

43°

125°C

29°

MAX

UNIT

V/µs

nV/√Hz

kHz

kHz

43

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

TYPICAL CHARACTERISTICS (LOW-BIAS MODE) Table of Graphs FIGURE

44

VIO αVIO

Input offset voltage

Distribution

66, 67

Temperature coefficient

Distribution

68, 69

VOH

High-level g output voltage g

High-level output vs High level out ut current vs Supply y voltage g vs Free-air temperature

70, 71 72 73

VOL

Low level output voltage Low-level

vs Common-mode Common mode input in ut voltage vs Differential input voltage g vs Free-air temperature vs Low-level output current

74, 75 76 77 78, 79

AVD

Large-signal g g differential voltage g amplification

vs Supply Su ly voltage vs Free-air temperature vs Frequency

80 81 92, 93

IIB IIO

Input bias current

vs Free-air temperature

82

Input offset current

vs Free-air temperature

82

VI

Maximum input voltage

vs Supply voltage

83

IDD

Supply current

vs Supply y voltage g vs Free-air temperature

84 85

SR

Slew rate

vs Supply y voltage g vs Free-air temperature

86 87

Bias-select current

vs Supply voltage

88

VO(PP)

Maximum peak-to-peak output voltage

vs Frequency

89

B1

Unity gain bandwidth Unity-gain

vs Free-air temperature vs Supply voltage

90 91

φm

Phase margin g

vs Supply Su ly voltage vs Free-air temperature vs Capacitive load

94 95 96

Vn

Equivalent input noise voltage

vs Frequency

97

Phase shift

vs Frequency

92, 93

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

TYPICAL CHARACTERISTICS (LOW-BIAS MODE)† DISTRIBUTION OF TLC271 INPUT OFFSET VOLTAGE

Percentage of Units – %

60

ÎÎÎÎÎÎÎÎÎÎÎÎ

70

905 Amplifiers Tested From 6 Wafer Lots VDD = 5 V TA = 25°C P Package

50 40 30 20

50 40 30 20 10

10 0

905 Amplifiers Tested From 6 Wafer Lots VDD = 10 V TA = 25°C P Package

60 Percentage of Units – %

70

DISTRIBUTION OF TLC271 INPUT OFFSET VOLTAGE

–5

–4

–3 –2 –1 0 1 2 3 VIO – Input Offset Voltage – mV

4

0

5

–5

–4

Figure 66

70 356 Amplifiers Tested From 8 Wafer Lots VDD = 5 V TA = 25°C to 125°C P Package Outliers: (1) 19.2 µV/°C (1) 12.1 µV/°C

60 Percentage of Units – %

Percentage of Units – %

5

DISTRIBUTION OF TLC271 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT

70

50

4

Figure 67

DISTRIBUTION OF TLC271 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT

60

–3 –2 –1 0 1 2 3 VIO – Input Offset Voltage – mV

40 30 20 10

50 40

ÎÎÎÎÎÎ ÎÎÎÎÎÎ

356 Amplifiers Tested From 8 Wafer Lots VDD = 10 V TA = 25°C to 125°C P Package Outliers: (1) 18.7 µV/°C (1) 11.6 µV/°C

30 20 10

0 – 10 – 8

–6

–4

–2

0

2

4

6

8

10

αVIO – Temperature Coefficient – µV/°C

0

– 10 – 8 – 6 – 4 – 2 0 2 4 6 8 αVIO – Temperature Coefficient – µV/°C

Figure 68

10

Figure 69

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

45

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

TYPICAL CHARACTERISTICS (LOW-BIAS MODE)† HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT

HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT 16

5

4

VDD = 5 V

3

VDD = 4 V

ÁÁÁ ÁÁÁ ÁÁÁ

VDD = 3 V

2

0 0

VDD = 16 V 12 10 8 VDD = 10 V

ÁÁ ÁÁ ÁÁ

1

–2 –4 –6 –8 IOH – High-Level Output Current – mA

VID = 100 mV TA = 25°C

14

V VOH– OH High-Level Output Voltage – V

VOH High-Level Output Voltage – V VOH–

VID = 100 mV TA = 25°C

6 4 2 0 0

– 10

– 5 – 10 – 15 – 20 – 25 – 30 – 35 IOH – High-Level Output Current – mA

Figure 70

Figure 71 HIGH-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE

HIGH-LEVEL OUTPUT VOLTAGE vs SUPPLY VOLTAGE – 1.6 VID = 100 mV RL = 1 MΩ TA = 25°C

14

V VOH– OH High-Level Output Voltage – V

V VOH– OH High-Level Output Voltage – V

16

12 10

ÁÁ ÁÁ ÁÁ

8 6

IOH = – 5 mA VID = 100 mV

– 1.7 VDD = 5 V – 1.8 – 1.9 –2 VDD = 10 V – 2.1

ÁÁ ÁÁ ÁÁ

4 2 0 0

2

4 6 8 10 12 VDD – Supply Voltage – V

14

16

– 2.2 – 2.3

– 2.4 – 75

– 50

Figure 72

– 25 0 25 50 75 100 TA – Free-Air Temperature – °C

Figure 73

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

46

– 40

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

125

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

TYPICAL CHARACTERISTICS (LOW-BIAS MODE)† LOW-LEVEL OUTPUT VOLTAGE vs COMMON-MODE INPUT VOLTAGE

LOW-LEVEL OUTPUT VOLTAGE vs COMMON-MODE INPUT VOLTAGE 500

ÁÁ ÁÁ

VDD = 5 V IOL = 5 mA TA = 25°C

650

VOL VOL – Low-Level Output Voltage – mV

VOL VOL – Low-Level Output Voltage – mV

700

600

ÎÎÎÎÎÎ ÎÎÎÎÎÎ

550

VID = – 100 mV

500 450

450

400 VID = – 100 mV VID = – 1 V

350

VID = – 2.5 V

ÁÁÁ ÁÁÁ

400 VID = – 1 V 350

300

250

300 0

VDD = 10 V IOL = 5 mA TA = 25°C

1 2 3 VIC – Common-Mode Input Voltage – V

4

0

1 3 5 7 9 2 4 6 8 VIC – Common-Mode Input Voltage – V

Figure 74

Figure 75

LOW-LEVEL OUTPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE

LOW-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE 900

IOL = 5 mA VIC = VID/2 TA = 25°C

700

VOL VOL – Low-Level Output Voltage – mV

VOL VOL – Low-Level Output Voltage – mV

800

ÁÁ ÁÁ

10

600

ÎÎÎÎ ÎÎÎÎ

500

VDD = 5 V

400 300

VDD = 10 V 200 100 0 0

–1

ÁÁ ÁÁ

– 2 –3 – 4 – 5 – 6 – 7 – 8 – 9 – 10 VID – Differential Input Voltage – V

800

IOL = 5 mA VID = – 1 V VIC = 0.5 V

700

ÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ VDD = 5 V

600 500 400

VDD = 10 V

300 200 100 0 – 75

– 50

Figure 76

– 25 0 25 50 75 100 TA – Free-Air Temperature – °C

125

Figure 77

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

47

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

TYPICAL CHARACTERISTICS (LOW-BIAS MODE)† LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT 1

3

0.8

VOL VOL – Low-Level Output Voltage – V

VID = – 1 V VIC = 0.5 V TA = 25°C

0.9 VOL VOL – Low-Level Output Voltage – V

LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT

VDD = 5 V 0.7 VDD = 4 V 0.6 VDD = 3 V 0.5

ÁÁ ÁÁ ÁÁ

0.4 0.3

2.5

0.1 0 0

1

2

3

4

5

6

7

VDD = 16 V

2 VDD = 10 V 1.5

ÁÁ ÁÁ

0.2

VID = – 1 V VIC = 0.5 V TA = 25°C

1

0.5

0

8

0

5 10 15 20 25 IOL – Low-Level Output Current – mA

IOL – Low-Level Output Current – mA

Figure 78

Figure 79 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs SUPPLY VOLTAGE

ÎÎÎÎÎ ÎÎÎÎÎ

AVD AVD– Large-Signal Differential Voltage Amplification – V/mV

TA = – 55°C

1600 1400

TA = 0°C

1200

ÁÁ ÁÁ ÁÁ ÁÁ ÁÁ

70°C

800

85°C

600 400

1600 1400

ÎÎÎ ÎÎÎ ÎÎÎÁÁ ÁÁ ÁÁ ÁÁ ÁÁ 25°C

1000

RL = 1 MΩ

1800

– 40°C AVD AVD– Large-Signal Differential Voltage Amplification – V/mV

RL = 1 MΩ

ÎÎÎÎÎ ÎÎÎÎÎ

2000

2000

1800

VDD = 10 V

1200 1000 800 600 VDD = 5 V 400

125°C

200 0 0

2

4 6 8 10 12 VDD – Supply Voltage – V

14

16

200 0 – 75

– 50

Figure 80

– 25 0 25 50 75 100 TA – Free-Air Temperature – °C

Figure 81

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

48

30

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

125

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

TYPICAL CHARACTERISTICS (LOW-BIAS MODE)† INPUT BIAS CURRENT AND INPUT OFFSET CURRENT vs FREE-AIR TEMPERATURE 10000

ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÎÎ ÎÎ ÎÎ ÎÎ

VII – Maximum Input Voltage – V V

IIB I IO – Input Bias and IIB and IIO Input Offset Currents – pA

TA = 25°C

14

IIB

100

IIO

10

ÎÎÎÎ ÎÎÎÎ

16

VDD = 10 V VIC = 5 V See Note A

1000

MAXIMUM INPUT VOLTAGE vs SUPPLY VOLTAGE

1

12 10 8 6 4 2

0.1 25

35

45

55

65

75

85

0

95 105 115 125

0

2

TA – Free-Air Temperature – °C NOTE A: The typical values of input bias current and input offset current below 5 pA were determined mathematically.

8

10

12

14

16

Figure 83

SUPPLY CURRENT vs SUPPLY VOLTAGE

SUPPLY CURRENT vs FREE-AIR TEMPERATURE 30

45 VO = VDD/2 No Load

TA = – 55°C

ÎÎÎ ÎÎÎ ÎÎÎÁÁ ÁÁ

35

– 40°C

30 25

0°C

20

ÁÁ ÁÁ

25°C

15

70°C

10

125°C

mA A IIDD DD – Supply Current – µ

mA A IIDD DD – Supply Current – µ

6

VDD – Supply Voltage – V

Figure 82

40

4

VO = VDD/2 No Load

25

20 VDD = 10 V 15

10 VDD = 5 V 5

5 0 0

2

4 6 8 10 12 VDD – Supply Voltage – V

14

16

0 – 75

– 50

Figure 84

– 25 0 25 50 75 100 TA – Free-Air Temperature – °C

125

Figure 85

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

49

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

TYPICAL CHARACTERISTICS (LOW-BIAS MODE)† SLEW RATE vs SUPPLY VOLTAGE 0.07

0.07

AV = 1 VI(PP) = 1 V RL = 1 MΩ CL = 20 pF TA= 25°C See Figure 98

0.05

VDD = 10 V VI(PP) = 5.5 V

0.06 SR – Slew Rate – V/sµ s

0.06 SR – Slew Rate – V/sµ s

SLEW RATE vs FREE-AIR TEMPERATURE

0.04 0.03 0.02 0.01

0.05 VDD = 10 V VI(PP) = 1 V

0.04 0.03 VDD = 5 V VI(PP) = 1 V

0.02

VDD = 5 V VI(PP) = 2.5 V

0.01

0.00 0

2

4 6 8 10 12 VDD – Supply Voltage – V

14

16

0.00 – 75

– 50

Figure 86

VO(PP) – Maximum Peak-to-Peak Output Voltage – V

ÎÎÎÎÎÎ ÎÎÎÎÎÎ TA = 25°C VI(SEL) = VDD

Bias-Select Current – nA

120 105 90 75 60 45 30 15 0

2

4 6 8 10 12 VDD – Supply Voltage – V

14

16

10

ÁÁ

9 8

VDD = 10 V 7 6 5

ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ TA = 125°C TA = 25°C TA = –55°C

VDD = 5 V

4

ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ

3

RL = 1 MΩ See Figure 98

2 1 0 0.1

Figure 88

1 10 f – Frequency – kHz

Figure 89

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

50

125

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY

150

0

– 25 0 25 50 75 100 TA – Free-Air Temperature – °C

Figure 87

BIAS-SELECT CURRENT vs SUPPLY VOLTAGE

135

RL = 1 MΩ CL = 20 pF AV = 1 See Figure 98

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

100

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

TYPICAL CHARACTERISTICS (LOW-BIAS MODE)† UNITY-GAIN BANDWIDTH vs FREE-AIR TEMPERATURE 140

VDD = 5 V VI = 10 mV CL = 20 pF See Figure 100

130

130 B1 B1 – Unity-Gain Bandwidth – kHz

B1 B1 – Unity-Gain Bandwidth – kHz

150

UNITY-GAIN BANDWIDTH vs SUPPLY VOLTAGE

110

90

70

50

120 110

VI = 10 mV CL = 20 pF TA = 25°C See Figure 100

ÎÎÎÎÎÎ ÎÎÎÎÎÎ

100 90 80 70 60

30 – 75

50 – 50

– 25 0 25 50 75 100 TA – Free-Air Temperature – °C

125

0

2

4 6 8 10 12 VDD – Supply Voltage – V

Figure 90

14

16

Figure 91 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY

107

VDD = 5 V RL = 1 MΩ TA = 25°C

ÁÁ ÁÁ ÁÁ

ÎÎÎ ÎÎÎ ÎÎÎÎÎ

105 104

0° 30°

AVD

103 102

60° 90°

Phase Shift

AVD AVD – Large-Signal Differential Voltage Amplification

106

Phase Shift

101

120°

1 0.1

150°

1

10

100 1k 10 k f – Frequency – Hz

100 k

180° 1M

Figure 92

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

51

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

TYPICAL CHARACTERISTICS (LOW-BIAS MODE)† LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY 107

VDD = 10 V RL = 1 MΩ TA = 25°C

ÁÁ ÁÁ

105



ÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ

104

30°

AVD

103 102

60° 90°

Phase Shift

AVD AVD – Large-Signal Differential Voltage Amplification

106

Phase Shift

101 1 0.1

1

10

100 1k 10 k f – Frequency – Hz

120° 150°

100 k

180° 1M

Figure 93 PHASE MARGIN vs SUPPLY VOLTAGE

PHASE MARGIN vs FREE-AIR TEMPERATURE

42°

40° VI = 10 mV CL = 20 pF TA = 25°C See Figure 100

ÁÁ ÁÁ

36°

38°

φm m – Phase Margin

φm m – Phase Margin

40°

VDD = 5 mV VI = 10 mV CL = 20 pF See Figure 100

38°

36°

34° 32° 30°

ÁÁ ÁÁ

34°

28° 26° 24°

32°

22° 30° 0

2

4 6 8 10 12 VDD – Supply Voltage – V

14

16

20° – 75

– 50

Figure 94

– 25 0 25 50 75 100 TA – Free-Air Temperature – °C

125

Figure 95

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

52

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

TYPICAL CHARACTERISTICS (LOW-BIAS MODE)†

37° VDD = 5 mV VI = 10 mV TA = 25°C See Figure 100

φm m – Phase Margin

35°

33°

ÁÁ ÁÁ ÁÁ ÁÁ

31°

ÁÁ ÁÁ

29°

27°

25° 0

10

20

30 40 50 60 70 80 CL – Capacitive Load – pF

90 100

VN nV/ Hz V n – Equivalent Input Noise Voltage – nV/Hz

PHASE MARGIN vs CAPACITIVE LOAD

EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY

ÁÁÁÁÁ ÁÁÁÁÁ ÎÎÎÎÎ ÁÁÁÁÁ ÁÁÁÁÁ

200

VDD = 5 V RS = 20Ω TA = 25°C See Figure 99

175 150 125 100 75 50 25 0 1

Figure 96

10 100 f – Frequency – Hz

1000

Figure 97

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

53

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

PARAMETER MEASUREMENT INFORMATION single-supply versus split-supply test circuits Because the TLC271 is optimized for single-supply operation, circuit configurations used for the various tests often present some inconvenience since the input signal, in many cases, must be offset from ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to the negative rail. A comparison of single-supply versus split-supply test circuits is shown below. The use of either circuit gives the same result.

VDD

VDD +



– VO

VO +

CL

+

VI

VI

RL

CL

RL

VDD – (a) SINGLE SUPPLY

(b) SPLIT SUPPLY

Figure 98. Unity-Gain Amplifier 2 kΩ

2 kΩ VDD 20 Ω

VDD +





1/2 VDD

VO

VO

+

+

20 Ω

20 Ω

20 Ω VDD –

(a) SINGLE SUPPLY

(b) SPLIT SUPPLY

Figure 99. Noise-Test Circuit 10 kΩ

VDD

VDD +

100 Ω



100 Ω –

VI

10 kΩ

VI

VO

VO +

+

1/2 VDD

CL

CL VDD –

(a) SINGLE SUPPLY

(b) SPLIT SUPPLY

Figure 100. Gain-of-100 Inverting Amplifier

54

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

PARAMETER MEASUREMENT INFORMATION input bias current Because of the high input impedance of the TLC271 operational amplifiers, attempts to measure the input bias current can result in erroneous readings. The bias current at normal room ambient temperature is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions are offered to avoid erroneous measurements: 1. Isolate the device from other potential leakage sources. Use a grounded shield around and between the device inputs (see Figure 101). Leakages that would otherwise flow to the inputs are shunted away. 2. Compensate for the leakage of the test socket by actually performing an input bias current test (using a picoammeter) with no device in the test socket. The actual input bias current can then be calculated by subtracting the open-socket leakage readings from the readings obtained with a device in the test socket. One word of caution: many automatic testers as well as some bench-top operational amplifier testers us the servo-loop technique with a resistor in series with the device input to measure the input bias current (the voltage drop across the series resistor is measured and the bias current is calculated). This method requires that a device be inserted into the test socket to obtain a correct reading; therefore, an open-socket reading is not feasible using this method. 8

5

V = VIC

1

4

Figure 101. Isolation Metal Around Device inputs (JG and P packages)

low-level output voltage To obtain low-supply-voltage operation, some compromise is necessary in the input stage. This compromise results in the device low-level output being dependent on both the common-mode input voltage level as well as the differential input voltage level. When attempting to correlate low-level output readings with those quoted in the electrical specifications, these two conditions should be observed. If conditions other than these are to be used, please refer to the Typical Characteristics section of this data sheet.

input offset voltage temperature coefficient Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This parameter is actually a calculation using input offset voltage measurements obtained at two different temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device and the test socket. This moisture results in leakage and contact resistance which can cause erroneous input offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the moisture also covers the isolation metal itself, thereby rendering it useless. It is suggested that these measurements be performed at temperatures above freezing to minimize error.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

55

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

PARAMETER MEASUREMENT INFORMATION full-power response Full-power response, the frequency above which the amplifier slew rate limits the output voltage swing, is often specified two ways: full-linear response and full-peak response. The full-linear response is generally measuredby monitoring the distortion level of the output while increasing the frequency of a sinusoidal input signal until the maximum frequency is found above which the output contains significant distortion. The full-peak response is defined as the maximum output frequency, without regard to distortion, above which full peak-to-peak output swing cannot be maintained. Because there is no industry-wide accepted value for significant distortion, the full-peak response is specified in this data sheet and is measured using the circuit of Figure 98. The initial setup involves the use of a sinusoidal input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same amplitude. The frequency is then increased until the maximum peak-to-peak output can no longer be maintained (Figure 102). A square wave is used to allow a more accurate determination of the point at which the maximum peak-to-peak output is reached.

(a) f = 100 Hz

(b) BOM > f > 100 Hz

(c) f = BOM

(d) f > BOM

Figure 102. Full-Power-Response Output Signal

test time Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume, short-test-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET devices, and require longer test times than their bipolar and BiFET counterparts. The problem becomes more pronounced with reduced supply levels and lower temperatures.

APPLICATION INFORMATION VDD

single-supply operation

R4

POST OFFICE BOX 655303

VI

R2

VO +

56

R1 –

While the TLC271 performs well using dual power supplies (also called balanced or split supplies), the design is optimized for single-supply operation. This includes an input common mode voltage range that encompasses ground as well as an output voltage range that pulls down to ground. The supply voltage range extends down to 3 V (C-suffix types), thus allowing operation with supply levels commonly available for TTL and HCMOS; however, for maximum dynamic range, 16-V single-supply operation is recommended.

Vref

+ VDD R1 R3 ) R3 V + (V * VI) R4 ) Vref ref O R2

V R3

C 0.01 µF

ref

Figure 103. Inverting Amplifier With Voltage Reference

• DALLAS, TEXAS 75265

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

APPLICATION INFORMATION single-supply operation (continued) Many single-supply applications require that a voltage be applied to one input to establish a reference level that is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see Figure 103). The low input bias current consumption of the TLC271 permits the use of very large resistive values to implement the voltage divider, thus minimizing power consumption. The TLC271 works well in conjunction with digital logic; however, when powering both linear devices and digital logic from the same power supply, the following precautions are recommended: 1. Power the linear devices from separate bypassed supply lines (see Figure 104); otherwise, the linear device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital logic. 2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive decoupling is often adequate; however, RC decoupling may be necessary in high-frequency applications.



OUT

Logic

Logic

Logic

Power Supply

+

(a) COMMON SUPPLY RAILS

– +

OUT

Logic

Logic

Logic

Power Supply

(b) SEPARATE BYPASSED SUPPLY RAILS (preferred)

Figure 104. Common Versus Separate Supply Rails

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

57

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

APPLICATION INFORMATION input offset voltage nulling The TLC271 offers external input offset null control. Nulling of the input off set voltage may be achieved by adjusting a 25-kΩ potentiometer connected between the offset null terminals with the wiper Connected as shown in Figure 105. The amount of nulling range varies with the bias selection. In the high-bias mode, the nulling range allows the maximum offset voltage specified to be trimmed to zero. In low-bias and medium-bias modes, total nulling may not be possible.

ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ –

IN –

VDD

N1

OUT

N2

+

IN +

IN –

IN +

25 kΩ

ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ –

OUT

N2

+

25 kΩ

N1

GND

(a) SINGLE SUPPLY

(b) SPLIT SUPPLY

Figure 105. Input Offset Voltage Null Circuit

bias selection Bias selection is achieved by connecting the bias select pin to one of the three voltage levels (see Figure 106). For medium-bias applications, R is recommended that the bias select pin be connected to the mid-point between the supply rails. This is a simple procedure in split-supply applications, since this point is ground. In single-supply applications, the medium-bias mode necessitates using a voltage divider as indicated. The use of large-value resistors in the voltage divider reduces the current drain of the divider from the supply line. However, large-value resistors used in conjunction with a large-value capacitor requires significant time to charge up to the supply midpoint after the supply is switched on. A voltage other than the midpoint may be used if it is within the voltages specified in the table of Figure 106. VDD

Low To BIAS SELECT

1 MΩ

BIAS MODE

Medium

Medium

VDD 1 V to VDD – 1 V

High

GND

Low

High 1 MΩ

BIAS-SELECT VOLTAGE (single supply)

0.01 µF

Figure 106. Bias Selection for Single-Supply Applications

58

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

APPLICATION INFORMATION input characteristics The TLC271 is specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction. Exceeding this specified range is a common problem, especially in single-supply operation. Note that the lower range limit includes the negative rail, while the upper range limit is specified at VDD – 1 V at TA = 25°C and at VDD – 1.5 V at all other temperatures. The use of the polysilicon-gate process and the careful input circuit design gives the TLC271 very good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate) alleviates the polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude. The offset voltage drift with time has been calculated to be typically 0.1 µV/month, including the first month of operation. Because of the extremely high input impedance and resulting low bias current requirements, the TLC271 is well suited for low-level signal processing; however, leakage currents on printed circuit boards and sockets can easily exceed bias current requirements and cause a degradation in device performance. It is good practice to include guard rings around inputs (similar to those of Figure 101 in the Parameter Measurement Information section). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input (see Figure 107). The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation.

noise performance The noise specifications in operational amplifier circuits are greatly dependent on the current in the first-stage differential amplifier. The low input bias current requirements of the TLC271 results in a very low noise current, which is insignificant in most applications. This feature makes the devices especially favorable over bipolar devices when using values of circuit impedance greater than 50 kΩ, since bipolar devices exhibit greater noise currents.

+

(a) NONINVERTING AMPLIFIER

VO

+

VO

ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ

(b) INVERTING AMPLIFIER

VI

VO

+



VI

ÏÏÏ ÏÏÏ ÏÏÏ ÏÏÏ –

VI



ÏÏÏ ÏÏÏ ÏÏÏ ÏÏÏ

(c) UNITY-GAIN AMPLIFIER

Figure 107. Guard-Ring Schemes

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

59

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

APPLICATION INFORMATION feedback

ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ –

VO

+

Operational amplifier circuits almost always employ feedback, and since feedback is the first prerequisite for oscillation, a little caution is appropriate. Most oscillation problems result from driving capacitive loads and ignoring stray input capacitance. A small-value capacitor connected in parallel with the feedback resistor is an effective remedy (see Figure 108). The value of this capacitor is optimized empirically.

Figure 108. Compensation for Input Capacitance

electrostatic discharge protection The TLC271 incorporates an internal electrostatic-discharge (ESD) protection circuit that prevents functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2. Care should be exercised, however, when handling these devices as exposure to ESD may result in the degradation of the device parametric performance. The protection circuit also causes the input bias currents to be temperature dependent and have the characteristics of a reverse-biased diode.

latch-up Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC271 inputs and output were designed to withstand – 100-mA surge currents without sustaining latchup; however, techniques should be used to reduce the chance of latch-up whenever possible. Internal protection diodes should not by design be forward biased. Applied input and output voltage should not exceed the supply voltage by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators. Supply transients should be shunted by the use of decoupling capacitors (0.1 µF typical) located across the supply rails as close to the device as possible. The current path established if latch-up occurs is usually between the positive supply rail and ground and can be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the supply voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and the forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance of latch-up occurring increases with increasing temperature and supply voltages.

output characteristics

ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ 2.5 V



VI

+

The output stage of the TLC271 is designed to sink and source relatively high amounts of current (see Typical Characteristics). If the output is subjected to a short-circuit condition, this high current capability can cause device damage under certain conditions. Output current capability increases with supply voltage.

VO CL

TA = 25°C f = 1 kHz VI(PP) = 1 V

– 2.5 V

Figure 109. Test Circuit for Output Characteristics

60

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

APPLICATION INFORMATION output characteristics (continued) All operating characteristics of the TLC271 were measured using a 20-pF load. The devices drive higher capacitive loads; however, as output load capacitance increases, the resulting response pole occurs at lower frequencies, thereby causing ringing, peaking, or even oscillation (see Figures 110, 111, and 112). In many cases, adding some compensation in the form of a series resistor in the feedback loop alleviates the problem.

(a) CL = 20 pF, RL = NO LOAD

(b) CL = 130 pF, RL = NO LOAD

(c) CL = 150 pF, RL = NO LOAD

Figure 110. Effect of Capacitive Loads in High-Bias Mode

(a) CL = 20 pF, RL = NO LOAD

(b) CL = 170 pF, RL = NO LOAD

(c) CL = 190 pF, RL = NO LOAD

Figure 111. Effect of Capacitive Loads in Medium-Bias Mode

(a) CL = 20 pF, RL = NO LOAD

(b) CL = 260 pF, RL = NO LOAD

(c) CL = 310 pF, RL = NO LOAD

Figure 112. Effect of Capacitive Loads in Low-Bias Mode

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

61

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

APPLICATION INFORMATION output characteristics (continued) Although the TLC271 possesses excellent high-level output voltage and current capability, methods are available for boosting this capability, if needed. The simplest method involves the use of a pullup resistor (RP) connected from the output to the positive supply rail (see Figure 113). There are two disadvantages to the use of this circuit. First, the NMOS pulldown transistor, N4 (see equivalent schematic) must sink a comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with an on-resistance between approximately 60 Ω and 180 Ω, depending on how hard the operational amplifier input is driven. With very low values of RP, a voltage offset from 0 V at the output occurs. Secondly, pullup resistor RP acts as a drain load to N4 and the gain of the operational amplifier is reduced at output voltage levels where N5 is not supplying the output current.

VI

ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ

VDD



IP

RP R VO

+

IF

P

+ I V)DDI –V)OI

F L P IP = Pullup current required by the operational amplifier (typically 500 µA)

R2 IL

R1

RL

Figure 113. Resistive Pullup to Increase VOH 10 kΩ 10 kΩ 0.016 µF

0.016 µF 10 kΩ

ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ 5V



VI

TLC271

+

BIAS SELECT

10 kΩ

ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ 5V



10 kΩ

TLC271 +

BIAS SELECT

ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ 5V



TLC271

+

Low Pass

BIAS SELECT

High Pass 5 kΩ Band Pass R = 5 kΩ(3/d-1) (see Note A) NOTE B: d = damping factor, I/O

Figure 114. State-Variable Filter

62

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

APPLICATION INFORMATION output characteristics (continued) VO (see Note A)

9V

10 kΩ

ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ

C = 0.1 µF

9V



100 kΩ

10 kΩ

BIAS SELECT

9V



TLC271

+

ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ

R2

VO (see Note B)

TLC271

+

BIAS SELECT F

O

1 + 4C(R2)

ƪƫ R1 R3

R1, 100 kΩ

R3, 47 kΩ

NOTES: A. VO(PP) = 8 V B. VO(PP) = 4 V

Figure 115. Single-Supply Function Generator

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

63

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

APPLICATION INFORMATION (HIGH-BIAS MODE)

ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ 5V



VI –

10 kΩ

100 kΩ

TLC271

+

BIAS SELECT

ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ 5V

–5 V



TLC271

+

ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ 5V

VO

BIAS SELECT 10 kΩ

–5 V



10 kΩ

95 kΩ

TLC271 +

VI +

BIAS SELECT

R1, 10 kΩ (see Note A)

–5 V

NOTE A: CMRR adjustment must be noninductive.

Figure 116. Low-Power Instrumentation Amplifier

ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ 5V



R 10 MΩ

R 10 MΩ

TLC271

+

VI 2C 540 pF

VO

BIAS SELECT

f NOTCH

+ 2p1RC

R/2 5 MΩ

C 270 pF

C 270 pF

Figure 117. Single-Supply Twin-T Notch Filter

64

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

APPLICATION INFORMATION (HIGH-BIAS MODE) VI (see Note A) 1.2 kΩ

100 kΩ

ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ

4.7 kΩ



TL431

20 kΩ

0.47 µF

1 kΩ

TLC271

0.1 µF

+

TIP31

15 Ω

BIAS SELECT

TIS 193

250 µF, 25 V

VO (see Note B)



10 kΩ

47 kΩ

22 kΩ

+

110 Ω

0.01 µF

NOTES: A. VI = 3.5 to 15 V B. VO = 2.0 V, 0 to 1 A

Figure 118. Logic-Array Power Supply

ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ 12 V

VI





TLC271

+

ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ 12 V

H.P. 5082-2835

BIAS SELECT

TLC271

0.5 µF Mylar

N.O. Reset

+

VO

BIAS SELECT 100 kΩ

Figure 119. Positive-Peak Detector

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

65

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

APPLICATION INFORMATION (MEDIUM-BIAS MODE) 1N4148 470 kΩ

100 kΩ 5V

ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ –

47 kΩ

TLC271

100 kΩ

+

VO

BIAS SELECT

2.5 V

R2 68 kΩ 1 µF

100 kΩ R1 68 kΩ

C2 2.2 nF

C1 2.2 nF

NOTES: A. VO(PP) = 2 V B.

fo

1 + 2p ǸR1R2C1C2

Figure 120. Wein Oscillator 5V

0.01 µF

1 MΩ

ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ –

VI

0.22 µF VO

TLC271 +

1 MΩ

BIAS SELECT 2.5 V

100 kΩ

100 kΩ 10 kΩ 0.1 µF

Figure 121. Single-Supply AC Amplifier

66

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

APPLICATION INFORMATION (MEDIUM-BIAS MODE) 5V Gain Control 1 MΩ (see Note A)

1 µF – +

ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ

100 kΩ

1 µF



0.1 µF – +

10 kΩ

+



TLC271

BIAS SELECT

+

1 kΩ

100 kΩ

2.5 V

100 kΩ

NOTE A: Low to medium impedance dynamic mike

Figure 122. Microphone Preamplifier 10 MΩ

ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ VDD

1 kΩ



TLC271

+

15 nF

ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ VDD



VO

TLC271

BIAS SELECT VDD / 2

VREF

150 pF

+

BIAS SELECT VDD / 2

100 kΩ NOTES: A. NOTES: VDD = 4 V to 15 V B. Vref = 0 V to VDD – 2 V

Figure 123. Photo-Diode Amplifier With Ambient Light Rejection

ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ ÏÏÏÏÏ 5V

VI

IS

+

TLC271



BIAS SELECT

2N3821

2.5 V

R NOTES: A. VI = 0 V TO 3 V V I B. I S R

+

Figure 124. Precision Low-Current Sink

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

67

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

APPLICATION INFORMATION (LOW-BIAS MODE)

ÏÏÏ ÏÏÏ ÏÏÏ ÏÏÏ VDD

+

VI

BIAS SELECT

TLC271

VI



VDD

S1

C A

Select AV

S1

S2

10

S2

100

C A

90 kΩ

X1 TLC4066

1

B

1

9 kΩ

X2

Analog Switch

2

2

B

1 kΩ

NOTE A: VDD = 5 V to 12 V

Figure 125. Amplifier With Digital Gain Selection 5V

ÏÏÏ ÏÏÏ ÏÏÏ ÏÏÏ +

BIAS SELECT

TLC271

500 kΩ

VO1



5V

500 kΩ

ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ

BIAS SELECT

+

VO2

TLC271 –

0.1 µF

500 kΩ

500 kΩ

Figure 126. Multivibrator

68

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

APPLICATION INFORMATION (LOW-BIAS MODE) 10 kΩ

ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ VDD

20 kΩ

BIAS SELECT

+

VI

VO

TLC271



100 kΩ

NOTE A: VDD = 5 V to 16 V

Figure 127. Full-Wave Rectifier 10 kΩ

ÏÏÏ ÏÏÏ ÏÏÏ ÏÏÏ VDD

100 kΩ Set 100 kΩ Reset

BIAS SELECT

+

TLC271 –

33 Ω

NOTE A: VDD = 5 V to 16 V

Figure 128. Set/Reset Flip-Flop 0.016 µF

ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ 5V

10 kΩ

10 kΩ

+

VI 0.016 µF

BIAS SELECT

TLC271

VO



NOTE A: Normalized to FC = 1 kHz and RL = 10 kΩ

Figure 129. Two-Pole Low-Pass Butterworth Filter

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

69

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

MECHANICAL INFORMATION D (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PIN SHOWN PINS **

0.050 (1,27)

8

14

16

A MAX

0.197 (5,00)

0.344 (8,75)

0.394 (10,00)

A MIN

0.189 (4,80)

0.337 (8,55)

0.386 (9,80)

DIM 0.020 (0,51) 0.014 (0,35) 14

0.010 (0,25) M

8

0.244 (6,20) 0.228 (5,80) 0.008 (0,20) NOM

0.157 (4,00) 0.150 (3,81)

1

Gage Plane

7 A

0.010 (0,25) 0°– 8°

0.044 (1,12) 0.016 (0,40)

Seating Plane 0.069 (1,75) MAX

0.010 (0,25) 0.004 (0,10)

0.004 (0,10) 4040047 / D 10/96

NOTES: A. B. C. D.

70

All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15). Falls within JEDEC MS-012

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

MECHANICAL INFORMATION FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

18

17

16

15

14

13

NO. OF TERMINALS **

12

19

11

20

10

A

B

MIN

MAX

MIN

MAX

20

0.342 (8,69)

0.358 (9,09)

0.307 (7,80)

0.358 (9,09)

28

0.442 (11,23)

0.458 (11,63)

0.406 (10,31)

0.458 (11,63)

21

9

22

8

44

0.640 (16,26)

0.660 (16,76)

0.495 (12,58)

0.560 (14,22)

23

7

52

0.739 (18,78)

0.761 (19,32)

0.495 (12,58)

0.560 (14,22)

24

6 68

25

5

0.938 (23,83)

0.962 (24,43)

0.850 (21,6)

0.858 (21,8)

84

1.141 (28,99)

1.165 (29,59)

1.047 (26,6)

1.063 (27,0)

B SQ A SQ

26

27

28

1

2

3

4 0.080 (2,03) 0.064 (1,63)

0.020 (0,51) 0.010 (0,25) 0.020 (0,51) 0.010 (0,25)

0.055 (1,40) 0.045 (1,14)

0.045 (1,14) 0.035 (0,89)

0.045 (1,14) 0.035 (0,89)

0.028 (0,71) 0.022 (0,54) 0.050 (1,27)

4040140 / D 10/96 NOTES: A. B. C. D. E.

All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a metal lid. The terminals are gold plated. Falls within JEDEC MS-004

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

71

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

MECHANICAL INFORMATION JG (R-GDIP-T8)

CERAMIC DUAL-IN-LINE PACKAGE 0.400 (10,20) 0.355 (9,00) 8

5

0.280 (7,11) 0.245 (6,22)

1

4 0.065 (1,65) 0.045 (1,14)

0.310 (7,87) 0.290 (7,37)

0.020 (0,51) MIN

0.200 (5,08) MAX Seating Plane 0.130 (3,30) MIN

0.063 (1,60) 0.015 (0,38) 0.100 (2,54)

0°–15°

0.023 (0,58) 0.015 (0,38) 0.014 (0,36) 0.008 (0,20)

4040107/C 08/96 NOTES: A. B. C. D. E.

72

All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a ceramic lid using glass frit. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only. Falls within MIL-STD-1835 GDIP1-T8

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS090C – NOVEMBER 1987 – REVISED AUGUST 1997

MECHANICAL INFORMATION P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE 0.400 (10,60) 0.355 (9,02)

8

5

0.260 (6,60) 0.240 (6,10)

1

4 0.070 (1,78) MAX 0.310 (7,87) 0.290 (7,37)

0.020 (0,51) MIN

0.200 (5,08) MAX Seating Plane 0.125 (3,18) MIN

0.100 (2,54) 0.021 (0,53) 0.015 (0,38)

0°– 15°

0.010 (0,25) M 0.010 (0,25) NOM 4040082 / B 03/95

NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Falls within JEDEC MS-001

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

73

IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK. In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright  1998, Texas Instruments Incorporated