FP7 TRIADE presentation

2. EADS France, ISD, CENAERO, Dassault Aviation, Commissariat à l'Energie Atomique, Eurocopter, Goodrich Actuation. System, Université de Liège, Hellenic Aerospace Industry, University of Southampton, Institute of Electron Technology, KT-. Systems, Memsfield, PZL Swidnik, Rovi-Tech, Université Catholique de ...
1MB taille 10 téléchargements 275 vues
TRIADE Theme 7 – Transport (including aeronautics) April 2010

1 © Copyright by the TRIADE Consortium

TRIADE Consortium

EADS France, ISD, CENAERO, Dassault Aviation, Commissariat à l’Energie Atomique, Eurocopter, Goodrich Actuation System, Université de Liège, Hellenic Aerospace Industry, University of Southampton, Institute of Electron Technology, KTSystems, Memsfield, PZL Swidnik, Rovi-Tech, Université Catholique de Louvain, EADS Deutschland © Copyright by the TRIADE Consortium

2

Objectives TRIADE will provide technology building blocks and fully integrated prototypes to achieve in-situ: - power generation, - power conservation, - embedded powerful intelligence-data processing/storage - energy management for structural health monitoring sensing devices in aeronautics. EADS France, ISD, CENAERO, Dassault Aviation, Commissariat à l’Energie Atomique, Eurocopter, Goodrich Actuation System, Université de Liège, Hellenic Aerospace Industry, University of Southampton, Institute of Electron Technology, KTSystems, Memsfield, PZL Swidnik, Rovi-Tech, Université Catholique de Louvain, EADS Deutschland © Copyright by the TRIADE Consortium

3

Application Domains This structure health monitoring is planned to be used in 2 application domains: - Helicopter with Eurocopter and PZL Swidnik as end-users, - Airplanes with EADS Deutchland GmbH and Dassault Aviation as end-users.

EADS France, ISD, CENAERO, Dassault Aviation, Commissariat à l’Energie Atomique, Eurocopter, Goodrich Actuation System, Université de Liège, Hellenic Aerospace Industry, University of Southampton, Institute of Electron Technology, KTSystems, Memsfield, PZL Swidnik, Rovi-Tech, Université Catholique de Louvain, EADS Deutschland © Copyright by the TRIADE Consortium

4

Application Domains

EADS France, ISD, CENAERO, Dassault Aviation, Commissariat à l’Energie Atomique, Eurocopter, Goodrich Actuation System, Université de Liège, Hellenic Aerospace Industry, University of Southampton, Institute of Electron Technology, KTSystems, Memsfield, PZL Swidnik, Rovi-Tech, Université Catholique de Louvain, EADS Deutschland © Copyright by the TRIADE Consortium

5

Applications targeted

Starflex

v

Fuselage Main gearbox and vertical stabiliser Nose wheel EADS France, ISD, CENAERO, Dassault Aviation, Commissariat à l’Energie Atomique, Eurocopter, Goodrich Actuation System, Université de Liège, Hellenic Aerospace Industry, University of Southampton, Institute of Electron Technology, KTSystems, PZL Swidnik, Rovi-Tech, Université Catholique de Louvain, EADS Deutschland

leg door

© Copyright by the TRIADE Consortium

6

Major Building Blocks 1. Battery (high energy density and harsh environment), 2. Power management and energy harvester (vibrations and electromagnetic RF harvester), 3. Ultra low power sensors (design electronic blocks in SOI), 4. Neural network (for data recording and damage assessment). - Memory storage capacity, - RF link. The monitoring system has to be bondable on the structure or in the last composite layer of the aircraft.

EADS France, ISD, CENAERO, Dassault Aviation, Commissariat à l’Energie Atomique, Eurocopter, Goodrich Actuation System, Université de Liège, Hellenic Aerospace Industry, University of Southampton, Institute of Electron Technology, KTSystems, Memsfield, PZL Swidnik, Rovi-Tech, Université Catholique de Louvain, EADS Deutschland © Copyright by the TRIADE Consortium

7

Building block technology 1: Battery A key challenge according to aeronautical requirements (-40°C to 85°C at least) ¾ Packaged battery size planned: 1.5 × 55 × 57 mm3 ¾ 2 possible technologies (limited to -20°C, +60°C) • Technology NCA/Graphite • Technology LFP/Graphite NCA/Cgr

LiFePO4/Cgr

3.6

3.2

High

moderate

250 minimum

250

Stability

bad

excellent

Material cost

high

Low (4 times less)

Toxicity

+++

-

Nominal Voltage (V) Energy density Expected capacity (mAh)

¾ Choice of LFP technology (more stable and reliable) ¾ Development of the electrolyte for low temperature up to -40°C EADS France, ISD, CENAERO, Dassault Aviation, Commissariat à l’Energie Atomique, Eurocopter, Goodrich Actuation System, Université de Liège, Hellenic Aerospace Industry, University of Southampton, Institute of Electron Technology, KTSystems, Memsfield, PZL Swidnik, Rovi-Tech, Université Catholique de Louvain, EADS Deutschland © Copyright by the TRIADE Consortium

8

Building block technology 2: SOI SOI building blocks will be mainly integrated in sensor interfaces. Sensors: – – –

Temperature sensor (-50°C to 120°C, ± 1°C), Relative Humidity sensor (10% to 95% RH, ± 5% RH), Strain sensor will be investigated.

Ex: SOI smart temperature sensor operating up to 250°C by integrating on the same chip the solid-state sensor itself (a SOI lateral PIN diode) and a simple digital conversion circuit. Total power consumption of the circuit is: 50µA × 3V = 150µW. ¾ Possibilities to implement low power SOI sensors (< tens of µW) combining temperature and relative humidity on a same chip with their respective CMOS interfaces.

EADS France, ISD, CENAERO, Dassault Aviation, Commissariat à l’Energie Atomique, Eurocopter, Goodrich Actuation System, Université de Liège, Hellenic Aerospace Industry, University of Southampton, Institute of Electron Technology, KTSystems, Memsfield, PZL Swidnik, Rovi-Tech, Université Catholique de Louvain, EADS Deutschland © Copyright by the TRIADE Consortium

9

Building block technology 3: Energy harvester Vibration energy harvester: • Targeted resonant frequency 67Hz for PZL application • Peak vibration amplitude is 0.4g (3.9ms-2), i.e. 0.29gRMS (2.8ms-2) (helicopter peak vibration). Optimum load resistance 34kΩ when the two PZT layers are connected in parallel. • The generator manages to produce the maximum RMS output power of 181μW at the resonant frequency of 63.1Hz.

• Complementary electromagnetic harvester: - Harvest energy from the electromagnetic waves coming from a dedicated RF power feed. EADS France, ISD, CENAERO, Dassault Aviation, Commissariat à l’Energie Atomique, Eurocopter, Goodrich Actuation System, Université de Liège, Hellenic Aerospace Industry, University of Southampton, Institute of Electron Technology, KTSystems, Memsfield, PZL Swidnik, Rovi-Tech, Université Catholique de Louvain, EADS Deutschland © Copyright by the TRIADE Consortium

10

Building block technology 4: Neural Network Sensor inputs are divided into 2 different usage: -

Operating conditions and flight domain identification (Inside or outside) with relative humidity, vibration, strain, pressure and temperature, Damage monitoring with ultrasonic transducers, detecting damage.

The evaluation of damage details requires processing power and energy consumption. A compromise must be found between the capabilities of the processing block onboard and the power consumption. EADS France, ISD, CENAERO, Dassault Aviation, Commissariat à l’Energie Atomique, Eurocopter, Goodrich Actuation System, Université de Liège, Hellenic Aerospace Industry, University of Southampton, Institute of Electron Technology, KTSystems, Memsfield, PZL Swidnik, Rovi-Tech, Université Catholique de Louvain, EADS Deutschland © Copyright by the TRIADE Consortium

11

Smart Tag Description Characteristics - size of a credit card, - remote sensors, - embedded under the last composite layer or similar, - RF communications, - expandable - less than 100 €/unit, - start/stop when the system starts/stops, - monitor temperature, relative humidity, pressure, strain, vibration and acoustic emissions ¾ Simulations for structural integrity will be conducted for each application domain EADS France, ISD, CENAERO, Dassault Aviation, Commissariat à l’Energie Atomique, Eurocopter, Goodrich Actuation System, Université de Liège, Hellenic Aerospace Industry, University of Southampton, Institute of Electron Technology, KTSystems, Memsfield, PZL Swidnik, Rovi-Tech, Université Catholique de Louvain, EADS Deutschland © Copyright by the TRIADE Consortium

12

Challenge • The issue is to find the best compromise between : – – – –

Size (dimensions), Thickness, Autonomy, Electromagnetic harvesting capability.

EADS France, ISD, CENAERO, Dassault Aviation, Commissariat à l’Energie Atomique, Eurocopter, Goodrich Actuation System, Université de Liège, Hellenic Aerospace Industry, University of Southampton, Institute of Electron Technology, KTSystems, Memsfield, PZL Swidnik, Rovi-Tech, Université Catholique de Louvain, EADS Deutschland © Copyright by the TRIADE Consortium

13

Application Example (1) Starflex monitoring on helicopter

• Explore the flight conditions and domain, • Identify the applied stresses on sensitive parts, • Monitor the integrity and health of parts and structures

14 © Copyright by the TRIADE Consortium

Application Example (2) Starflex Monitoring on helicopter

EADS France, ISD, CENAERO, Dassault Aviation, Commissariat à l’Energie Atomique, Eurocopter, Goodrich Actuation System, Université de Liège, Hellenic Aerospace Industry, University of Southampton, Institute of Electron Technology, KTSystems, PZL Swidnik, Rovi-Tech, Université Catholique de Louvain, EADS Deutschland © Copyright by the TRIADE Consortium

15

Application Example (3) Starflex monitoring on helicopter

EADS France, ISD, CENAERO, Dassault Aviation, Commissariat à l’Energie Atomique, Eurocopter, Goodrich Actuation System, Université de Liège, Hellenic Aerospace Industry, University of Southampton, Institute of Electron Technology, KTSystems, Memsfield, PZL Swidnik, Rovi-Tech, Université Catholique de Louvain, EADS Deutschland © Copyright by the TRIADE Consortium

16

Conclusions •

The TRIADE project will provide a compact SHM system the size of a credit card, embedded in or attached on the part or structure under control



It could analyze the humidity, temperature, pressure, vibration, strain and acoustic emissions during the flight of an aircraft or a helicopter



The project integrates advanced technologies by working on : – Adapting harvesting sources and batteries for aeronautics – Implementing low power architecture and power management – Developing breakthrough electronics with ULP CMOS electronics based on SOI – Developing breakthrough sensors based on IC compatible SOI CMOS circuits – Using RF communication power – Defining the available specifications for computing / Adapting new computing solutions for aeronautics, such as neural tools – Validating the compatibility of the tag with the manufacturing processes and maintenance processes – Implementing the building blocks into a test bench to be characterized by end-users ¾ Triade Project URL: http://triade.wscrp.com/ EADS France, ISD, CENAERO, Dassault Aviation, Commissariat à l’Energie Atomique, Eurocopter, Goodrich Actuation System, Université de Liège, Hellenic Aerospace Industry, University of Southampton, Institute of Electron Technology, KTSystems, Memsfield, PZL Swidnik, Rovi-Tech, Université Catholique de Louvain, EADS Deutschland © Copyright by the TRIADE Consortium

17