First principles simulations 第一原理計算 .fr

7/12 No. 3. Advanced Laser and Photon Science (Takeshi SATO) for internal use only (Univ. of Tokyo). Ac?on integral. Time-dependent varia?onal principle.
4MB taille 2 téléchargements 35 vues
Advanced Laser and Photon Science (Takeshi SATO) for internal use only (Univ. of Tokyo)

Advanced Laser and Photon Science レーザー・光量子科学特論

First principles simulations 第一原理計算 Takeshi Sato http://ishiken.free.fr/english/lecture.html [email protected]

7/12 No. 1

Advanced Laser and Photon Science (Takeshi SATO) for internal use only (Univ. of Tokyo)

1.  Two electron systems 2.  Second quan6za6on 3.  Mul6configura6on 6me-dependent Hartree-Fock method

7/12 No. 2

Advanced Laser and Photon Science (Takeshi SATO) for internal use only (Univ. of Tokyo)

Time-dependent varia#onal principle S=

Z

t2 t1

ˆ h |(H

S = 0, for (t1 ) = Arbitrary Approximate

Ac#on integral

i@t )| i

!

0

=) =)

TDSE Variational EOMs

=

+

(t2 ) = 0

7/12 No. 3

Advanced Laser and Photon Science (Takeshi SATO) for internal use only (Univ. of Tokyo)

Example 1: Time-dependent Configura#on Interac#on Z t2 ˆ i@t )| i Ac#on integral S= h |(H t1

| (t)i = φM

X

Cn (t)|ni,

n

φ5 φ4 φ3 φ2 φ1 7/12 No. 4

Advanced Laser and Photon Science (Takeshi SATO) for internal use only (Univ. of Tokyo)

Example 1: Time-dependent Configura#on Interac#on Z t2 ˆ i@t )| i Ac#on integral S= h |(H t1

| (t)i =

X

Cn (t)|ni,

n

Configura#on Interac#on (CI) coefficients: Varia#onal parameters

S=

=

XZ

t2

n,m Zt1 X t2

n,m

t1



ˆ dt Cn⇤ Cm hn|H|mi

iCn⇤ hn|miC˙ m

ˆ dt Cn⇤ Cm hn|H|mi

iCn⇤ C˙ n



X S ˆ = hn| H|miC m Cn⇤ (t) m

iC˙ n =

X m

nm

iC˙ n = 0





ˆ hn|H|miC m 7/12 No. 5

Advanced Laser and Photon Science (Takeshi SATO) for internal use only (Univ. of Tokyo)

Example 2: Time-dependent Hartree-Fock

| (t)i = |11 12 · · · 1N 000 · ··i $ det [

1 2

···

N]

φM

Virtual

φ5 φ4 φ3

Occupied

φ2 φ1

7/12 No. 6

Advanced Laser and Photon Science (Takeshi SATO) for internal use only (Univ. of Tokyo)

Example 2: Time-dependent Hartree-Fock

| (t)i = |11 12 · · · 1N 000 · ··i $ det [ S=

Z

t2 t1

2

dt 4

1 2

Orbital func#ons: Varia#onal parameters

N ⇣ X i=1

S ⇤ (t) i

i



···

N]

3

⌘ From X ⇣ ij 1 hii ih i | ˙ i i + Vij Vjiij 5 Homework 2 ij (2) N ⇣ ⌘ X ˆ i i i+ ˆj i W ˆj j =h W j i N

j=1

i

ˆ =h

i

+

N ⇣ X

ˆj i W j

ˆj j W i

j=1

Wji (r1 ) =

Z

dx2

⇤ i (x2 ) j (x2 )

|r1



r2 | 7/12 No. 7

Advanced Laser and Photon Science (Takeshi SATO) for internal use only (Univ. of Tokyo)

Mul#configura#on TD Hartree-Fock (MCTDHF) X | (t)i =

Cn (t)|ni,

n

TD Configura#on Interac#on (CI) with given number of moving orbitals φM

General Complete- orthonormal µ,

⌫,

, ··

φ5

Virtual

a,

b

Occupied

i,

j,

k,

l

φ4 φ3 φ2 φ1 7/12 No. 8

Advanced Laser and Photon Science (Takeshi SATO) for internal use only (Univ. of Tokyo)

Mul#configura#on TD Hartree-Fock (MCTDHF) X | (t)i =

Cn (t)|ni,

n

Both CI coefficients & orbital func#ons: Varia#onal parameters

Working with Slater determinant is, in general, extremely tedious: Need techniques of second quan#za#on (1) Matrix (operator) exponen#al 1 X An exp(A) ⌘ n! n=0 exp(A)† = exp(A† ), B

1

exp(A)B = exp(B

1

AB)

exp(A + B) = exp(A) exp(B) ( [A, B] = 0

1 1 exp(A)B exp( A) = B + [A, B] + [A, [A, B]] + [A, [A, [A, B]]] + · · · 2! 3! Baker-Campbell-Hausdorff (BCH) expansion

7/12 No. 9

Advanced Laser and Photon Science (Takeshi SATO) for internal use only (Univ. of Tokyo)

Mul#configura#on TD Hartree-Fock (MCTDHF) (2) Exponen#al parameteriza#on of unitary matrix (operator)

U: X:

U = exp(X) unitary U †U = U U † = 1 anti-Hermitian X† = X

An#-Hermi#an matrix can be parameterized more easily than unitary one

(3) Unitary transforma#on of orbitals X X µ (t) = ⌫ (0)U⌫µ = ⌫ (0) exp(X)⌫µ , ⌫ ⌫ X X () a†µ (t) = a†⌫ (0)U⌫µ = a†⌫ (0) exp(X)⌫µ ⌫ ⌫ X X ⇤ aµ (t) = a⌫ (0)U⌫µ = a†⌫ (0) exp(X)⇤⌫µ ⌫



7/12 No. 10

Advanced Laser and Photon Science (Takeshi SATO) for internal use only (Univ. of Tokyo)

Mul#configura#on TD Hartree-Fock (MCTDHF) (3) Unitary transforma#on of orbitals X X µ (t) = ⌫ (0)U⌫µ = ⌫ (0) exp(X)⌫µ , ⌫ ⌫ X X () a†µ (t) = a†⌫ (0)U⌫µ = a†⌫ (0) exp(X)⌫µ ⌫ ⌫ X X ⇤ aµ (t) = a⌫ (0)U⌫µ = a†⌫ (0) exp(X)⇤⌫µ ⌫



ˆ †µ (0) exp( X) ˆ () a†µ (t) = exp(X)a ˆ µ (0) exp( X) ˆ aµ (t) = exp(X)a ˆ= X

X µ⌫

X⌫µ a†µ (0)a⌫ (0)



X

ˆµ⌫ (0) E

µ⌫

Proof: From BCH expansion 7/12 No. 11

Advanced Laser and Photon Science (Takeshi SATO) for internal use only (Univ. of Tokyo)

Mul#configura#on TD Hartree-Fock (MCTDHF) (4) Unitary transforma#on of Slater determinants X X µ (t) = ⌫ (0)U⌫µ = ⌫ (0) exp(X)⌫µ , ⌫



ˆ †µ (0) exp( X) ˆ () a†µ (t) = exp(X)a ˆ µ (0) exp( X) ˆ aµ (t) = exp(X)a ˆ= X

X

X⌫µ a†µ (0)a⌫ (0)

µ⌫



X

ˆµ⌫ (0) E

µ⌫

†n2 †n3 1 |n(0)i = a†n (0)a (0)a 1 2 3 (0) · · · |i

†n2 †n3 1 |n(t)i = a†n (t)a (t)a 1 2 3 (t) · · · |i

ˆ = exp(X)|n(0)i

7/12 No. 12

Advanced Laser and Photon Science (Takeshi SATO) for internal use only (Univ. of Tokyo)

Mul#configura#on TD Hartree-Fock (MCTDHF) (5) Unitary transforma#on of total wave func#on

| (t)i =

X

Cn (t)|n(t)i n X ˆ = exp(X) Cn (t)|n(0)i n

(6) Varia#on and Time deriva#ve of total wave func#on

|

X

X

ˆ⌫µ | (t)i Cn (t)|n(t)i + X⌫µ E n µ⌫ X X ˆ⌫µ | (t)i | ˙ (t)i = C˙ n (t)|n(t)i + X˙ ⌫µ E (t)i =

n

X˙ ⌫µ = h

˙

µ (t)| ⌫ (t)i

µ⌫

† ˆµ ⌘ a ˆ⌫ ) ˆ (E µa ⌫

7/12 No. 13

Advanced Laser and Photon Science (Takeshi SATO) for internal use only (Univ. of Tokyo)

Mul#configura#on TD Hartree-Fock (MCTDHF) X | (t)i =

Cn (t)|ni,

n

Both CI coefficients & orbital func#ons: Varia#onal parameters Insert previous results into TDVP and require

S/ Cn⇤ (t) = S/ Xµ⌫ (t) = 0

iC˙ n = i

X

"

h

ˆ⌫µ |E

1

X

X

ˆ i hn| H m ! µ⌫ X ˆ | i h |nihn| E

ˆ⌫µ = h |E

n

1

X n

!

ˆ⌫µ X˙ ⌫µ E ˆ |E

ˆ i |nihn| H|

!

1

|miCm X n

ˆ h |H

1

General equa#ons of mo#on

!

#

ˆ⌫µ | i X˙ |nihn| E X n

!

ˆ⌫µ | i |nihn| E

7/12 No. 14

Advanced Laser and Photon Science (Takeshi SATO) for internal use only (Univ. of Tokyo)

Mul#configura#on TD Hartree-Fock (MCTDHF) X | (t)i =

Cn (t)|ni,

n

In case of complete CI expansion within the given orbitals

iC˙ n =

0

X m

0

ˆ hn| @H

ˆ ii + ˆ @h| i| ˙ i i = Q

occ X

˙

j | ii

ij

(D

jklm

ˆ=1 Q

Rij ⌘ ih

X

1

Eji Rji A |miCm

1

1 i ˆ lk | j iA )m Pjlmk W

Pocc j

|

j ih j |

+

occ X j

j iR j i

|

: Arbitrary Hermitian matrix

† † ik ˆ ik = a Dji = h |Eji | i, Pjlik = h |Ejl | i (E ˆ ˆk a ˆl a ˆj ) ia jl

One (D) and two (P) par#cle reduced density matrices

7/12 No. 15

Advanced Laser and Photon Science (Takeshi SATO) for internal use only (Univ. of Tokyo)

Importance of non-complete CI expansions φM

φM

Virtual

Virtual

Occupied φ5

Ac/ve

φ4

φ5 φ4

Dynamical-core

φ3 φ2

φ3

Occupied

φ2

Frozen-core

φ1

MCTDHF NDet = 784

φ1

TD-CASSCF (complete-ac#ve-space selfconsistent-field): core and ac#ve subspaces NDet = 36 7/12 No. 16

Advanced Laser and Photon Science (Takeshi SATO) for internal use only (Univ. of Tokyo)

8 N < X 1 @2 H= : 2 @x2i i=1 0

Valence

Applicaions

M X

q a=1 (xi

Za

xi E(t)

2

Xa ) + c 0.12

9 = ;

+

N X i>j

q

1 2

(xi

xj ) + d

7.5 fs 0.08

-2

field amplitude

Orbital energy / Hartree

-1

Core

0.04 0.00 -0.04

-3

-4 -15

orbital 1 orbital 2 orbital 3 orbital 4 nuclear -10

-5

0 x / bohr

5

10

-0.08

15

Ground-state

-0.12 0.0

0.4 PW/cm2 750 nm 0.5

Field

1.0 1.5 2.0 time / optical cycle

2.5

3.0

1D “LiH dimer” 4 valence and 4 core electrons 7/12 No. 17

Advanced Laser and Photon Science (Takeshi SATO) for internal use only (Univ. of Tokyo)

Applicaions

60

49

dipole moment / au

40

h (t)|x| (t)i

20 0 -20 -40 -60

1

784

-80 0.0

CAS(8e) CAS(4e) CAS(2e) HF 0.5

1.0 1.5 2.0 2.5 time / optical cycle

3.0

44100

TD-CASSCF(4e, 8a) reproduces MCTDHF(8o, 10o) 7/12 No. 18

Advanced Laser and Photon Science (Takeshi SATO) for internal use only (Univ. of Tokyo)

Applicaions

dipole acceleration / au

0.8

8e DC+4e FC+4e

0.4

0.0

-0.4

¨ (t)i h (t)|x|

-0.8 0.0

0.5

1.0 1.5 2.0 2.5 time / optical cycle

“Dynamical” or “Frozen” 3.0

Core is important for higher-order response 7/12 No. 19

Advanced Laser and Photon Science (Takeshi SATO) for internal use only (Univ. of Tokyo)

Applicaions

intensity (a.u.)

Cutoff 10-2 3-step model (Koopmans) -4 10

8e DC+4e FC+4e

10-6 10-8 10-10 10-12

FT of h 0

20

“Dynamical” or “Frozen”

¨ (t)i (t)|x|

40 60 harmonic order

80

100

Core is important for higher-order response 7/12 No. 20

Advanced Laser and Photon Science (Takeshi SATO) for internal use only (Univ. of Tokyo)

Applicaions

Core Valence DC+4e: Net

intensity (a.u.)

10-2 10-4 10-6 10-8 10-10 10-12

FT of h 0

20

¨ (t)i (t)|x|

40 60 harmonic order

80

100

Core and Valence contribu#ons: Deeper physical understanding 7/12 No. 21

Advanced Laser and Photon Science (Takeshi SATO) for internal use only (Univ. of Tokyo)

Report Submission due: July 31. Place to submit: the office of the Nuclear Engineering & Management, 2nd floor of the Bldg. 3. Language: English or Japanese.

(1) MCTDHF includes single determinant TDHF as a special case. Derive the TDHF equations of motion (given in p. 7) starting from the MCTDHF equations (p. 15) by ignoring CI equations and inserting HF wave function,

| i = |11 12 13 · · · 1N 0000i

in the definition of one and two particle reduced density matrices. Here N is the number of electrons. The resultant equations will still look different from those in p. 7. Choose the appropriate Hermitian matrix R in order to obtain exactly the same equations as those in p. 7.

7/12 No. 22

Advanced Laser and Photon Science (Takeshi SATO) for internal use only (Univ. of Tokyo)

(2) Derive the transformation (Expressions for A1 , A2 , 1 , 2 below) from GVB wave function to the MCTDHF wave function for the two-electron singlet system, and explicitly show that MCTDHF orbitals are orthonormal. Assume that GVB orbitals are normalized. See J. Phys. B: At. Mol. Opt. Phys. 47 , 204031 (2014). 1 GVB (r1 , r2 )

+ 1

A1

2

+

2

1

=

+ A2

i= 2A21, 1h 1 |+2 A 2 02 2

= p [ 1 (r1 ) 2 (r2 ) + 2 (r1 ) 1 (r2 )] 2 = A1 1 (r1 ) 1 (r2 ) + A2 2 (r1 ) 2 (r2 )

⇤ S12 A1 = p , 2 |S | C1 1 1 +2(1C+3|S{12 | 1) 212 + 1 |S12 | S12 A2 = p , 2 |S | 2(1 + |S12 | ) 12

1 + |S12 |

1

2



1 S12 =p 2(1 + |S12 |) |S12 | ⇢ ⇤ 1 S12 p = 2(1 + |S12 |) |S12 |

S12 = h

1| 2i

2 1}

1

2

+

2

1

7/12 No. 23