

Menu

	 maison
	 Ajouter le document
	 Signe
	 Créer un compte

Dynamic Proxies In Java - JFOD

Bob Tarr. Design Patterns In Java. Dynamic Proxies In Java. 3. Vehicle Example With No Proxy. â—‹. First, let's show a client interacting with a target object directly.

 Télécharger le PDF

 50KB taille
 11 téléchargements
 335 vues

 commentaire

 Report

Dynamic Proxies In Java

Design Patterns In Java

Bob Tarr

Dynamic Proxies l

l

l

l

l

Proxy objects are useful in many situations to act as an intermediary between a client object and a target object Usually, the proxy class is already available as Java bytecodes, having been compiled from the Java source file for the proxy class When needed, the bytecodes for the proxy class are loaded into the Java Virtual Machine and proxy objects can then be instantiated But, in some circumstances, it is useful to dynamically generate the bytecodes for the proxy class at runtime This module will look at the techniques for dynamically generating proxies in Java and the benefits of doing so

Design Patterns In Java

Dynamic Proxies In Java 2

Bob Tarr

1

Vehicle Example With No Proxy l l

First, let's show a client interacting with a target object directly Suppose we have an IVehicle interface as follows: /** * Interface IVehicle. */ public interface IVehicle { public void start(); public void stop(); public void forward(); public void reverse(); public String getName(); }

Design Patterns In Java

Dynamic Proxies In Java 3

Bob Tarr

Vehicle Example With No Proxy (Continued) l

Here's a Car class that implements the IVehicle interface: /** * Class Car */ public class Car implements IVehicle { private String name; public Car(String name) {this.name = name;} public void start() { System.out.println("Car " + name + " started"); } // stop(), forward(), reverse() implemented similarly. // getName() not shown. }

Design Patterns In Java

Dynamic Proxies In Java 4

Bob Tarr

2

Vehicle Example With No Proxy (Continued) /** * Class Client1. * Interacts with a Car Vehicle directly. */ public class Client1 { public static void main(String[] args) { IVehicle v = new Car("Botar"); v.start(); v.forward(); v.stop(); } }

start()

Car

forward()

Client

Design Patterns In Java

(IVehicle)

stop()

Dynamic Proxies In Java 5

Bob Tarr

Vehicle Example With No Proxy (Continued) l

Output for the vehicle example with no proxy: Car Botar started Car Botar going forward Car Botar stopped

Design Patterns In Java

Dynamic Proxies In Java 6

Bob Tarr

3

Vehicle Example With Proxy l

l

l

Now let's have the client interact with the target object through a proxy Remember that the main intent of a proxy is to control access to the target object, rather than to enhance the functionality of the target object Ways that proxies can provide access control include: é é é é

Synchronization Authentication Remote Access Lazy instantiation

Design Patterns In Java

Dynamic Proxies In Java 7

Bob Tarr

Vehicle Example With Proxy (Continued) l

Here's our VehicleProxy class: /** * Class VehicleProxy. */ public class VehicleProxy implements IVehicle { private IVehicle v; public VehicleProxy(IVehicle v) {this.v = v;} public void start() { System.out.println("VehicleProxy: Begin of start()"); v.start(); System.out.println("VehicleProxy: End of start()"); } // stop(), forward(), reverse() implemented similarly. // getName() not shown. }

Design Patterns In Java

Dynamic Proxies In Java 8

Bob Tarr

4

Vehicle Example With Proxy (Continued) /** * Class Client2. * Interacts with a Car Vehicle through a VehicleProxy. */ public class Client2 { public static void main(String[] args) { IVehicle c = new Car("Botar"); IVehicle v = new VehicleProxy(c); v.start(); v.forward(); v.stop(); Proxy } start() start() } Car

Client

Design Patterns In Java

forward()

forward()

stop()

stop()

(IVehicle)

Dynamic Proxies In Java 9

Bob Tarr

Vehicle Example With Proxy (Continued) l

Output for the vehicle example with a proxy: VehicleProxy: Begin of start() Car Botar started VehicleProxy: End of start() VehicleProxy: Begin of forward() Car Botar going forward VehicleProxy: End of forward() VehicleProxy: Begin of stop() Car Botar stopped VehicleProxy: End of stop(

Design Patterns In Java

Dynamic Proxies In Java 10

Bob Tarr

5

Dynamic Proxies In Java l

l

l

l l

l

Java 1.3 supports the creation of dynamic proxy classes and instances A dynamic proxy class is a class that implements a list of interfaces specified at runtime when the class is created A proxy interface is an interface that is implemented by a proxy class A proxy instance is an instance of a proxy class Each proxy instance has an associated invocation handler object, which implements the interface InvocationHandler A method invocation on a proxy instance through one of its proxy interfaces will be dispatched to the invoke() method of the instance's invocation handler

Design Patterns In Java

Dynamic Proxies In Java 11

Bob Tarr

Dynamic Proxy Class l

l

l

l

l

Proxy classes are created using the new java.lang.reflect.Proxy class Proxy classes are public, final, non-abstract subclasses of java.lang.reflect.Proxy The unqualified name of a proxy class is unspecified. The space of class names that begin with the string "$Proxy" should be, however, reserved for proxy classes. A proxy class implements exactly the interfaces specified at its creation Since a proxy class implements all of the interfaces specified at its creation, invoking getInterfaces() on its Class object will return an array containing the same list of interfaces (in the order specified at its creation)

Design Patterns In Java

Dynamic Proxies In Java 12

Bob Tarr

6

Dynamic Proxy Class l

l

Each proxy class has one public constructor that takes one argument, an implementation of the interface InvocationHandler, to set the invocation handler for a proxy instance Rather than having to use the reflection API to access the public constructor, a proxy instance can be also be created by calling the Proxy.newInstance() method, which combines the actions of calling Proxy.getProxyClass() with invoking the constructor with an invocation handler

Design Patterns In Java

Dynamic Proxies In Java 13

Bob Tarr

The java.lang.reflect.Proxy Class l

public static Class getProxyClass(ClassLoader loader, Class[] interfaces) throws IllegalArgumentException é

l

protected Proxy(InvocationHandler ih) é

l

Creates a proxy class defined in the specified class loader and which implements the specified interfaces. Returns the java.lang.Class object for the generated proxy class. Constructs a new Proxy instance from a subclass (typically, a dynamic proxy class) with the specified value for its invocation handler

public static boolean isProxyClass(Class c) é

Returns true if and only if the specified class was dynamically generated to be a proxy class using the getProxyClass() method or the newProxyInstance() method of the Proxy class

Design Patterns In Java

Dynamic Proxies In Java 14

Bob Tarr

7

The java.lang.reflect.Proxy Class l

public static Object newProxyInstance(ClassLoader loader, Class[] interfaces, InvocationHandler ih) throws IllegalArgumentException é

é

Creates a proxy class defined in the specified class loader and which implements the specified interfaces. In addition, creates an instance of the proxy by invoking the one public proxy constructor which sets the associated invocation handler to the specified handler. Returns a reference to the proxy instance. Proxy.newProxyInstance(cl, interfaces, ih); is equivalent to Proxy.getProxyClass(cl, interfaces).getConstructor(new Class[] { InvocationHandler.class }).newInstance(new Object[] {ih});

Design Patterns In Java

Dynamic Proxies In Java 15

Bob Tarr

The java.lang.reflect.Proxy Class l

public static InvocationHandler getInvocationHandler (Object proxy) throws IllegalArgumentException é

Returns the invocation handler for the specified proxy instance

Design Patterns In Java

Dynamic Proxies In Java 16

Bob Tarr

8

The java.lang.reflect.InvocationHandler Interface l

l

Each proxy instance has an associated invocation handler. When a method is invoked on a proxy instance, the method invocation is encoded and dispatched to the invoke() method of its invocation handler public Object invoke(Object proxy, Method method, Object[] args) throws Throwable é

Processes a method invocation on a proxy instance and returns the result. The proxy parameter is the proxy instance that the method was invoked on. The method parameter is the Method instance corresponding to the interface method invoked on the proxy instance. The args parameter is an array of objects containing the values of the arguments passed in the method invocation on the proxy instance, or null if the interface method takes no arguments.

Design Patterns In Java

Dynamic Proxies In Java 17

Bob Tarr

Vehicle Example With Dynamic Proxy l

To do our vehicle example with a dynamic proxy, we first need an invocation handler: import java.lang.reflect.*; /** * Class VehicleHandler. */ public class VehicleHandler implements InvocationHandler { private IVehicle v; public VehicleHandler(IVehicle v) {this.v = v;} public Object invoke(Object proxy, Method m, Object[] args) throws Throwable { System.out.println("Vehicle Handler: Invoking " + m.getName()); return m.invoke(v, args); } }

Design Patterns In Java

Dynamic Proxies In Java 18

Bob Tarr

9

Vehicle Example With Dynamic Proxy (Continued) l

Notice how we use the Reflection API to invoke the proper method on our target object: m.invoke(v, args);

Invocation Proxy

Handler

start()

Client

forward()

Car invoke()

"invoke()"

(IVehicle)

stop()

Design Patterns In Java

Dynamic Proxies In Java 19

Bob Tarr

Vehicle Example With Dynamic Proxy (Continued) import java.lang.reflect.*; /** * Class Client3. * Interacts with a Car Vehicle through a dynamically * generated VehicleProxy. */ public class Client3 { public static void main(String[] args) { IVehicle c = new Car("Botar"); ClassLoader cl = IVehicle.class.getClassLoader(); IVehicle v = (IVehicle) Proxy.newProxyInstance(cl, new Class[] {IVehicle.class}, new VehicleHandler(c)); v.start(); v.forward(); v.stop(); } } Design Patterns In Java

Dynamic Proxies In Java 20

Bob Tarr

10

Vehicle Example With Dynamic Proxy (Continued) l

Output for the vehicle example with a dynamic proxy: Vehicle Handler: Invoking start Car Botar started Vehicle Handler: Invoking forward Car Botar going forward Vehicle Handler: Invoking stop Car Botar stopped

Design Patterns In Java

Dynamic Proxies In Java 21

Bob Tarr

Uses For Dynamic Proxies l

In the Vehicle example, there seems to be little benefit in dynamically generating the proxy: é é

l

We still had to write the invocation handler class! There is now another object layer between the client and the target!

So where would we use dynamic proxies?? é é

Generic Delegation Dynamic generation of proxies (stubs) for remote objects

Design Patterns In Java

Dynamic Proxies In Java 22

Bob Tarr

11

Logged Vehicle Example l

l

l l

l

To illustrate the idea of Generic Delegation, let's add a logging capability to our Vehicle Example Suppose that we want to log each action (start, stop, etc.) that we perform on a Car, but we do not want to modify the existing Car code Sounds like a job for the Decorator Pattern! We'll write a LoggedVehicle class that implements the IVehicle interface, logs each requested action and then delegates the actual action to a contained IVehicle object The essence of the Decorator Pattern is delegation through composition!

Design Patterns In Java

Dynamic Proxies In Java 23

Bob Tarr

Logged Vehicle Example (Continued) l

Here's the LoggedVehicle class: /** * Class LoggedVehicle. */ public class LoggedVehicle implements IVehicle { private IVehicle v; public LoggedVehicle(IVehicle v) {this.v = v;} public void start() { System.out.println("Log Entry: Vehicle " + v.getName() + " started"); v.start(); } // stop(), forward(), reverse() implemented similarly. // getName() not shown. }

Design Patterns In Java

Dynamic Proxies In Java 24

Bob Tarr

12

Logged Vehicle Example (Continued) /** * Class Client4. * Interacts with a Car Vehicle through a Logging Decorator. */ public class Client4 { public static void main(String[] args) { IVehicle c = new Car("Botar"); IVehicle v = new LoggedVehicle(c); v.start(); v.forward(); v.stop(); LoggedVehicle } start() start() }

Car

Client

Design Patterns In Java

forward()

forward()

stop()

stop()

(IVehicle)

Dynamic Proxies In Java 25

Bob Tarr

Logged Vehicle Example (Continued) l

Output for the vehicle example with a logging decorator: Log Car Log Car Log Car

l

Entry: Vehicle Botar started Botar started Entry: Vehicle Botar going forward Botar going forward Entry: Vehicle Botar stopped Botar stopped

Notice how similar this example is to the simple proxy example! The difference between the Proxy Pattern and the Decorator Pattern is one of intent: Proxy provides access control, while Decorator adds functionality, in this case a logging capability.

Design Patterns In Java

Dynamic Proxies In Java 26

Bob Tarr

13

Logged Vehicle Example (Continued) l

While the LoggedVehicle decorator class provides a logging capability for any class that implements the IVehicle interface, there are two drawbacks to this approach: é

é

l

l

l

It was tedious to have to implement all of the methods of the IVehicle interface in the LoggedVehicle class Logging is a generic capability that we may want to add to other interfaces in which case we have to write another wrapper class

Both of these drawbacks can be overcome by using dynamic proxies The dynamic proxy will automatically implement all of the methods of the interface we specify, relieving us of the tedium of doing this implementation ourselves And the reflective method invocation in our invocation handler supports the desired generic delegation!

Design Patterns In Java

Dynamic Proxies In Java 27

Bob Tarr

Generic Delegation Example l

Here is a generic logger class: import java.lang.reflect.*; /** * Class GenericLogger. */ public class GenericLogger implements InvocationHandler { private Object target; public GenericLogger(Object target) {this.target = target;} public Object invoke(Object proxy, Method m, Object[] args) throws Throwable { System.out.println("Generic Logger Entry: Invoking " + m.getName()); return m.invoke(target, args); } }

Design Patterns In Java

Dynamic Proxies In Java 28

Bob Tarr

14

Generic Delegation Example (Continued) import java.lang.reflect.*; /** * Class Client5. * Interacts with a Car Vehicle through a dynamically * generated proxy and a Generic Logger. */ public class Client5 { public static void main(String[] args) { IVehicle c = new Car("Botar"); ClassLoader cl = IVehicle.class.getClassLoader(); IVehicle v = (IVehicle) Proxy.newProxyInstance(cl, new Class[] {IVehicle.class}, new GenericLogger(c)); v.start(); v.forward(); v.stop(); } } Design Patterns In Java

Dynamic Proxies In Java 29

Bob Tarr

Generic Delegation Example (Continued) l

Output for the vehicle example with a generic logger: Generic Logger Entry: Invoking start Car Botar started Generic Logger Entry: Invoking forward Car Botar going forward Generic Logger Entry: Invoking stop Car Botar stopped

Design Patterns In Java

Dynamic Proxies In Java 30

Bob Tarr

15

Generic Delegation Example (Continued) l

l

The great thing about this generic logger is that it can be used to add a logging capability to any interface! Consider an interface for shapes: /** * Interface IShape. */ public interface IShape { public void draw(); public void print(); public void move(); public void resize(); }

Design Patterns In Java

Dynamic Proxies In Java 31

Bob Tarr

Generic Delegation Example (Continued) import java.lang.reflect.*; /** * Class Client6. * Interacts with a Rectangle Shape through a dynamically * generated proxy and a Generic Logger. */ public class Client6 { public static void main(String[] args) { IShape rect = new Rectangle(); ClassLoader cl = IShape.class.getClassLoader(); IShape s = (IShape) Proxy.newProxyInstance(cl, new Class[] {IShape.class}, new GenericLogger(rect)); s.draw(); s.move(); s.resize(); } } Design Patterns In Java

Dynamic Proxies In Java 32

Bob Tarr

16

Generic Delegation Example (Continued) l

Output for the shape example with a generic logger: Generic Logger Entry: Invoking draw Rectangle drawn Generic Logger Entry: Invoking move Rectangle moved Generic Logger Entry: Invoking resize Rectangle resized

Design Patterns In Java

Dynamic Proxies In Java 33

Bob Tarr

17

des documents recommandant

Understanding the Java ClassLoader - JFOD

Apr 24, 2001 - This tutorial provides an overview of the Java ClassLoader and takes ... A basic understanding of Java programming, including the ability to ... ClassLoader system have been improved in JDK version 1.2 (also known as the.

Concurrency in JDK 5.0 - JFOD

This tutorial covers the new utility classes for concurrency provided by JDK 5.0 ... providing a set of reliable, high-performance concurrency building blocks, ibm.com/ ... In the first section, we'll review the basics of concurrency, although it sho

Java Applications in CICS

PDF-only books . 387 program that uses Structured Query Language (SQL) commands to access the data. This is a good solution to use for the home directory for each CICS region, but it is

Rewriting Strategies in Java

Apr 21, 2008 - The main interest of using strategic rewriting systems is the conciseness, as builds a term and can be used anywhere a Java expression is allowed. a specialized version of the visit method, by successively inlining strategy

Rewriting Strategies in Java

Apr 21, 2008 - ciseness as well as its strong theoretical foundations are essential. ... piler construction, optimization, refactoring, software renovation as it is shown trees in Java, IEE Proceedings - Software Engineering 152 (2005), pp. ..

A dynamic network in a dynamic population

Apr 1, 2011 - referred to as the Uniform (U) version and the Preferential (P) version. In what follows 1 then Ï�Îº(x)=0 for every x, and (12) has only the zero solution. [8] Malyshev, V. A. (1998) Random graphs and grammars on graphs.

Dynamic Pattern Generation in

58. For review see, forecampk, A. C. Scott, Newuphysic (Wiley-Interscience, Ncw. York, 1977); R. J. MacGregor and E. R. Lewis, Neural Modling (Pknum, New.

Dynamic Pattern Generation in

information about the emerging spatial structure, its form, size, and ... present context and perhaps for biology in general, is the limit cycle, ... exist (note that Tr -Tr); in the lower right only one fixed point speeds has three peaks that r

NETASQ Technical Support Training PROXIES

source IP address, the IP of the server. Proxies run on port ... Since the version 6.3.0.1, it's possible to configure an ICAP white list. In the slot file add the After SMTP proxy analysis, possibility to forward the mail to a proxy. Case of in

Environmental proxies of antigen exposure explain variation in

decreased prevalence, abundance and diversity in more arid environments period 1901â€“2009 from the Climatic Research Unit time series data set larisation and nerve and muscle growth in the developing and vectorborne diseases.

Java

Chapter 6, "Behavior," tells how users of Java look and feel applications utilize the ... This book does not provide detailed discussions of human interface design Keep in mind that word order varies among languages, as shown in the following

Java, threads, and scheduling in Linux Threading alternatives for Java

Jan 24, 2000 - Details on how the measurement data were collected are in the Appendix). solution for the threading problems discussed in this paper.

Dynamic Pattern Generation in - Research

principles ofneural and behavioral function remain few (3, 4). The time may be ripe, therefore information about the emerging spatial structure, its form, size, and so forth]. ... present context and perhaps for biology in general, is the limit

Rule based programming in Java for protocol

scribing several computational logics. We focus here on an approach where rewrite rules are combined with an imperative style of programming leading to clear ...

Enhancing Automated Detection of Vulnerabilities in Java

Enhancing Automated Detection of Vulnerabilities in Java Components. -. Appendix. Pierre Parrend. Software Engineering, FZI Forschungszentrum Informatik.

part 9 : gambus melayu in java

Dec 20, 2017 - 2. More info about the remnant monoxyle lutes in my topical ... http://inthegapbetween.free.fr/pierre/GAMBUS_PROJECT/04_gambus-au-alam_melayu.pdf Such large flatboxed ud (just like an Algerian mandole) has been ...

Generics in the Java Programming Language

Feb 16, 2004 - Now, you might think that all we've accomplished is to move the clutter around. Instead of a cast to method appears inside a generic class, it's a good idea to avoid using the same names ... warning is needed, because the fact is

Salamat Datang in Central Java, Indonesia

Salamat Datang in Central Java,. Indonesia. Page 2. Page 3. Page 4. Page 5. Page 6. Page 7. Page 8. Page 9. It's never too late â˜º. Borobudur, Central Java.

Programming Spiders, Bots, and Aggregators in Java

multiple sites and consolidate it on one page, such as credit card, bank account, and investment Working with Sybex on this project was a pleasure. Everyone ...

Data Structures and Algorithms in Java .fr

No part of this manual shall be reproduced, stored in a retrieval ... company, and is a best-selling writer in the field of computer programming. ... amounts of data, such a simple approach might be all you need. ... Arrows move up and down the tree,

Watamaniuk (1989) Direction perception in complex dynamic

their half-amplitude half-bandwidth (one-half values of ARi are weighted more heavily than of a mechanism's full bandwidth measured be- smaller values; if Q ...

Muscle weakness following dynamic exercise in humans

BURKE, R. E., D. N. LEVINE, P. TSAIRIS, AND F. E. ZAJAC. Physi- ological types and histochemical profiles in motor units of the cat gastrocnemius. J. Physiol.

DYNOC: A DYNAMIC INFRASTRUCTURE FOR COMMUNICATION IN

1. INTRODUCTION. On-line placement methods on reconfigurable device like that described in [1] ure 4 in which a â€œping-pongâ€� reflect results between router.

Dynamic Models in Economics Problem Set 1

to Pt. Firms invest in that good in period t âˆ’ 1 to produce in period t. Let ... 2. Assume Î±v > 1. Study the dynamics of the model, and show that there exists Â¯.

×
Report Dynamic Proxies In Java - JFOD

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Signe

Email

Mot de passe

 Se souvenir de moi

Vous avez oublié votre mot de passe?

Signe

 Connexion avec Facebook

Information

	A propos de nous
	Règles de confidentialité
	TERMES ET CONDITIONS
	AIDE
	DROIT D'AUTEUR
	CONTACT
	Cookie Policy

Droit d'auteur © 2024 P.PDFHALL.COM. Tous droits réservés.

MON COMPTE

	
Ajouter le document

	
de gestion des documents

	
Ajouter le document

	
Signe

BULLETIN

Follow us

	

Facebook

	

Twitter

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & Close

