Copula and Tomography - Ali Mohammad-Djafari .fr

... f(x,y,z) −→ gφ(r) or gφ(r1,r2). Inverse problem : gφ(r) or gφ(r1,r2) −→ f(x,y) or f(x,y,z) .... Accounting for detector size. ▻ Other ... find the joint pdf f(x,y). Ill-posed ...
385KB taille 1 téléchargements 290 vues
Copula and Tomography Ali Mohammad-Djafari & Doriano-Boris Pougaza ` Groupe Problemes Inverses Laboratoire des Signaux et Syst`emes (UMR 8506 CNRS - SUPELEC - Univ Paris Sud 11) ´ Supelec, Plateau de Moulon, 91192 Gif-sur-Yvette, FRANCE. [email protected] http://djafari.free.fr http://www.lss.supelec.fr

StatImage, 19-20/01/2009, Univ. Paris 1

1 / 16

Content



Tomography



Radon Transform



Classical methods of Tomography



Tomography and Copula



Some preliminary results



Conclusions

2 / 16

Tomography : seeing interior of a body ◮

f (x, y) a section of a real 3D body f (x, y, z)



gφ (r ) a line of observed radiographe gφ (r , z)



Forward model : Line integrals or Radon Transform Z gφ (r ) = f (x, y) dl + ǫφ (r ) L

ZZ r ,φ = f (x, y) δ(r − x cos φ − y sin φ) dx dy + ǫφ (r )



Inverse problem : Image reconstruction Given the forward model H (Radon Transform) and a set of data gφi (r ), i = 1, · · · , M find f (x, y) 3 / 16

2D and 3D Computed Tomography 3D

2D Projections

80

60 f(x,y)

y 40

20

0 x −20

−40

−60

−80 −80

gφ (r1 , r2 ) =

Z

f (x, y, z) dl Lr1 ,r2 ,φ

−60

gφ (r ) =

−40

Z

−20

0

20

40

60

80

f (x, y) dl Lr ,φ

Forward probelm : f (x, y) or f (x, y, z) −→ gφ (r ) or gφ (r1 , r2 ) Inverse problem : gφ (r ) or gφ (r1 , r2 ) −→ f (x, y) or f (x, y, z) 4 / 16

X ray Tomography and Radon Transform   Z I = g(r , φ) = − ln f (x , y ) dl I0 Lr ,φ ZZ g(r , φ) = f (x , y ) δ(r − x cos φ − y sin φ) dx dy

150

100

y

f(x,y)

50

D

0

x

−50

−100

f (x, y)-

−150

−150

−100

−50

phi

0

50

100

-g(r , φ)

RT

150

60

p(r,phi)

40 315

IRT ? =⇒

270 225 180 135 90 45

20

0

−20

−40

−60

0 r

−60

−40

−20

0

20

40

60

5 / 16

Analytical Inversion methods y 6

S•

r

 @ @ @ @ @ @ @ f (x, y)   @ @  @ φ @ @ x HH @ H @ @ @ @ •D

g(r , φ) = Radon : g(r , φ) = f (x, y) =

ZZ 

R

L

f (x, y) dl



f (x, y) δ(r − x cos φ − y sin φ) dx dy D



1 2π 2

Z

π 0

Z

+∞ −∞

∂ ∂r g(r , φ)

(r − x cos φ − y sin φ)

dr dφ 6 / 16

Filtered Backprojection method f (x, y) =



1 − 2 2π

Z

0

π

Z

∂ ∂r g(r , φ)

+∞

−∞

(r − x cos φ − y sin φ)

dr dφ

∂g(r , φ) ∂r Z 1 ∞ g(r , φ) ′ dr Hilbert TransformH : g1 (r , φ) = π 0 (r − r ′ ) Z π 1 g1 (r ′ = x cos φ + y sin φ, φ) dφ Backprojection B : f (x, y) = 2π 0 Derivation D :

g(r , φ) =

f (x, y) = B H D g(r , φ) = B F1−1 |Ω| F1 g(r , φ) • Backprojection of filtered projections : g(r ,φ)

−→

FT

F1

−→

Filter

|Ω|

−→

IFT

F1−1

g1 (r ,φ)

−→

Backprojection B

f (x,y )

−→

7 / 16

Limitations : Limited angle or noisy data

60

60

60

60

40

40

40

40

20

20

20

20

0

0

0

0

−20

−20

−20

−20

−40

−40

−40

−40

−60 −60

−60 −40

−20

0

20

Original

40

60

−60

−60 −40

−20

0

20

40

60

64 proj.

−60

−60 −40

−20

0

20

16 proj.

40

60

−60

−40

−20

0

20

40

60

8 proj. [0, π/2]



Limited angle or noisy data



Accounting for detector size



Other measurement geometries : fan beam, ...

8 / 16

Tomography with only Two projections

Forward problem : Given f (x, y) find f1 (x) and f2 (y)

Inverse problem : Given f1 (x) and f2 (y) find f (x, y)

9 / 16

Link between Tomography and Copula Tomography : Given the two horizontal and vertical projections f1 (x) and f2 (y), find f (x, y) Copula : Given the two marginal pdfs f1 (x) and f2 (y), find the joint pdf f (x, y) Ill-posed Inverse problems : Infinite number of solutions There is a need to reduce the space of possible solutions

10 / 16

Link between Tomography and Copula Copula and Tomography Given f1 (x) and f2 (y) find f (x, y) such that Z Z f1 (x) = f (x, y) dy and f2 (y) = f (x, y) dx Tomography : If we find a solution f0 (x, y), we can add any function ω(x, y) such that Z Z ω(x, y) dx = ω(x, y) dy = 0 and we get again another solution. Copula : Any function f (x, y) given by f (x, y) = f1 (x) f2 (y) c (F1 (x), F2 (y)) where c(u, v) is any copula, is a solution to the problem. Z Z c(x, y) dx = c(x, y) dy = 1 11 / 16

Link between Tomography and Copula Tomography : Back Projection (BP) : f (x, y) = f (x) + f (y) Copula : Multiplicative Back Projection (MBP) : f (x, y) = f (x) f (y) Copula Back Projection (MBP) : f (x, y) = f (x) f (y) c (F1 (x), F2 (y))

12 / 16

Preliminary results

f(x,y, f (x) and f (y) 1

2

fh(x,y), fh (x) and fh (y) 1

fh(x,y), fh (x) and fh (y)

2

1

2

fh(x,y), fh1(x) and fh2(y)

Originals f (x, y)

BP bf (x, y)

FBP bf (x, y)

MBP bf (x, y) 13 / 16

Preliminary results

Originals f (x, y)

BP bf (x, y)

FBP bf (x, y)

MBP bf (x, y) 14 / 16

Conclusions



There is a link between Copula and Tomography.



Both problems are ill-posed.



We are sure that the methods in one domain can be useful in other one.



With only two projections we can only reconstruct simple images



There is a need for more data or for more constraintes (maximum entropy, minimum energy, ...)



How to use more than 2 projections with Copula ?

15 / 16