CB_MicroFinanceCh4_2014 [Mode de compatibilité]

Mean/Variance Analysis. Assumptions. 4 ... just the mean and the variance of the return rate of an asset to ... variance is often easier than using an NM utility function, so it is popular ...... General formula for calculating the portfolio variance σ2 p.
314KB taille 3 téléchargements 65 vues
Microéconomie de la finance 7e édition

Christophe Boucher [email protected]

1

Chapitre 4 7e édition

La théorie Moyenne-Variance du choix de portefeuille

2

Part 4. Mean-Variance Portfolio Theory

4.1 Measuring Risk and Return 4.2 Asset Allocation with 2 Risky Assets 4.3 Introducing a Risk Free Asset and the Tobin’s Separation Theorem 4.4 Asset Allocation with N risky Assets 4.5 Portfolio Diversification

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

3

Preamble: Mean/Variance Analysis Assumptions

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

4

Mean-variance is simpler • Early researchers in finance, such as Markowitz and Sharpe, used just the mean and the variance of the return rate of an asset to describe it. • Characterizing the prospects of a gamble with its mean and variance is often easier than using an NM utility function, so it is popular. • But is it compatible with VNM theory? • The answer is yes … approximately … under some conditions.

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

5

Mean-variance assumptions

• Investors maximise expected utility of end-of-period wealth • Can be shown that above implies maximise a function of expected portfolio returns and portfolio variance providing - Either utility is quadratic, or - Portfolio returns are normally distributed (and utility is concave), - Consider only small risks (then approximately true)

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

6

Mean-variance: quadratic utility Suppose utility is quadratic, U(y) = ay–by2, with some conditions on a and b

E[U ( y )] = aE ( y ) − bE ( y 2 ) Expected utility is then

= aE ( y ) − b  E ( y ) 2 + V ar( y )  .

Thus, expected utility is a function of:

the mean: E(y), and the variance: Var(y) BUT not intuitive Utility function : increasing ARA

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

7

Mean-variance: joint normals • Suppose all lotteries in the domain have normally distributed prized. (They need not be independent of each other). • Any combination of such lotteries will also be normally distributed. • The normal distribution is completely described by its first two moments. • Therefore, the distribution of any combination of lotteries is also completely described by just the mean and the variance. • As a result, expected utility can be expressed as a function of just these two numbers as well.

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

8

Mean-variance: small risks • The most relevant justification for mean-variance is probably the case of small risks. • If we consider only small risks, we may use a second order Taylor approximation of the NM utility function. • A second order Taylor approximation of a concave function is a quadratic function with a negative coefficient on the quadratic term. • In other words, any risk-averse NM utility function can locally be approximated with a quadratic function. • But the expectation of a quadratic utility function can be evaluated with the mean and variance. Thus, to evaluate small risks, mean and variance are enough.

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

9

Mean-variance: small risks • Let f : R

R be a smooth function. The Taylor approximation is

f ( x ) ≈ f ( x0 ) + f '( x0 ) f '''( x0 )

( x − x0 )1

( x − x0 )3 3!

1!

+ f ''( x0 )

( x − x0 ) 2 2!

+

+⋯



So f(x) can approximately be evaluated by looking at the value of f at another point x0, and making a correction involving the first n derivatives.



We will use this idea to evaluate E[U(y)].

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

10

Mean-variance: small risks • Consider first an additive risk, i.e. y = w+x where x is a zero mean random variable. • For small variance of x, E[U(y)] is close to U(w). • Consider the second order Taylor approximation,

• •

E ( x2 ) E [U ( w + x) ] ≈ U ( w) + U '( w) E ( x) + U ''( w) 2 V ar( x) . = U ( w) + U ''( w) 2 Let c be the certainty equivalent, U(c)=E[U(w+x)]. For small variance of x, c is close to w, but let us look at the first order Taylor approximation.

U (c ) ≈ U ( w) + U '( w)(c − w) Microéconomie de la finance – Christophe BOUCHER – 2014/2015

11

Mean-variance: small risks • Since E[U(w+x)] = U(c), this simplifies to

V ar( x) w − c ≈ A( w) 2 • w – c is the risk premium. • The risk premium is approximately a linear function of the variance of the additive risk, with the slope of the effect equal to half the coefficient of absolute risk.

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

12

Example: Simple mean-variance utility function • Consider the simple Mean-Variance Utility function: U = E (RP ) − 1 A⋅σ 2 (RP ) 2 E (RP ) = xE (RM ) + (1− x)Rf     1 1 MaxU = Max  E ( R ) − A ⋅σ 2 ( R ) = Max  Rf + x  E ( R ) − Rf  − A ⋅ x2σ 2 ( R ) M x x  x    2 P P  M  2    

⇒  E ( R ) − Rf  M  



x=

− 1 2 A⋅ xσ 2 (RM ) = 0 2

E (RM ) − Rf

Aσ 2 (RM )

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

Optimal position in the risky asset is inversely proportional to the level of risk aversion and the level of risk and directly proportional to the risk premium 13

4.1 Measuring Risk and Return

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

14

Risk and return of a 2-asset portfolio Returns of assets 1 and 2: Weight of asset1:

R1 , R2

x

Return of the portfolio:

Rp

E ( RP ) = E ( xR1 + (1 − x) R2 ) = xE ( R1 ) + (1 − x) E ( R2 )

[

V ( R ) = E ( R − E ( R )) σ ( R) = Microéconomie de la finance – Christophe BOUCHER – 2014/2015

2

] = E(R

2

) − ( E ( R ))

2

V ( R) 15

Risk and return of a 2-asset portfolio V ( R p ) = E ( RP ) − ( E ( RP )) = x V ( R1 ) + (1 − x ) V ( R2 ) + 2 x (1 − x )Cov ( R1 , R2 ) 2

2

2

2

V ( R p ) = x V ( R1 ) + (1 − x ) V ( R2 ) + 2 x (1 − x ) σ ( R1 ) σ ( R2 )Corr ( R1 , R2 ) 2

2

Cov ( R , R ) = E [ ( R − E ( R )( R − E ( R ) ] = E [ R × R 1

2

1

1

ρ=

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

2

2

1

2

] − E(R )E(R ) 1

2

Cov( R1 , R2 ) σ ( R1 )σ ( R2 )

16

Minimum-variance portfolio

dV( RP ) =0 dx

⇔ 2 xV ( R1 ) + 2 xV ( R2 ) − 2V ( R2 ) + 2σ ( R1 )σ ( R2 )Corr ( R1 , R2 ) − 4 xσ ( R1 )σ ( R2 )Corr ( R1 , R2 ) = 0

x=

V ( R2 ) − σ ( R1 )σ ( R2 )Corr ( R1 , R2 ) V ( R1 ) + V ( R2 ) − 2σ ( R1 )σ ( R2 )Corr ( R1 , R2 )

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

17

Example Consider 2 stocks, A and B: State

Probabilities

A

B

1 2 3 4

¼ ¼ ¼ ¼

0% 5% 15% 20%

30% 20% 0% -10%

E ( RA ) = 1 (0% + 5% +15% + 20%) = 10% = E ( RB ) 4 V ( RA ) = 1 (0%)2 + (5%)2 + (15%)2 + (20%)2  − 0,12 = 0.0063  4 V ( RB ) = 1 (30%)2 + (20%)2 + (0%)2 + (−10%)2  − 0.12 = 0.025  4

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

18

Example (cnt’d) σ ( RA ) = 0,079 σ ( RB ) = 0,158 COV ( RA , RB ) = 1 (0.00)(0.3) + (0.05)(0.2) + (0.15)(0.0) + (0.2)(−0.1) − 0.12 = −0.0125 4

Corr (RA, RB ) =

−0.0125 = −1 0.079x0.158

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

19

Example (cnt’d) Risk and Return of the equally-weighted portfolio: x = 0,5 State

Probabilities

1/N Portfolio

1 2 3 4

¼ ¼ ¼ ¼

0,5 x 0% + 0,5 x 30% = 15% 12,5% 7,5% 5%

E ( RP ) = 0.1 V ( RP ) = 1 (15%)2 + (12.5%)2 + (7.5%)2 + (5%)2  − 0.12 = 0.0016  4

or V ( RP ) = (0.52 )(0.0063) + (0.52 )(0.025) + 2x0.5x0;5x(-1)(0.079)(0.158) = 0.0016

σ ( RP ) = 0.067 Microéconomie de la finance – Christophe BOUCHER – 2014/2015

< σ ( RB ) < σ ( RA )

Diversification effect 20

Example (cnt’d) The minimum Variance portfolio: x=

V ( R2 ) − σ ( R1 )σ ( R2 )Corr ( R1 , R2 ) V ( R1 ) + V ( R2 ) − 2σ ( R1 )σ ( R2 )Corr ( R1 , R2 )

x=

0.025 − 0.079x0.158x(−1) =2 0.0063 + 0.025 − 2x0.079x0.158x(−1) 3

V ( RP ) = (0.672 )(0.0063) + (0.332 )(0.025) + 2x(0.67)x(0.33)x(-1)(0.079)(0.158) = 0

since

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

ρRA,RB = −1

21

4.2 Asset Allocation with 2 Risky Assets

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

22

Portfolio characteristics and correlations • Correlation (covariance) between 2 assets ⇒ Diversification gain

• General case: 18

(x < 0)

16

B Expected return

14

12

A

10

8

(x>100%)

6

4 2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

Standard error Microéconomie de la finance – Christophe BOUCHER – 2014/2015

23

Portfolio characteristics and correlations (cnt’d) • Special cases: Corr ( R1 , R2 ) = 1



p

Corr ( R1 , R2 ) = −1



Corr ( R1 , R2 ) = 0



Microéconomie de la finance – Christophe BOUCHER – 2014/2015

V ( R ) = [ xσ ( R ) + (1 − x ) σ ( R ) ]

2

1

2

V ( R ) = [ xσ ( R ) − (1 − x ) σ ( R ) ]

2

p

1

2

V ( R p ) = x V ( R1 ) + (1 − x ) V ( R2 ) 2

2

24

No diversification gain

Corr ( R1 , R2 ) = 1

Rendement espéré du portefeuille (%)

18 16

Expected return

14

B x=0

12 10

A x=1

8 6 4 3,0

3,5

4,0

4,5

5,0

5,5

6,0

6,5

7,0

Standard error

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

25

Full diversification gain Corr ( R1 , R2 ) = −1

Rendement espéré du portefeuille (%)

Expected return

16 15 14

B 13 12

C

11 10

A 9 8 0,00

1,00

2,00

3,00 4,00 5,00 Ecart type du portefeuille (%)

6,00

7,00

Standard error

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

26

Partial diversification gain Corr ( R1 , R2 ) = 0

Rendement espéré du portefeuille (%)

Expected return

16 15 14

B 13 12 11 10

A 9 8 3,00

3,50

4,00

4,50

5,00

5,50

6,00

6,50

7,00

Standard error

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

27

Efficient portfolios of risky assets

Rendement espéré du portefeuille (%)

Expected return

16 15 14

B 13 12 11 10

A 9 8 3,00

3,50

4,00

4,50

5,00

5,50

6,00

6,50

7,00

Standard error

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

28

4.3 Introducing a Risk Free Asset and the Tobin’s Separation Theorem

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

29

Introducing borrowing and lending: Risk free asset • You are now allowed to borrow and lend at the risk free rate Rf while still investing in any SINGLE ‘risky bundle’ on the efficient frontier. • For each SINGLE risky bundle, this gives a new set of risk return combination known as the ‘transformation line’. • The risk-return combination is a straight line (for each single risky bundle) - transformation line. • You can be anywhere you like on this line.

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

30

The risk free asset • Consider a risk-free asset (e.g. T-bill rate)

Rf σRf = 0 Corr ( R1 , R f ) = 0

• Consider a portfolio with a risky asset 1 and a risk-free asset:

E ( RP ) = xE ( R1 ) + (1 − x) R f V ( RP ) = x ²V ( R1 )

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

31

The Capital Market Line • From the precedent mean and variance expressions, we obtain:

E ( RP ) = R f + x  E ( R1 ) − R f  x=

σ ( RP ) σ ( R1 )

• The Capital Market Line (CML): E ( RP ) = E ( R f ) +

intercept Microéconomie de la finance – Christophe BOUCHER – 2014/2015

E ( R1 ) − R f σ ( R1 )

σ ( RP )

Slope 32

The Capital Market Line with one risky asset

18

Borrowing

Rendement espéré du portefeuille (%)

16 14

Expected return

12

R1 all wealth in risk-free asset

10

x>1

8

all wealth in risky asset

6 4

Lending

Rf

2 0 0

1

2

3

4

5

6

7

Standard error

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

33

The Capital Market Line with N risky assets - Best transformation line

Expected return

Transformation line 3 – best possible one

Rf

M Transformation line 2 Transformation line 1

A

Standard error Microéconomie de la finance – Christophe BOUCHER – 2014/2015

34

The Capital Market Line

Expected return

CML

Rf

M

Risk Premium E(RM) – Rf

Standard error Microéconomie de la finance – Christophe BOUCHER – 2014/2015

35

The CML and the separation theorem

• The CML dominates all other possible portfolios • An agent invests along the CML (where ? ⇒ risk preferences) • James Tobin’s separation theorem: - Invest in a risky portfolio (optimal combination of risky securities) - Borrow-lend at the risk-free rate • Depending on your attitude toward risk: how much lend or borrow

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

36

Optimal portfolio choice IB’’ IB’ IB

IA’’

CML

IA’ IA

Expected return

B M

A

Rf

Standard error

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

37

From the CML to the SML CML:

E ( RM ) − Rf E ( RP ) = E ( R f ) + σ ( RP ) σ ( RM ) σ ( RP ) E ( RP ) = E ( R f ) + [ E ( RM ) − Rf ] σ ( RM ) E ( RP ) = E ( R f ) +

Note that: ρR , R = M p

Cov( RM , R p )

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

and since: ρRM , R p = 1

σ ( RM )σ ( R p )

E ( RP ) = E ( R f ) +

Security Market Line:

σ ( RP )σ ( RM ) [ E ( RM ) − Rf ] 2 σ ( RM )

Cov ( RM , R p ) σ ( RM )

2

[ E ( RM ) − Rf ]

E ( RP ) = R f + β [ E ( RM ) − Rf ] 38

The Security Market Line (SML)

Expected return

SML

M

Risk Premium E(RM) – Rf)

Rf

0.5 Microéconomie de la finance – Christophe BOUCHER – 2014/2015

1

2

β 39

CML

Security 1

M

β=1 Security 2

Rf

β=0,5 β=0

σ

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

SML

Expected return

Expected return

CML vs SML

Security 1

M Security 2

Rf

0.5

1

2

β 40

CML vs SML

• The CML: combination the market portfolio and the riskless asset • Portfolios on the CML are efficient portfolios • Any portfolio on the CML has a correlation of 1 with the market portfolio • CML is applicable only to an investor’s efficient portfolio • SML is applicable to any security, asset or portfolio (CAPM World) • In the CML, risk is measured by σ • In the SML, risk is measured by β

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

41

4.4 Asset Allocation with N risky Assets

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

42

Efficient portfolios • Efficient portfolios are those that maximize the expected return for a given level of expected risk

• or minimize the risk for a given level of expected return

• Two kinds of efficient portfolios: - only risky assets - both risky assets and a riskless-asset (separation theorem)

• Suppose stable expected-returns and VCV matrix Microéconomie de la finance – Christophe BOUCHER – 2014/2015

43

Some notations

 E(R )   1     E ( R2 )  R=   ⋮     E ( RN )  

X

x   1  x  =  2  ⋮    xN   

 σ ⋯σ  1N   11 Ω = ⋮ (σij ) ⋮    σ N1⋯σ NN 

E ( RP ) = RT X = X T R

V ( RP ) = X T ΩX

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

44

Efficient frontier with a riskless asset • Recall the transformation lines and CML: Maximise the slope

E ( RM ) − Rf Max Θ = σ ( RM )

N

xi = 1 ∑ i =1

u.c

N

set

Rf = ∑ xi Rf i =1

N

Max Θ =

xi ( Ri − R f ) ∑ i=1 N N

∑∑ xi x jσij

= X T ( R − Rf )  X T ΩX  

−1/2



i=1 j =1

d Θ = ( R − R )  X T ΩX  −1/2 +  X T ( R − R ) (− 1 )2ΩX  X T ΩX  −3/2 = 0     f  f  2    dX  Microéconomie de la finance – Christophe BOUCHER – 2014/2015

45

Efficient frontier with a riskless asset (cnt’d)

1/2

multiplying by

 T   X ΩX   

 (R − R f ) +  X T (R − R f 

Define (SR)

 ) (− 1 )2ΩX  X T ΩX  2   

λ =  X T ( R − R f )  X T ΩX  



−1

=0

−1



( R − R f ) − λΩX = 0

Define Z such that: λX = Z ( R − R f ) = ΩZ

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

46

Efficient frontier with a riskless asset (cnt’d)  R − R = Z σ + Z σ + ... + Z σ  1 N 1N 1 11 2 12 f   R2 − R f = Z1σ21 + Z 2σ22 + ... + Z N σ2 N  ⋮  R − R = Z σ + Z2σ N 2 + ... + Z N σ NN 1 N1 f  N

Xi =

Zi N

Zi ∑ i =1

Since:

N

N

N

i =1

i =1

i =1

∑ X i λ = ∑ Z i ⇒ λ = ∑ Zi

Then we can calculate: E (RM ) and and the CML Microéconomie de la finance – Christophe BOUCHER – 2014/2015

E (RP ) = R f +

σ ( RM )

E (R1) − Rf σ ( RP ) σ (R1) 47

Efficient frontier with no riskless asset Min 1 X T ΩX 2

u.c

 T  X R = E ( RP )  T  X 1 = 1

£ = 1 X T ΩX + λ  E ( RP ) − X T R  + γ 1− X T 1 2       d £ = ΩX − λR − γ1 = 0  dX   d £ = E(R ) − X T R = 0  dλ P  d£ = 1− X T 1 = 0   dγ

X = Ω−1  λR + γ1 

Eq. 1 Eq. 2 Eq. 3

Eq. 4 (from Eq. 1)



Microéconomie de la finance – Christophe BOUCHER – 2014/2015

48

Efficient frontier with no riskless asset (Cnt’d) RT X = RT Ω−1  λR + γ1 = E ( RP )

Eq. 5 (from Eq. 4 and 2)

1T X = 1T Ω−1  λR + γ1 = 1

Eq. 6 (from Eq. 4 and 3)





We define





A = 1T Ω−1R = RT Ω−11 B = RT Ω−1R C = 1T Ω−11 D = BC − A2

It follows

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

λ=

CE ( RP ) − A D

γ=

B − AE ( RP ) D

49

Efficient frontier with no riskless asset (Cnt’d)

Recall: X = Ω−1  λR + γ1 

It follows:



X = g + hE (RP )

with

−1 −1 g = BΩ 1 − AΩ R D −1 −1 h = CΩ R − AΩ 1 D

Analytic solution

Portfolio g represent the optimal weights of a portfolio with E( RP ) = 0 X = g +h

represents the optimal weights of a portfolio with E(RP ) =1

V ( RP ) = aE ( RP ) 2 + bE ( RP ) + c Microéconomie de la finance – Christophe BOUCHER – 2014/2015

Characterization of frontier portfolios

• The entire set of frontier portfolios can be generated by 2 efficient portfolios, e.g. g and g+h • A combination of efficient portfolios would be efficient too

⇒To find a efficient portfolio with E(R1) ⇒ Build a portfolio with 1− E(R1) of g and E(R1) of g+h ⇒ The structure of the portfolio is: 1− E(R1) g + E(R1)( g + h) = g + hE(R1)

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

51

3.5 Portfolio Diversification

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

52

Diversification and Portfolio risk •

Market risk - Systematic or Nondiversifiable (Business cycle, geopolitics, etc.)



Firm-specific risk -



Diversifiable or nonsystematic (Firm specific factors: management, sector, loss of a patent , etc.)

Total risk = Systematic risk + idiosyncratic risk Can disappear with diversification

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

53

Power of Diversification • As the number of assets (N) in the portfolio increases, the SD (total riskiness) falls • Assumptions: - All assets have the same variance : σi2 = σ2 - All assets have the same covariance : σij = ρ σ 2 - Invest equally in each asset (i.e. 1/N)

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

54

Power of Diversification

• General formula for calculating the portfolio variance σ2p = Σ wi2 σi2 + ΣΣ wiwj σij • Formula with assumptions imposed σ2p = (1/N) σ2 + ((N-1)/N) ρσ2

• If N is large, (1/N) is small and ((N-1)/N) is close to 1. • Hence : σ2p ≈ ρ σ 2 • Portfolio risk is ‘covariance risk’.

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

55

Standard error

Random selection of stocks

Diversifiable / idiosyncratic risk

Market / non-diversifiable risk 0

1

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

2 ...

20

40

No. of shares in portfolio

56

Portfolio risk as a function of number of securities

Source: BKM (2007) from Statman (1987)

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

57

Thank you for your attention…

See you next week

Microéconomie de la finance – Christophe BOUCHER – 2014/2015

58