3. INRA 2012 Advances in Ecological Research (2011 ... - ART-Dijon

bos op zand (8,2 %) stadspark (0,7 %) overig (10,5 %) bedekt (17,1 %). Bodemgebruik per grondsoort. Meetlocaties BoBI-LMB tuinbouw op zeeklei (3,4 %).
35MB taille 1 téléchargements 194 vues
Soil Abiotics Shapes Ecological Networks of Invertebrates How elemental factors influence food webs

Christian Mulder Institute for Public Health and Environment Bilthoven, the Netherlands

B S

i

Q

SOIL TEEMS WITH LIFE In the lab, soils respond

Metabolic activity grouping chemical guilds together (bacteria under GMO / bacteria under conventional maize)

3.5

3

2.5

B1 C1 D1 E1 F1 G1 H1

A2 B2 C2 D2 E2 F2 G2 H2

A3 B3 C3 D3 E3 F3 G3 H3

A4 B4 C4 D4 E4 F4 G4 H4

Carbohydrates Amino acids Carboxylic acids

2

1.5

1

2

3

7

21

0.5

0

Time (days)

Is there evidence from the field? Linking system components by allometry | Mulder (2012)

2

TABLE OF CONTENTS

•  •  •  • 

DUTCH SOIL QUALITY NETWORK MULTITROPHIC INTERACTIONS MICROBE-FAUNAL PATHWAYS SUSTAINABILITY: A LEGEND? Linking system components by allometry | Mulder (2012)

3

DUTCH SOIL QUALITY NETWORK

Linking system components by allometry | Mulder (2012)

4

Sampling locations BISQ 284 sampling locations

Linking system components by allometry | Mulder (2012)

5

Bodemgebruik per grondsoort en meetlocaties BoBI-LMB Meetlocaties BoBI-LMB biologisch gangbaar extensief r

gangbaar intensief

r

gangbaar intensief+

p

natuur en recreatie

Bodemgebruik per grondsoort (percentage van NL-landoppervlak)

akkerbouw op zand (9,9 %) akkerbouw op zeeklei (8,5 %) (melk)veehouderij op zand (14,9 %) (melk)veehouderij op rivierklei (5,2 %) (melk)veehouderij op zeeklei (8,5 %) (melk)veehouderij op veen (6,9 %)

r p p

p r r p p

(melk)veehouderij op löss (0,5 %)

r p

tuinbouw op zand (2,1 %)

r p p

tuinbouw op zeeklei (3,4 %)

r p p

r p

r p

r p p p r r r p r p r p p

p

halfnatuurlijk grasland op zand (2,7 %) r p p

bos op zand (8,2 %)

p

p

r p r p p r

p

heide op zand (0,8 %)

r p

p

p

p

r p

p r r p

p

p

r p p

r p

stadspark (0,7 %)

r p

r p p

r p p

overig (10,5 %) r p

bedekt (17,1 %) r p p

r p rp r p p r

r p

p

r p

r p

r p p r r p r p

p r r p p

r p p

BoBI: Bodembiologische Indicator LMB: Landelijk Meetnet Bodemkwaliteit Bron: RIVM-LER Datum: 01-03-2008 Ontwerp: H.J. van Wijnen, J.J. Bogte, M. Rutgers, A.J. Schouten

Linking system components by allometry | Mulder (2012)

6

Dissecting

Linking system components by allometry | Mulder (2012)

7

1.1 Multitrophic interactions

Is the functional response of soil fauna to various stress conditions relevant to community dynamics, and if so,

HOW? Linking system components by allometry | Mulder (2012)

8

TEMPERATURE

40

R-strategists

10 120

0 10

15

20

25

100 80 60 40 20 0

TEMP2

30

80

20 60

TEMP1

20

10

40

0 10

15

20

25

Rainfall

TEMP1

20

35

35

30

30

25

25

20

20

15

15

10

10

5

5

0

0

DAUERLARVEN 100 90 80 70 60 50 40 30 20 10 0

Field sampling periods

TEMP2

30

3000

1000

2

000

20

0

3000

TEMP1

200

10

0 10

3000

15

20

25

CONCENTRATION 4000 3000 2000 1000 0

Weather is the most important stochastic variable in field ecology

TEMP2

Linking system components by allometry | Mulder (2012)

9

Temperature

30

Julian week

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

22

65

20

60

18

(21days) 2

Taver

r = 0.83 (***)

55

16

50

14

45

12

40

10

35

8

30

6

25

4

20

2

15

0 0

21

42

63

84

105

126

147

168

Julian day

Minimizing ‘noise’

Chiloplacus

70

Linking system components by allometry | Mulder (2012)

10

10 189

Nematode diversity (genera 100 g-1 soil)

Average air-temperature aboveground ( oC)

24

Biodiversity and extrinsic abiotic factors Cuticularia (Bf) Diploscapter (Bf) Monhysteridae (Bf) Rhabditis (Bf)

1.0

0.9

0.8

Heterocephalobus (Bf) (Meta)Teratocephalus (Bf)

0.7

Alaimidae (Bf) Epidorylaimus (Om) Aporcelaimus (Ca)

0.6

0.5

Laimydorus (Om) Xiphinema (Pf)

0.4

0.3

0.2

0.1

0.0 Linking components by Mulder5.3 (2012) 4.6 system 4.7 4.8 4.9 5.0allometry 5.1 | 5.2 5.4

Field pH

5.5

5.6

5.7

5.8

5.9

6.0 11

4000000 3000000

100000

NEMATODA

BACTERIA

2000000 1000000

2

3

4

5

6

10000

1000

7

2

3

4

5

6

7

5

6

7

PH

PH

1000000

100000 ARTHROPODA

FUNGI

100000

10000

10000

1000 3

4

5

6

PH

Linking system components by allometry | Mulder (2012)

1000

2

3

4 PH

12

Bacterial biomass (ug / g dry soil)

1,000

Farming system

359.4

341.1 sd

297.2

291.3

267.6

sd 168.2

sd 161.4 sd 115.2

100

ORG (n=10)

CONV (n=19)

SEMI-INT (n=20)

Linking system components by allometry | Mulder (2012)

INT (n=20)

13

Functional diversity and farming pressure 0.94 INT 0.92

Nematode Channel Ratio

SEMI 0.90

0.88

0.86

CONV

0.84

2 R = 0.564 t = 113.62 P < 0.0001

0.82 ORG 0.80 1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

Livestock units

Linking system components by allometry | Mulder (2012)

14

1.2 Multitrophic interactions

HOW do these interactions affect fluxes of matter within the ecosystem as well as between the belowground community and the aboveground vegetation? Linking system components by allometry | Mulder (2012)

15

35 30

Biodiversity

25 20 15 10 5 0

Nematoda

Acarina

Insecta

Linking system components by allometry | Mulder (2012)

Oligochaeta

16

Advances in Ecological Research 41 (2009)

800

A

600 400 200 0 -2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

logM nematodes 800

B

600 400 200 0 -2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

logM arthropods 800

C

600 400 200 0 -2.0

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 Linking system components by allometry | Mulder (2012)

logM enchytraeids

3.0

17

I 100,000,000

II

III

IV

dry organismal biomass

MICROFAUNA

10,000,000 1,000,000

V

MESOFAUNA

ca. one order of magnitude biomass difference between two trophic levels (Elton’s universality)

100,000 10,000 1,000 100 10 1

Linking system components by allometry | Mulder (2012)

18

SOIL SYSTEM 30

Bacterial pathway

Detrital pathway 27

28

24

7bis

29

25

26

23

7

8

9

10

13

14

19

20

21

22

3

4

5

6

11

12

15

16

17

18

1

2

Horizontal biodiversity (same trophic level) Linking system components by allometry | Mulder (2012)

19

Linking system components by allometry | Mulder (2012)

20

Paradise lost

Linking system components by allometry | Mulder (2012)

21

2.1 Microbe-faunal pathways

AGAIN, HOW do these interactions affect fluxes of matter within the ecosystem as well as between the belowground community and the aboveground vegetation? Linking system components by allometry | Mulder (2012)

22

nematofauna

Isometric slope (-1)

Linking system components by allometry | Mulder (2012)

23

SOM

Detrital ontogeny Soil Organic Matter + Fresh Organic Matter

FOM

(exudates, necromass) Linking system components by allometry | Mulder (2012)

24

NUTRIENT-RICH GRASSLANDS

Linking system components by allometry | Mulder (2012)

25

NUTRIENT-POOR HEATHLANDS

Linking system components by allometry | Mulder (2012)

26

Advances in Ecological Research 41 (2009), Oikos 120 (2011)

REFERENCE

exploitation

d cte

management

ALLOMETRIC RESPONSE

b

e aff

intensity of stress

environmental change

organism abundance

DISTURBANCE

tar ge t

Such a “Distance to Target” enables the measure of any deviation from the chosen reference

ASSESSMENT restoration

organism mass

Linking system components by allometry | Mulder (2012)

27

Paradise regained

Linking system components by allometry | Mulder (2012)

28

2.2 Microbe-faunal pathways

NOW WE ARE AWARE THAT response of soil fauna to stress conditions is relevant to community dynamics, but WHY?

Linking system components by allometry | Mulder (2012)

29

3.5

R 2 = 0.8147

Log ratio microfauna to mesofauna

Log ratio microfauna to mesofauna

3.5 3 2.5 2 1.5 1 0.5

a

0

R 2 = 0.7092

3 2.5 2 1.5 1 0.5

b

0 7.5

8

8.5

9

9.5

10

10.5

11

11.5

12

0.9

1

1.1

1.2

Soil pOH

1.4

1.5

1.6

1.7

1.8

log10[C] - log10[N]

3.5

3.5

R 2 = 0.6114 Log ratio microfauna to mesofauna

Log ratio microfauna to mesofauna

1.3

3 2.5 2 1.5 1 0.5

c

0

R 2 = 0.7144

3 2.5 2 1.5 1 0.5

d

0 0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.2

1.4

1.6

Linking system components by allometry | Mulder (2012)

log10[N] - log10[P]

1.8

2

2.2

2.4

log10[C] - log10[P]

2.6

2.8

3

3.2

30

Linking system components by allometry | Mulder (2012)

31

Sampled location Soil-pH (KCl) 3-4 4-5 5-6 6-7 7-8 Urban area

‘Nature’ has the most diverse soil fauna in the Netherlands but the lowest fluxes Linking system components by allometry | Mulder (2012)

32

0.9

2 R = 0.696

Biomass spectrum slope

0.7 0.5 0.3 0.1 -0.1 -0.3

NUTRIENTS -0.5 EXPLAIN 0.1 0.3 BODY SIZE DISTRIBUTIONS

0.5

0.7

0.9

1.1

1.3

1.5

log10[N] - log10[P]

Linking system components by allometry | Mulder (2012)

Mulder & Elser, Global Cha Biol 2009 33

4.75

a = - 0.81×log10[MANURE] + 5.52 R 2 = 0.65, n = 46

Allometric intercept (a )

4.5

mature

4.25 HEATHLANDS 4

GRASSLANDS

3.75 organic

3.5 EXPERIMENTAL FIELDS

The elevation of any allometric linear relationship reflects the nutrient fluxes and the biomass in ecosystems, thus empirical evidence of aboveground – belowground relationship

3.25 3 0.5

1.0

1.5

2.0

2.5

3.0

3.5

Animal manure (log10[Nitrogen])

Linking system components by allometry | Mulder (2012)

34

•  The mass-abundance relationships in soils CHANGE. •  Human management always AFFECTS biodiversity. •  Let us bridge the gap between structure and function.

AND THANK YOU FOR YOUR ATTENTION ! Linking system components by allometry | Mulder (2012)

35