toxicological & chemical review exploration and exploitation of shale

Apr 16, 2011 - (over 76MPa) with fine sand and chemicals prevent the fractures from ...... 161), and more powerful irritant properties and allergenic in humans.
7MB taille 1 téléchargements 155 vues
TOXICOLOGICAL & CHEMICAL REVIEW

EXPLORATION AND EXPLOITATION OF SHALE GAS AND SHALE OIL (PARENT-ROCK HYDROCARBON) BY FRACKING (New Edition, september 2012)

André Picot

Toxico-chimist Honorary Research Director C.N.R.S. (C.N.R.S : French National Scientific Search Center) Honorary French expert from the European Union Specialist of Chemicals products in Workplace Président of Toxicology-Chemistry Association (Paris) Honor Member of No Fracking France Association Paris, October 2011 Collaboration with Joelle and Pierre DAVID and Jerome TSAKIRIS(ATC)

TOXICOLOGY-CHEMISTRY ASSOCIATION MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

 

EXPLOITATION OF SHALE GAS AND SHALE OIL (PARENT ROCK HYDROCARBON) AND RISKS SUMMARY

INTRODUCTION I

: THE UNCONVENTIONAL GAS EXTRACTION

II : FRACKING FLUIDS III : MINERAL CHEMICAL COMPOUNDS CHARACTERIZED IN FRACKING FLUIDS IV : ORGANIC CHEMICAL COMPOUNDS CHARACTERIZED IN FRACKING FLUIDS V : FRACKING FLUIDS, A REACTIONAL ENVIRONMENT VI : ROUTES OF EXPOSURE TO CHEMICALS IN FRACKING FLUIDS AND RISKS VII : MAJOR TOXIC PRODUCTS FOR HUMANS IN FRACKING FLUIDS VIII : A CONCLUSION THAT REMAINS STILL TENTATIVE In french edition : - LETTER TO FRENCH MINISTERS AND PARLEMENT, PERSONAL DELIVERY WITH THE FIRST VERSION OF TOXICOLOGICAL AND CHEMICAL END RESULT. - APPENDICES.

TOXICOLOGY-CHEMISTRY ASSOCIATION MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

2

 

... " We are living a historic moment. Future prospects are such that, if we lose Earth, it is humanity that we will lose. To avoid such an outcome, which will ruin the future of our children and ours perhaps we have to make choices today that will lead to monumental implications. "... ... "This book is a call for a revolution. The earth is in danger. She can not cope with everything we demand it. She loses her balance and humanity that is the cause. "... ... "This book reminds us that we must find our links with our past to better control our future. "... ... "The system that sustains life on our planet begins to go haywire and our very survival is in question. What our children and grandchildren will wonder, this is not what we said, but what we did, remember-in. Therefore propose an answer, an answer we can be proud. "

Excerpts from "HARMONY, A new way of looking at the world" by the Prince of Wales. Editions Odile Jacob, Paris (October 2010)

TOXICOLOGY-CHEMISTRY ASSOCIATION MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

3

 

INTRODUCTION As the reserves of conventional natural gas (methane ...) falling inexorably and could be exhausted in about sixty years, the extraction of oil and gas (non conventional) trapped in shale or parent-rock hydrocarbons (sedimentary rocks) where coal appears to be an attractive alternative for several countries (USA,Canada, Europe and now in the future Russia, China, ...). Recently, American economists & analysts have stated that gaz and oil companies overestimate productivity and size of reserves of shale gas in the U.S.A (The New York Times, June 25, 2011). Table 1 lists the world's resources (in trillion cubic meters of three different types of gas).

Type of gas

World Resources In trillion m³

Cost estimate thousands of extraction dollars

Shale gas

666

140 to $ 210

Coal gas

256

$ 35 at 100

185

-

Conventional gas

  Table 1 : WORLD RESOURCES OF DIFFERENT HYDROCARBON GAS (Source: Investors Chronicle, April 2010) Unconventional gas account for more than four times the conventional gas resources. If you could well use these unconventional gas, it would change significantly global energy policy, but what are the environmental and health consequencies ? Techniques of extraction currently in place seem polluting and also not as profitable than touted !

I : THE UNCONVENTIONAL GAS EXTRACTION

-

If the layers of conventional gas (methane) are located in pockets in most cases airtight against by the unconventional gas fields are distributed diffusely in different geological layers. Conventionally, these unconventional gas fall into three categories: The parent-rock gas (shale gas) locked in different geological formations clay. The coal gas trapped in coal beds (coal) and cause of sunburns firedamp, which hit several countries still frequently coal (3,000 deaths / year in China). Other sources of gas, confined in reservoirs with low permeability (Tight gas). The extraction of natural gas or shale bedrock by hydraulic fracturing (fracking) is a recent technology, which began in the United States across industry in 2005, first in the United States and locally in Europe (Germany, Great Britain ...) Currently the gas extracted by this technology is about 15% of total production gas in the United States. 4

ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

 

Classically, two drilling techniques are used: The vertical drilling, directed from the ground surface. The horizontal drilling, from a vertical shaft and to operate on large distances (1-3 miles). These technologies increasingly sophisticated, achieve geological deep (up to 4000 meters deep). At these depths, as the permeability of shale is very low and can not allow the extraction of gas included, it is mandatory to fracture the rock by chemical techniques very powerful (water, special fluids, pressure). Said hydraulic fracturing is by injection of water (2000 to 20,000 m³ per cycle of fracturing) under high pressure (over 76MPa) with fine sand and chemicals prevent the fractures from closing, as shown in Figures 1 and 2, below:

Figure 1: DRILLING METHOD CONVENTIONNALY USEDFOR REMOVING THE SHALE GAS AND SHALE OIL

(Source: ifpenergiesnouvelles.fr)

5 ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

 

Figure 2: CIRCULATION OF FRACKING FLUIDS IN SHALE GAS & SHALE OIL EXTRACTION (Source: lecercle.lesechos.fr) Apart from water, fracking fluids may be mud or a synthetic fluid viscosity controlled, hard-enriched agents (sieved sand, ceramic beads ...). Historically, the first fracking test on a vertical well was tested to United States in 1947 by the company "HALLIBURTON". As to the first horizontal drilling it was successful in June 1980 by Elf-Aquitaine in Lacq.

Pits of shale gas (Source: en.wikipedia.org) ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

6

 

II : FRACKING FLUIDS Fracking fluids (fracturing fluid) are fluids injected under high pressure in a geological formation in order to grinding hard rocks with low permeability, in order to release the hydrocarbons (gas, oil) witch are trapped. The fracturing fluid has three main functions: a-Transporting chemicals, which will help to desorb from the rock to extract the gas. Until recently, the composition of fracturing fluids was kept secret by the operators, under the trade secret. b-Open and expand a network of fractures. c-Transporting proppants which are solid particles in suspension in a fluid and this, along fractures. Before the Concern increasing people surrounding Agency Protection U.S. Environmental (U.S. EPA) requested in March 2010 in nine companies, which in United States, exploiting oil and shale gas, to provide the list of chemicals, used in their various processes. In fact, it seems pretty folk! (2500 products, more or less identified). A preliminary report, 2 February 2011, concerning the impact of fracturing fluids on resources water, provides interesting information, for chemicals characterized in effluent water extraction. Logically, the chemical composition of fracturing fluids should vary with the nature of rocks to fragment, the well depth and certainly compared to many other criteria not published, the trade secret of being put into this activity. According to the website of the U.S. oil firm HALLIBURTON3, the fracturing fluid by the company used contain on average 99.5% of a mixture of water and sand (silica crystal), this sand can be film-coated resins or be replaced by ceramic beads. In addition to water and proppants (sand, ceramic beads ...), the fluid fracturing may contain various chemicals and this in varying concentrations, depending on firms and mining sites. According to oil companies, chemical additives in the composition varies considerably. Some companies claim to use less than 10 products, neglecting even to biocides. If the latter information is accurate, there is concern a microbiological contamination aquatic ecosystems and soil during the ascent of the fracturing fluid.

2

3

EPA/600/D-II/001/February 2011/www.epa.gov/research http://www.halliburton.com/public/projects/pubsdata/hydraulic_fracturing/fracturing.101html ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

7

  In Table 2, using published data on the fluids used so-called fragmentation in the extraction of oil and shale gas in the United States, summarizes the main types of agents chemical and their average concentration.

MAIN COMPOUND CHEMICAL

TYPE OF ADDITIVE A

Water

2

Proppants

Crystalline silica, ceramic balls

9.51

3

Strong acids, metals dissolving

Hydrochloric acid

0.123

4

Friction reducing agents

Polyacrylamide, mineral oils

0.088

5

Surfactants (agents that lower blood superficial)

6

Clay stabilizers

Potassium chloride Tetramethylammonium chloride

0.06

7

Gelling agents

Bentonite, guar gum, Hydroxyethylcellulose

0.056

Inhibitors of ofeposits in the pipes

Ethylene glycol, propylene glycol

9

PH control agents

Sodium carbonate, Potassium carbonate, Ammonium chloride

0.011

10

Officers holding gels

Hemicellulase, ammonium persulfate, Quebracho

0.01

11

Agents maintenance of fluidity in the case Sodium perborate, borates, increase in temperature Acetic anhydride

0.007

12

Agents control the rate of iron

Citric acid, EDTA *

0.004

13

Corrosion inhibitors

Quinoline derivatives, Dimethylformamide (DMF), Propargyl alcohol

0.002

14

Biocides (antiseptics)

Dibromoacetonitrile, Glutaraldehyde, DBNPA **

0.001

8

 

COMPOSITION % VOLUME 90

2-Butoxyethanol, Isopropanol, Octylphenolethoxyled

0.085

0.043

Table 2 :

ADDITIVES CATEGORIES AND THEIR PERCENTAGE IN A FRAGMENTATION LIQUID OF SHALE GAS EXTRACTION IN USA. (Source: Ground water protection and consulting all 2009) http://www.netl.doe.gov/technologies/oil-gas/publications * EDTA: ethylenediaminetetraacetic acid ** DBNPA: 2,2-dibromo-3-nitropropionamide ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

8

  From the available lists, the chemical compounds most often cited, can be classified into two main groups: Mineral compounds, which include all the chemical elements listed in periodic Table (proposed by the Russian chemist Mendelievv), with the exception of carbon compounds organic. Organic compounds, which as defined by IUPAC (International Union of Pure and Applied Chemistry) correspond to the compounds of the carbon linked to itself (forming the family carbides) or, essentially, hydrogen, constituting the large family of hydrocarbons. Basic skeleton of all organic compounds, hydrocarbons are the highly predominant constituent of conventional gas (methane) or those unconventional but also oils. Figure 3 summarizes the classification of chemicals that can be learned to separate the main chemical compounds described in the fracturing fluids, because it allows separation of chemicals minerals are most abundant in concentration as in fracturing fluids (water, hydrochloric acid, alkali salts ...), chemicals organics, which are the most numerous.

CHEMICALS

Constituents of matter

Inert Material

Living material

Elements Minerals (Some of which compounds carbon)

Carbon compounds related to itself and / or hydrogen C ─ C and / or C ─ H

Mineral Products Metals and Non-metals (metalloids) C─C Carbides

C─H Hydrocarbons

Organic Products Figure 3 CLASSIFICATION OF CHEMICALS Table 3, below, contains the main inorganic chemical compounds, identified in the U.S. in fluids billing. These products are identified by their CAS (Chemical Abstract Service of the American Chemical Society) and their possible toxicity in the short, medium or long term reported (only indicative). ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

9

 

III, MINERAL CHEMICAL COMPOUNDS CHARACTERIZED IN FRACKING FLUIDS Table 3

MAIN FAMILIES WITH MINERAL COMPOUNDS CHEMICALS

MINERAL DATING IN THE MOST FEATURES FRACTURING FLUIDS MINERAL CHEMICAL FAMILY

MAIN MINERAL CHEMICAL COMPOUND IN FRACTURING FLUIDS 1

2

Nitrogen

3

4 5

Dinitrogen (Nitrogen) N2 Nitrites NO2Nitrates NO3-

TOXICITY CASE Nbr

Acute and Subacute

7727-37-9

Anoxia

In the long term

Méthémoglobinisant Méthémoglobinisant

Ammonia NH3 Ammonium salts X−  NH4+

7664-41-7

Asphyxia

Respiratory irritant

-

compounds

6

Urea   NH2 O

7

Compounds brominated

8

9

10

Chlorinated

11

12

13

compounds

14

57-13-6

C

NH2   Sodium bromide NaBr

Sodium bromate Na O3Br Chlorine (Chlorine) Cl2 Chlorine dioxide ClO2 Chloride hydrogen, HCl (Acid hydrochloric) Chlorides Cl-­‐ Sodium hypochlorite (from Water bleach) NaOCl Sodium chlorite Na O2Cl

7647-15-6

Hypnotic

7789-38-0

Méthémoglobinisant

Reprotoxic

7782-50-5

Corrosive

Irritant

10049-04-4

Irritant

Bronchial

7647-01-0

Corrosive

Irritant

Hypertension 7681-52-9

Irritant

7647-14-5

Irritant

  10

ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

MINERAL CHEMICAL

LY

MAJOR MINERALS CHEMICAL COMPOUNDS IN FRACTURING FLUIDS

7429-90-5

26

Carbon Black

7440-44-0

27

Graphite

7782-42-5

28

Chromium (Metal) ° Cr Trivalent chromium acetate (Chromic acetate) Cr (CH3COO)3

7440-47-3

Copper (metal) Cu ° Cupric chloride, dihydrate CuCl2, 2H2O Cupric sulfate CuSO4 Iron (metal) Fe ° Ferric chloride FeCl3 Ferrous sulfate heptahydrate Fe SO4, 7H2O Ferric oxide Fe2O3

7440-50-8

16

Aluminium

17

18 19

20

Compounds Calcium

21

22

23 24

25

Compounds Inorganic carbon

Compounds Chromium

29

30

Copper compounds

CASE Nbr

Aluminum Al ° Alumina (Aluminium oxide) Al2O3 Aluminum trichloride AlCl3 Aluminum silicate Al2SiO5 Barium sulphate BaSO4 Calcium oxide (Lime) CaO Calcium hydroxide (Slaked) Ca (OH) 2 Calcium chloride CaCl2 Calcium carbonate CaCO3 Calcium hypochlorite Ca (OCl) 2 Carbon dioxide (Carbon Dioxide supercritical) CO2

15

Compounds of

Compounds Barium

TOXICITY

31

32 33 34

Compounds of Iron 35

36

Acute Subacute

or

In the long term

1344-28-1 Irritant

Neurotoxic central

1305-78-8

Corrosive

Irritant

1305-62-0

Irritant

7446-70-0 1241-46-7 7727-43-7

10043-52-4 471-34-1 7778-54-3 124-38-9

1066-30-4

Anoxia, Frostbite

Allergenic

7447-39-4

Irritant

7758-98-7

Irritant

7439-89-6 7705-08-0 7782-63-0

Irritant Irritant

1309-37-1

  ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

11

CHEMICAL MINERAL Family

COMPOUNDS IN MEETINGS FRACTURING FLUIDS 37

Compounds Magnesium

38

39

Compounds Nickel Compounds Potassium

40

41

42

43

Compounds Silicon

Compounds Sodium

TOXICITY

MAJOR MINERALS CHEMICAL

44

45

Magnesium chloride MgCl2 Magnesium nitrate Mg (NO3)2 Magnesium aluminosilicate Nickel sulphate NiSO4 Potassium hydroxide (Potash) KOH Potassium chloride KCl Crystalline silica (Cristobalite, Quartz, Tridymite) (SiO2)n Talc (Magnesium silicate, anhydrous) Mg3 (SiO3)2 Attapulgite (Polygorcite)

CASE Nbr

7786-81-4 1310-58-3

14464-46-1

48

Diatomaceous earth

49

Sodium hydroxide (Caustic Soda) NaOH

NaNO2

53

Sodium nitrate NaNO3

54

Sodium sulphite Na2SO3 Sodium sulfate Na2SO4

55

Irritant

Fibrosis (silicosis), Carcinogen in form of particles (IARC Group 1)

12174-11-7

12001-26-2

52

Irritant

14807-96-6

Mica

Sodium nitrite

Corrosive

15468-32-3

47

Sodium carbonate Na2CO3

Allergenic

7447-40-7

1302-78-9

51

In the long term

10377-60-3

Bentonite

Sodium hydrogeno carbonate NaHCO3

or

7786-30-3

46

50

Acute Subacute

Lung irritant Lung irritant

1310-73-2

If the presence of quartz fibrosis If the presence of quartz fibrosis

Corrosive

Irritant

Irritant

Irritant

144-55-8

497-19-8 7632-00-0

Méthémoglobinisant

7631-99-4

Méthémoglobinisant

7757-83-7

Irritant

Méthémoglobinisant, Carcinogen (Group 2A IARC) Méthémoglobinisant, Carcinogen (Group 2A IARC)

7757-82-6

  ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

12

MINERAL CHEMICAL

Family

COMPOUNDS IN MEETINGS FRACTURING FLUIDS

56

Compounds 57

Sulfur 58 59

60

61

Compounds Titanium

Sulfuric acid

CASE Nbr

7664-93-9

Corrosive

Sulfamic acid (Amino sulfonic acid) HOSO2NH2 Ammonium sulfate (NH4)2 SO4 Ammonium thiocyanate (NH4)2 SO3 Ammonium persulfate (Ammonium peroxydisulfate) (NH4)2 S2O8

5329-14-6

Skin irritant, mucous

Titanium (metal) Ti °

7727-54-0

Zinc (metal) Zn ° Zinc carbonate ZnCO3 Zirconium nitrate Zr (NO3)4 Zirconium sulfate Zr (SO4)2 Zirconium oxychloride (Zirconyl chloride) ZrOCI2 Boric acid H3BO3 Borates BO3 3Sodium metaborate, octahydrate Na BO2, 8 H2O Boric oxide B2 O3 Sodium perborate, tetrahydrate Na BO4 , 4 H2O

7440-66-6

66 67

68 69

Compounds 70

Boron 71

72

Eye irritant, skin, respiratory

Allergenic

7440-32-6

63

Compounds

Irritating, Carcinogen form Aerosols (Group 1 IARC)

1762-95-4

13463-67-7

65

In the long term

7783-20-2

Titanium dioxide TiO2

64

Acute or Subacute

H2SO4

62

Zinc compounds

Zirconium

TOXICITY

MAJOR MINERALS CHEMICAL

Carcinogen possible (Group 2B IARC)

3486-35-9 13746-89-9 14644-61-2 7699-43-6

Corrosive

Irritant

10043-35-3

Skin irritant

Reprotoxic (Repro2)

Irritant

Reprotoxic

7775-19-1

Irritant

1303-86-2

Skin irritant, ocular

Reprotoxic

10486-00-7

Eye irritant

Reprotoxic (Repro2/Repro3)

  ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

13

MINERAL CHEMICAL

TOXICITY

MAJOR MINERALS CHEMICAL COMPOUNDSIN MEETINGS FRACTURING FLUIDS

FAMILY

7664-39-3

Corrosive

Irritant

74

Ammonium bifluoride F2 (NH4)2

1341-49-7

Corrosive

Irritant

Hydrogen peroxide

7722-84-1

Irritating, skin, ocular

Promoter carcinogenesis

75

(Hydrogen peroxide)

oxygenated

phosphorus

A long term

Hydrogen fluoride (Hydrofluoric acid)

compounds

Compounds

Acute or Subacute

73

Fluorinated

Compounds

CASE Nbr

76

77

HF

H 2O 2

Dipotassium phosphate K2H (PO4)

7758-11-4

Trisodium phosphate Na3 (PO4)

7601-54-9

 

(Source: swarthmore.edu)

(Source: Unknown) Evolution of the landscape of pits of Marcellus shale gas in shale (USA) ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

14

IV, ORGANIC CHEMICALS CHARACTERIZED IN FRACTURING FLUIDS If mineral products can be grouped around the chemical elements themselves, by cons organic products will be classified by chemical family. All the organic compounds are carbon-based, most often linked to hydrogen, constituting and their hydrocarbon backbone and on which will generally be added one or more functions responsible for chemical reactivity of these molecules. Table 4 contains the main organic compounds, classified by family and which were collected by Environmental Protection Agency (EPA), in fracturing fluids. On this table, each compound is identified by CASE number and for information purposes only, is reported when described, acute or subacute, and the long-term toxicity. Table 4 : MAJOR ORGANIC COMPOUNDS, HIGHLIGHTED IN FLUIDS FRACTURING ORGANIC CHEMICAL FAMILIES



MAIN ORGANIC

CASE Nbr

CHEMICAL COMPOUNDS

HUMAN TOXICITY

Acute or subacute

78

Methane CH4

79

Ethane CH3-CH3

Hydrocarbons Saturated Alkanes

80

Propane CH3-CH2-CH3

81

82

Butane CH3-CH2-CH2-CH3

Pentane CH3-(CH2)3-CH3

83

Hexane CH3-(CH2)4-CH3

84

85

Heptane CH3-(CH2)5-CH3

Propylene H2C═ CH-CH3

Hydrocarbons unsaturated ethylene: Alkenes

74-82-8

Asphyxiant

74-84-0

Asphyxiant

74-98-6

Asphyxiant

106-97-8

Asphyxiant

109-66-0

Narcotic

110-54-3

Narcotic

142-82-5

Narcotic

115-07-1

Asphyxiant

86

1 - Eicosene C20 H40

3452-07-1

87

1-Hexadecene C17 H34

629-73-2

1-Octadecene

112-88-9

88

C18 H36

In the long term

Neurotoxic peripheral (Polyneuritis)

  ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

15

MAIN ORGANIC CHEMICAL FAMILIES



CHEMICAL COMPOUNDS

1-Tetradecene C14 H30 d-Limonene

89

Hydrocarbons unsaturated ethylene: Alkenes

HUMAN TOXICITY

MAIN ORGANIC

CASE Nbr

Acute subacute

or

A long term

1120-36-1

5989-54-8

90

Irritating, Allergenic cutaneous

Irritating, Allergic skin

Styrene Neurotoxic, 100-42-5

91

Irritant

Benzene 71-43-2

92

Neurotoxic central

Toluene 108-88-3

93

Irritating, Neurotoxic central

Carcinogen possible (group 2B IARC) Haematological, Carcinogen (Leukemia) (Group 1 IARC) Neurotoxic central Ototoxic, Reprotoxic (Repro3)

Xylene (three isomers) 1330-20-7

94

1,2

1,3

Irritating, Neurotoxic central

central

1,4

Ethylbenzene 100-41-4

95

Hydrocarbons

Irritating, Neurotoxic moderate central

Cumene (Isopropylbenzene)

Aromatic (Arena)

Neurotoxic

98-82-8

96

Eye irritant

Skin irritant, Neurotoxic central moderate Carcinogen possible (group 2B IARC) Carcinogen possible (group 2B IARC, 2012)

Pseudocumene (1 ,2,4-Trimethylbenzene)

    97

95-63-6

Irritating, Neurotoxic moderate central

 

ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

16

ORGANIC CHEMICAL FAMILIES



HUMAN TOXICITY

MAIN ORGANIC CHEMICAL COMPOUNDS

CASE Nbr

Acute subacute

25340-17-4

Irritant

or

A long term

Diethylbenzene (Mixture of 3 isomers) 98

1,2

1,3

1,4

Dodecylbenzene 123-01-3

99

Naphthalene Irritant

Hydrocarbons

91-20-3

100

gastrointestinal Hepatotoxic Haematotoxic

Haematotoxic (Anemia hemolytic) Cataract, Carcinogen possible (Group 2 B IARC)

1-Methylnaphthalene

Aromatic (Arena)

101

90-12-0

Mutagenic

91-57-6

Mutagenic

86-73-7

Mutagenic

2-Methylnaphthalene 102

9H-Fluorene 103

Phenanthrene

85-01-8

104

Photo-

Mutagenic

sensitizing

105

Isoparaffin hydrocarbons oil

106

Paraffin oil, light

Mixtures Hydrocarbons

107

 

Terpenes, lemon extract

94266-47-4

ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

Allergenic

17

ORGANIC CHEMICAL FAMILIES

HUMAN TOXICITY

MAIN ORGANIC



108

CHEMICAL COMPOUNDS

110

Acute subacute Allergy

Turpentine

8002-09-3

(Pine oil)

109

CASE Nbr

toluene, xylene, ethylbenzene)

Poly aromatic hydrocarbons

Irritant

(PAHs)

Mixtures 111

Hydrocarbons

112 113 114

Refined petroleum

Diesel

116

Heavy naphtha

117

Kerosene

Irritant 8006-20-6

Irritant

68334-30-5

Irritant

64741-68-0 64742-94-5

Irritant

8008-20-6

Irritant

8052-42-4

Irritant

Asphalt 118

119

Vinylidene chloride (1,1-dichloroethylene)

Cl

Eye irritant, 75-35-4

Cl

Compounds

Tetrachloroethylene (Perchloroethylene) 120

Organochlorine

Cl

Cl

Cl

Cl

Benzene is Carcinogen (Group 1 IARC) Several PAHs Carcinogens are in humans [Benzo (a) pyrene ...]

Irritant

Naphthalene heavy, hydrogenated

115

Allergic skin

Irritant

Light oil, hydrogenated

Motor gasoline (Gasoline)

A long term

(by origin) Irritant

Aromatic solvents (benzene,

or

skin, respiratory

Eye irritant, 127-18-4

Carcinogen possible (group 2B IARC) Carcinogen (Group 1, IARC) Carcinogen IARC) possible

May contain products carcinogenic Hepatotoxic Nephrotoxic, Carcinogen possible Hepatotoxic

skin, respiratory

Carcinogen probable (group 2A IARC)

Eye irritant,

Mutagenic,

skin, respiratory

Carcinogen (Group 2A IARC)

Benzyl chloride 121

Cl

100-44-7 l

Alcohols  

122

Methanol CH3-OH

67-56-1

ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

Eye irritant cutaneous

Neurotoxic peripheral (Optic nerve) Acidosis

18

 

ORGANIC CHEMICAL FAMILIES



HUMAN TOXICITY

MAIN ORGANIC CHEMICAL COMPOUNDS

CASE Nbr

Acute or subacute

Ethanol 123

64-17-5

CH3-CH2-OH

Eye irritant, cutaneous

Propanol 71-23-8

124

CH3-CH2-CH2-OH Isopropanol CH3 H C OH CH

125

67-63-0

3 3

126

Butanol CH3-CH2-CH2-CH2-OH

71-36-3

In the long term Toxic ingestion, Hepatotoxic Carcinogen (Group 1 IARC), Reprotoxic

Eye irritant, cutaneous Eye irritant, cutaneous Eye irritant, Cutaneous, narcotic

Isobutanol

Alcohols

CH3

127

CH3 128

CH3

Eye irritant, cutaneous

Isooctanol CH

CH3

78-83-1

CH CH2 OH

(CH2)4 CH2

OH

26952-21-6

Eye irritant, cutaneous

129

130

2-Ethyl hexanol CH3 (CH2)3 CH CH2 OH CH2

104-76-7

Eye irritant

107-19-7

Irritant

112-42-5

Skin irritant

Reprotoxic

CH3 131 132

Propargyl alcohol H-C ≡ C-CH2-OH Undecanol CH3 (CH2)9 CH2 OH Ethylene glycol

133

CH2 OH

107-21-1

Neurotoxic, Nephrotoxic

CH2 OH 134

Glycerol HOCH2-CHOH-CH2OH

56-81-5

Eye irritant, cutaneous

135

Sorbitol HOCH2-(CH2) 4-CH2OH

50-70-4

Intestinal irritant

136

Polyvinyl alcohol

9002-89-5

  ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

19

 

MAIN ORGANIC CHEMICAL FAMILIES



Amino Alcohols

137

MAIN ORGANIC CHEMICAL COMPOUNDS Ethanolamine H2N-CH2-CH2-OH

HUMAN TOXICITY CASE Nbr

141-43-5

Acute or subacute Irritant

Diethanolamine 138

H N

CH2 CH2 OH

111-42-2

CH2 CH2 OH

Eye irritant, skin, respiratory

Ethylene oxide 75-21-8

139

140

2-Methoxyethanol (Methyl ether of ethylene glycol) O O H

109-86-4

Méthoxyéthylacetate (methyl ether of ethylene glycol acetate) 141

O

O

Eye irritant, cutaneous

O

O

110-49-6

A Long-term

Allergenic Possibility of formation of Nnitrosodiéthanola -mine, carcinogenic Mutagenic, Carcinogen (Group 1 IARC)

Eye irritant,

Reprotoxic

cutaneous

(Repro-2)

Eye irritant,

Reprotoxic

bronchial

(Repro-2)

Eye irritant,

Reprotoxic

cutaneous

(Repro-2)

Eye irritant,

Reprotoxic

cutaneous

(Repro-2)

Eye irritant, cutaneous

Nephrotoxic

Ether-oxides 142

(Epoxides Glycol ethers, Ether-oxides Polymers)

143

2-Ethoxyethanol (ethyl ether of ethylene glycol)

O

O H

2 Ethoxyéthylacétate (Ethyl ether ofethylene glycol acetate) O O O

Diethylene glycol 144

O H

O

H O

110-80-5

111-15-9

111-46-6

1,4-Dioxane

O

145

123-91-1

Eye irritant, cutaneous

O 1,2-Dimethoxyethane

O

O

146

110-71-4

Irritant

Reprotoxic (Repro-2)

629-14-1

Eye irritant

Reprotoxic (Repro-2/3)

1,2-Diethoxyethane

O

O

147

Dipropylene glycol 148

H O

O

O H

Carcinogen possible (Category 2B IARC)

25265-71-8

  ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

20

  MAIN ORGANIC CHEMICAL FAMILIES



HUMAN TOXICITY

MAIN ORGANIC CHEMICAL COMPOUNDS

CASE Nbr

Acute or subacute

2-Butoxyethanol (Butyl ether of ethylene glycol)

O H

O

149

111-76-2

Skin irritant

111-77-3

Eye irritant

In the long term Toxic blood Disruptive endocrine (Ovaries, adrenal)

2 - (2-Methoxyethoxy) ethanol. Methyl ether of diethylene glycol

O H

O

O

150

Ether-oxides

(Epoxides Glycol ethers, Ether-oxides Polymers)

151

2 - (2-Ethoxyethoxy) ethanol Ethyl ether of diethylene glycol O H O O

111-90-0

Eye irritant, cutaneous

2 - (2-Butoxyethoxy) ethanol Butyl ether of diethylene glycol 152

O H

O

O

112-34-5

Eye irritant

10213-77-1

Eye irritant

93-18-5

Skin irritant

104780-82-7

Irritant

2 - (2-Methoxypropoxy) propoxy propanol Methyl ether of tripropylene glycol 153

O

154

155

156

Polymers

O

O

2-ethoxynaphthalene O

Ethyl alcohol ethoxylate (Polyethoxy ethanol) (C2H4O) n, C2H5O

O

H

Lauryl alcohol ethoxylated (C2H4O)n, C12H26O

Irritant

157

Ethoxylated octyl phenol (C2H4O)n, C14H22O

9036-19-5

Eye irritant

158

Ethoxylated nonylphenol (C2H4O) n, C15H24O

9016-45-6

Irritant

Aether-oxides

159

160

Polyethoxylated alkanols (C2H4O)n, CnHn'O Polyethylene glycol (C2H4O) n, H2O

Irritant 25322-68-3

Eye irritant, cutaneous

  ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

21

 

MAIN ORGANIC CHEMICAL FAMILIES

Aldehydes



MAIN ORGANIC CHEMICAL COMPOUNDS Formaldehyde H C O H

161

HUMAN TOXICITY CASE Nbr

50-00-0

Eye irritant, skin, respiratory

111-30-8

Irritant eye skin, respiratory

67-64-1

Eye irritant, skin, Neurotoxic

108-10-1

Eye irritant, skin, respiratory Neurotoxic

Glutaraldehyde 162

H

H O

O

Acetone

O

163

CH3 C CH3

Ketones

Methyl isobutyl ketone 164

CH3 CH

CH2

O C CH3

CH3 Formic acid 165

H

O C

64-18-6

OH

Acetic acid O

166

64-19-7

CH3 C OH

Acute or subacute

Corrosive (Eyes, skin, mucous membranes ...)

In the long term Allergenic Carcinogen (Group 1 IARC) Allergenic

Irritant

Eye irritant, cutaneous

Fumaric acid O

HO C

167

C H C H

Acids

168

Carboxylic

HO

cutaneous

OH

O

(CH2)4

Glycolic acid 169

Eye irritant,

O

Adipic acid O

HO C

C

110-17-8

C OH

124-04-9

O

CH2 C OH

79-14-1

Eye irritant

Eye irritant, skin, respiratory

Citric acid O 170

HO

CH2

C OH O

C

C

CH2

C

77-92-9

OH OH

O

  ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

22

 

MAIN ORGANIC CHEMICAL FAMILIES



MAIN ORGANIC CHEMICAL COMPOUNDS

CASE Nbr

HUMAN TOXICITY

Acute subacute

or

A Long-term

Thioglycolic acid (Mercaptoacetic acid)

Acids Carboxylic

O

171

68-11-1

CH2 C O H

HS

Eye irritant, skin, respiratory

Acetic anhydride

Anhydride acid carboxylic

O 172

CH3 C CH3 C

108-24-7

O

Eye irritant, cutaneous

O 173

174

Esters carboxylic

175

Sorbitan monooleate C24H44O6

1388-43-8

Polyethylene glycol oleate O C17H33 C O

CH2-CH2-O

n

Fatty acid esters O

917-44-20-6

R1 C O R2 176

Castor oil, ethoxylated

61791-12-6

Ethyllactate

O

177

97-64-3

HO O Triethanolamine glycolate

Acid salts

178

carboxylic

O N+

HO

OH OH

H

OH O OH Tributylphosphate (TBP) O

Esters phosphoric (Phosphates organic)

179

180

- +

O

O P O O

Tributyltétradécyl phosphonium chloride

126-73-8

Irritant

80741-28-8

  ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

23

 

MAIN ORGANIC CHEMICAL FAMILIES



181

Amines

HUMAN TOXICITY

MAIN ORGANIC CHEMICAL COMPOUNDS

CASE Nbr

Aminoethylethanediamine (Diethylenetriamine) H

111-40-0

N-Oxides Amine

183

184

Allergenic

NH2

1,6-hexanediamine 182

Eye irritant,

A long term

cutaneous

N

H2N

Acute or subacute

H2N

124-09-4

NH2

Trimethylamine N-oxide + N O

Eye irritant, skin, respiratory

1184-78-7 Irritant

Tetramethyl- ammonium chloride + Cl N

75-57-0

Dimethyldiallylammonium chloride

Salts

+

185

Ammonium quaternary 186

Irritant

Cl

N

Dimethyl didecylammonium chloride +

N

7173-515-5

Skin irritant

593-81-7

Irritant

75-12-7

Eye irritant

Cl

Trimethylammonium chloride

+

187

Cl

N

H N-benzyl alkylpyridinium chloride

 

Salts of immonium Bases Heterocyclic nitrogenous unsaturated

188

Cl

N+

R

1 (-Phenylmethyl) quinolinium chloride 189

N+ H

Amides

190

Cl

Formamide O

H C NH2

Reprotoxic (Repro 2)

  ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

24

  MAIN ORGANIC CHEMICAL FAMILIES



MAIN ORGANIC CHEMICAL COMPOUNDS

HUMAN TOXICITY CASE Nbr

Dimethylformamide (DMF)

O CH3

191

68-12-12

H C N CH3

192

2,2-Dibromo-3-nitropropionamide (DBNPA) NO2 Br

10222-01-2

NH2

Br

Acute or subacute Eye irritant, skin, respiratory

In the long term

Dermatosis, Hepatotoxic Reprotoxic (Repro 2)

Eye irritant, skin, respiratory

O

Amides

2-Bromo-3-nitrilopropionamide (MBNPA) 193

Irritant 1113-55-9

H

N

Br

NH2

O 2,2-Dibromomalonamide

Irritant eye skin, respiratory

O

194

Br

NH2 NH2

Br

O BrAcrylamide O NH

Irritant

2

79-06-1

195

O

Dibromoacetonitrile 196

Br

N

Br

Nitriles

3252-43-5

2-Bromo-3-nitrilopropanol

H Br

1,2-Benzoisothiazolinine-2-one S 198

eye skin, respiratory

Neurotoxic peripheral (Polyneuropathy) Carcinogen probable (Group IARC 2A)

Irritant eye skin, respiratory Irritant eye skin, respiratory

N OH

197

eye skin, respiratory

2634-39-5

O N H

Heterocycles

4-Méthylisothiazolidine S 199

N H

  ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

25

MAIN ORGANIC CHEMICAL FAMILIES

HUMAN TOXICITY

MAIN ORGANIC CHEMICAL COMPOUNDS



CASE Nbr

Acute or subacute

A long term

2-Quinaldine chloride

Heterocycles

91-63-4-20

200

Eye irritant, cutaneous

N+ CH3 H Cl Diisopropylnaphthalene sulphonic acids SO3H

201

Sodium octanesulphonate SO3 Na +

202

Ammonium cumene sulfonates

Compounds

SO3

203

-

+ NH4

Isopropylamine dodecylbenzenesulfonate

sulphonated 204

+ H2N

-

SO3

Sodium alcénylsulfonate 205 CH

R

CH

SO3

*

-

+ Na

n

Sodium ligninsulfonate

206

Sodium alkylaryl sulfonates 207 R

CH

CH

SO3

*

-

+ Na

n

Polyvinyl alcohol

Polymers

208

CH2 CH OH

209

9003-89-5 9002-89-5 n

Anionic polyacrylamide

9003-03-8

  ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

26

MAIN ORGANIC CHEMICAL FAMILIES

HUMAN TOXICITY



210 211 212

MAIN ORGANIC CHEMICAL COMPOUNDS

Copolymers of acrylamide Oleic ester of polyethylene glycol

CASE Nbr

Acute or subacute

A long term

38-192-60-1

9004-57-3

Irritant cutaneous

Polyhexamethyleneadipamide Polymers of acrylic acid

Polymers

213

OH O

n

Polymers of thiourea 68527-49-1 214

215

216

217

Carbohydrates

218

219

and

S C

NH2 NH2

n

Guar resin (Natural polymer saccharide) Hemicellulase (Enzyme) Cellulose (C6H10O5)n

9000-30-0 9025-56-3 9004-34-6

Ethylcellulose

9003-05-8

Sucrose (Sucrose) C12H22O11

57-50-1

Ethylenediaminetetraacetic acid

derivatives

Chelating

Various

60-00-4

220

Compounds simple

NTA Nitrilotriacetic acid (NTA) O

N HO O

Chelating

OH

139-13-9

221

Irritant eye skin, respiratory

O OH

Irritant eye skin, respiratory

Nephrotoxic, Chelating Ca+ 2 and Zn+ 2

Nephrotoxic, Chelating Ca+ 2 and Zn+ 2 Carcinogen possible to Rights (group 2B IARC)

 

ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

27

 

V, fracturing fluids: A REACTIONAL ENVIRONMENT Of the 392 products or mixtures, listed in the EPA document of February 21, 2011 (EPA / 60/D-11) and was used to create the tables 3 and 4, only 221 were selected, the others have could be identified from their chemical name, which is not obvious. Note several repetitions, such as hydrochloric acid which is also known muriatic acid, a very old name. Among the products identified by the EPA in water recovery, it is surprising to find the numerous halogenated hydrocarbons (methyl chloride, methyl bromide, 1,4-dichlorobutane, 2 - fluorobiphenyl...) Which may have formed in the fracturing environment from initial hydrocarbon, in the presence of halogenating reagents, themselves initially present in the fracturing environment. Everything seems as if the fracking zone, which is located at great depths (1000 3000 m or more), subjected to high pressures and temperatures high enough, is included as a chemical reactor in which several hundred products, including some are powerful catalysts (metal salts ...), interacted and formed into final new compounds, results of one or more chemical reactions. One that may seem, the most amazing results is 4-nitroquinoline-N-oxide (4-NQO), that found in the output water of fracturing, according to documents of the NYSDEC, the State of New York at concentrations that can approach 15 mg/L-1. Where can come from this compound, which may seem very unusual in water fracturing, whereas it is only used by specialists in experimental carcinogenesis selectively trigger in rodents (rats, mice) of cancers of the oral cavity and tongue, but also by microbiologists as an effective control mutagenesis substance, for example with Escherichia coli (SOS-chromotest). For the sake of profitability, oil inject some fracturing fluids, cuts crude oil, which correspond to very complex mixtures and that have also not been taken into account in Table 4. Among them is injected routinely mixtures of nitrogenous bases easily removable for crude oils by treatment in acidic medium, among which are mixtures of the quinoline and its derivatives (for example, the compound No. 200). The quinoline is a unsaturated nitrogen heterocyclic base, whose structure can be likened to the naphthalene (mothballs, moth products) in which a carbon atom is replaced by a nitrogen atom.

One can imagine that initially is injected a mixture of nitrogen bases containing quinoline and a reactive nitrating such as metal nitrate while the acid (HCl ...). At the area fracturing, the quinoline will easily is selectively nitrated, So only on the top para to the nitrogen atom, the 4-nitroquinoline thus formed can be easily oxidized, at of the heterocyclic nitrogen atom by a peroxidizing agent such as hydrogen peroxide and in final 4-nitroquinoline-N-oxide, as shown in Figure 4. If, in the fracturing fluid, EPA has identified several derivatives of quinoline, is a single found in substantial quantities in water output. This is the N-oxide of 4 - nitroquinoline, known as a model animal to trigger specifically in rodents, cancers of the oral cavity selective and language.

ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

28

  The formation of N-oxide can be envisaged as shown in Figure 4, from the 4 - Nitroquinoline, by oxidation in the presence of oxidizing chemical reagents present in the liquid as the fragmentation hydrogen peroxide (Hydrogen peroxide, No. 75), the perborate sodium (No. 72) or the ammonium peroxydisulfate (No. 60).

NO3 H

N

NO2

NO2

-

H2O2

+

N 4-Nitroquinoleine

Quinoléine

N+ O N-Oxyde de 4-nitroquinoleine

Figure 4 : Formation of 4-nitroquinoline-N-oxide by oxidation of 4-nitroquinoline, after the selective nitration of quinoline. Similarly, it appears in the output water fracturing, of hexavalent chromium compounds :(chromates...) While in the initial liquid the EPA has only identified one trivalent chromium salt, chromic acetate (No. 29). In an oxidizing medium, it is easily transformed into compound hexavalent, as shown in Figure 5 O

Cr (CH3COO)3 Acétate chromique

CrO4

2-

Chromate

Figure 5: Oxidation of Chromic acetate chromate dianion. Moreover, it seems surprising that we find in the water output, as reactive compounds that ethylene oxide (No. 139), Just waiting to hydrolyze into ethylene glycol (No. 133) such as Figure 6 shows

CH2 CH2 O

H2 O H

Oxyde d'éthylène

+

H O CH2 CH2 O H Ethylène-Glycol

Figure 6 Hydrolysis of Ethylene oxide to Ethylene glycol.

VI, ROUTES OF EXPOSURE TO CHEMICALS IN FRACKING FLUIDS AND RISKS Regarding the effects of chemical compounds produced during the various processes during extraction of gas or oil from shale or parentrock, it is necessary to distinguish several exposure steps : 1) During initial step, must take into account the handling of all products departure which is mixed to obtain the final product which will be injected. During these manipulations, the priority channel will be inhalation exposure products, including the volatility be highly variable ... from methane at naphtha ! Many petroleum fractions can be implemented rich volatile organic compounds (VOCs) such as benzene (No. 92), a potent human carcinogen. As the majority of hydrocarbons are very soluble in fat, penetration through the skin should not be neglected because it can contribute to the toxic process. In fact, the pollution levels higherwill be located near sites of mining activity. ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

29

 

Note that the co-existence among air pollutants of volatile hydrocarbons and of nitrogen oxides (NO)x may, at ground level result in formation of ozone (O3), pollutant often found on sites operating. Further more, we observe in the mining areas of shale or bedrock, an increase non-negligible particles, especially the many fine nanoscale. These preferably from the last combustion of diesel (n°115, carcinogen in human, Group2A IARC)), the fuel of choice of transport units extremely numerous on the extraction sites (truck transport tank of water, gas ...).

Fire pits on a U.S. (Source: frackcheckwv.net)

Explosion at a construction site extraction. Marcellus shale (Source: rue89.com)

ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

30

  It must be remembered that major accidents may threaten the workers health, but also surrounding populations, Are explosions (see photo page 30), fire (See photo page 30) the rest ... often linked to leakage and to Pipeline ruptures or accidental spills, indeed criminals, dangerous substances. Without official statistics, seems difficult to assess the frequency of this type of incident or accident, but the United States, it may not be negligible! Of course, people whose exposure to various air pollutants (hydrocarbons,NOx, SOx, O3 particles varied....) Is likely to increase in an area of operation of the gas or shale bedrock, are those whose homes and related activities are located near production sites. Nevertheless, the problem is to correctly estimate the real level of the contamination, both mixtures can be complex and variable concentration. In addition, synergies between compounds can greatly increase their aggressiveness.

Marcellus Shale. Pits (Source: powderriverbasin.org) 2) The actual extraction of gas will begin with a vertical borehole in which the thewater mixed with sand, or barium sulfate (BaSO4) (No. 19) and various other additives chemical, Is injected from the drill bit head. This mixture comes to the surface under a sludge (100 to 125 m³ per well), the latter will the storage object in specialized centers or landfill. In a second step, the hydraulic fracturing itself will require the use of very large amounts of water, of the order of 2 million liters of water per fracturing step.

ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

31

  As a vertical shaft allows for 6 to 10 steps of fracturing horizontal, volume of water needed at all stages of operation can be estimated at nearly 12 to 20 million liters of water per well (Data from the National Public Health Institute of Quebec, November 2010). United States, in Pennsylvania, where there are 71 000 is an active well drilling for 1.6 km2, the use of instead of water in underground 2008, resulted in the drying several groundwater! One can only wonder about ecological future of these regions! Excavation with holding tank Marcellus Shale (Source: Unknown)

At the operating phase of a well, rising to the surface of the gas is sometimes accompanied a large amount ofbrackish water. This water rich in salt (sodium chloride) from of ancient seas, whose water remains trapped in the shale or bedrock. In general if a part of the reclaimed water can be reused for new fractures, the majority of the water worn very high salt, Is stored in a lagoon where it will desalinate slowly. Then Use routing this water is eithered in a treatment center, is injected into deep geological formations, resulting in significant risk of pollution, such as water can remain contaminated by many chemicals pollutants. Business Survey in the United States, showed that waste and the debris or drilling wastes can show a significant radioactivity. According to the EPA, in Pennsylvania, wastewater presented a levels of radioactivity 100 to 300 times higher than the standards applied in the U.S.. Among the radionuclides are mainly characterized radium-226 (1600 year half-life), but also radon 222, or thorium-232 and uranium 235. These radioactive elements, in particular the radon 222, radium-226 and the thorium-232 are formidable lung carcinogen in humans (IARC, Group 1), the latter having been detected in drinking water, distributed to local populations (NYSDEC. 2009). Still, according to EPA (2009), "The exploitation of shale or bedrock, is not coherent with a supply of drinking water unfiltered "This is only confirm the great distrust of the U.S. environmental agency for all matters relating exploitation of gas and oil shale or bedrock, which resulted in so many ecological disasters North America and that will in fact lead to desertification of vast areas formerly prosperous.

ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

32

  Very generally, among environmental impacts related to the operation or gas oilsor shale bedrock, the most important is, in fact, Water whose management must scrupulously three general principles :



a) The amount of water necessary drilling and fracturing, must be evaluated as soon departure, taking into account the essential water resources in local. This may seem obvious, yet this vital data has been completely ignored in some regions of the United States, dedicated no doubt in future close to desertification. As previously reported, the amount of water required for drilling and fracking ranges from 10 000 to 15 000 m³ drilling Or much more!



b) It is extremely important evaluate ways to implement for recycling and above the treatment of water out of the fracturing. In general, 20 to 70% of the injected water is recovered but sometimes much least depending on local geology ! This water is either treated on site, is routed to a processing center. Having circulated under high pressure in the various sedimentary strata, this Water will load in salt, and different chemical elements minerals encountered on its way sooner or later. These elements vary in nature, can be released by the action of various constituents of the liquid fracturing (acid ...) even microorganisms.

Colonies Desulfovibrio desulfuricans (Source: sustainableotsego.org) Regarding the latter case, various rocks especially rich hematite (Fe2 O3), host colonies anaerobic bacteria almost, sulfate-reducing such as Desulfovibrio desulfuricans that feeding metal sulphides (pyrites...). Release of dihydrogen sulfide (H2S) gas is very toxic met from time to time in the gas recovered in the fracturing. It remember that this smelly gas (The rotten egg smell), kills faster that the carbon monoxide (CO) and is also endowed with an effect powerful anesthetic on the nerve olfactory. This may explain some deaths in the animal population living near farms, but also events like the "rain bird" found in the U.S States as has been said by the local press.

ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

33

  As noted on page 65 the information report of the National Assembly on the "Mission information on gas and oil shale "of 8 June 2011, he can indeed" be at the very Unless of hazardous circumstances "because similar phenomena occurred in other parts of the world, including Sweden. We fully support this extremely careful reading of our report « écotoxicochimique ». We have also reported these doubts to the journalist Audrey Chauvet (article in the May 11, 2011 the daily 20 minutes). This does not diminish the effectiveness "lethal" H2S, which may for example killing a horse in a few seconds (beach of Saint-Michel en Greve in France, July 28, 2009)!

Rain Bird in Beebe, Arkansas late 2010 (Source: AP / WarrenWatkins)

Note that in wastewater discharged appear at the fracturing many salts water-soluble, Driven at the leaching through during different geological layers the recovery of fluids. Many of these are toxic to humans, including some very toxic (As, Ba, Cd, Pb, Tl ...). The chemical species detected for these different elements are grouped in Table 5. CHEMICAL ELEMENTS

Antimony

Sb3+,  Sb5+  

Beryllium

As3-­‐,  As3+,  As5+   Ba2+   Be2+  

Cadmium

Cd2+  

Arsenic Barium

Chromium

Cr3+,Cr6+  

Cobalt

Co2+,  Co3+  

Copper

Cu+,  Cu2+  

Nickel

Ni2+  

Lead

Table 5 :

CHEMICAL SPECIES DETECTED

Pb2+,  Pb4+  

Thallium

TI+,  TI3+  

Thorium Uranium

Th4+   U4+,  U6+  

Vanadium

V5+  

Yttrium

Y2+  

  CHEMICAL ELEMENTS OF NATURAL AND SPECIES DETECTED WATERS OUT OF FRACTURE (Ratio EPA / 600 / D - February 11, 2011. Page 98) ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

34

  It is obvious that these natural elements that enrich outlet water wells fracturing are many pollutants, which will disrupt treatment plants classically saturated in these extraction areas. Height of difficulty, these discharges, can also focus radioactive elements such as radium (Ra226), it is virtually impossible to eliminate. Generally, many metals (Iron, Copper, Manganese, Silver, Mercury, Lead, Cadmium, ...) and non-metal (Arsenic, Antimony, Selenium...), in rocks in the state of sulphides, may be released in a soluble ionized form. Various chemical reagents added to start in Water fracturing can facilitate this release. And from their sulphide, mercury, lead, cadmium and the thallium but also non-metals as arsenic and antimony will release their water-soluble cations, which are extremely toxic.Therefore, it is not surprising to find all these toxic elements in wastewater, as shown in Table 6. TYPE OF CONTAMINANTS

EXAMPLES

Gas

Hydrocarbons (Methane, Ethane) Carbon dioxide (CO2) Dihydrogen sulfide (H2 S) Dinitrogen (N2) Helium (He)

Toxic Trace Elements

Radionuclides

Organic Compounds

Mercury (Hg) Lead (Pb) Arsenic (As) Radium (Ra 226) Radon (Rn 222) Thorium (Th 232) Uranium (U 235) Carboxylic acids Polycyclic Aromatic Hydrocarbons (PAHs) Volatile Organic Compounds (VOCs)

  Table 6 : MAJOR CHEMICAL COMPOUNDS IN TRAINING MEETINGS GEOLOGICAL CROSSINGS DURING EXTRACTION OF OIL AND GAS NO CONVENTIONAL (EPA / 600 D - II, February 2011)

From a quantitative point of view, if one is confined to the EPA document (EPA / 600 D - II, February 2011), injected fluid in the hydraulic fracturing is conventionally formed of a mixture of water (90% by volume) and sand (8 to 9.5% based firms), with various chemical additives. The concentration of these additives does not appear to exceed 2% and is located in average around 1%. According to geological structures encountered, chemical additives, whose primary role is to strengthen the hydraulic fracturing and to avoid bacterial contamination, will have compositions vary. This explains, in addition to the products listed by the EPA, whose main representatives are given in Tables 3 and 4, numerous other compounds are reported by many organizations. The variety is impressive ranging ... amino acid essential (lysine, arginine..) to the alkyl glycosides... In fact, all the chemistry seems to have concentrated in the fracturing fluids ... all chemical reactions in power! In fact, is the real obstacle to obtain information on the actual concentration of the products in this chemical soup, which one can only wonder about the need to contain both constituents! 35 ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

 

Historically, exploitation of shale or bedrock, spreads in the U.S. about a decade but worryingly, the number of producing wells is growing, with its attendant of environmental damage. But what we see, it is the scarcity of operating areas, which are monitored regular quality water this does not suggest the absence of risk contamination and gives free rein to the optimism displayed by oil tankers! In most cases, a monitoring takes place following an incident or accident but it is never routine. Thus, 5 May 2004, in Pennsylvania, an explosion occurred in a dwelling in which the owner, by opening a water tap in the presence of a flame, resulting in the destruction of his home and the deaths of three residents. It is astonishing to learn that the concentration of methane in drinking water is sometimes of the order of 1 mg/L-1, which is a factor of explosion and fire very important this has forced him to set up locally prevention (Degassing of the water, bottled water distribution ...). A recent study by Robert Jackson et al (8) showed that in Pennsylvania, in the area drilling activity, the methane concentration of the water outlet is located in the fracturing between 10 and 28 mg/L-1. A maximum concentration of 66 was observed mg/L-1, Which corresponds to a explosive atmosphere very important. In the documentary film Gasland (January 2011) John FOX very effectively alerted the consciences on the real dangers of oil and gas operations in the U.S., ecological disasters and social which indeed can reproduce throughout the world. Following this film, widely distributed, a controversy has developed, with U.S. oil on the real origin of methane responsible for the contamination of drinking water. Indeed, the methane perhaps of biogenic origin, mainly due to the decomposition by fermentation of contents organic (biogenic methane) is derived from the the thermal decomposition of buried organic matter (thermogenic methane) and which is released during fracturing of rocks impregnated shale gas. The differentiation of the origin of methane, is based on analysis isotope 14C. HOW TO CONSOLIDATE THE CHEMICAL ADDITIVES? The chemical additives added to the water fracturing (Table 3 and 4) can be grouped into three broad categories : a) Products • that promote the penetration of sand or ceramic beads in fractures. Among them, hydrochloric acid (No. 11) is the most abundant (Table 2 and 3). b) products that increase productivity wells, Including the gelling agents (Gelling agent) increase the viscosity of the drilling mud. Then you need break the gel with ammonium persulfate (No. 60) • allergenic), who left the sand in the well, can be traced back phase liquid. (product For maintain the fluidity of gel, when the temperature of the well increases, it is necessary add liaison officers (Cross linker) based oxygenated derivatives of boron as boric acid (No. 68) and borates (No. 69), some of which are classified reprotoxic (Repro2) by the European Union. c) Biocidal products that reduce bacterial growth in the fluid fracturing, but also in the wells themselves. These antiseptic products, a classical usage (medical) are present in fracturing fluids at very low concentrations of the order of 0.001% (Table 2) and do not seem endowed with a significant long-term toxicity. However, a process of substitution of these biocides, was proposed by the company • HALLIBURTON uses for disinfecting the ultraviolet which do not forget it, are classified by IARC, probably carcinogenic in humans (Group 2A). 36 ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

 

3) Consideration of assessing the degree of contamination of aquifers drinking water, is of particular importance. If the United States, thousands of wells drilling using horizontal hydraulic fracturing are in operation and under development accelerated, by cons we have only very few descriptions of contamination of water tables, the surface water and drinking water. Considering the increase in suspected cases and for overcome this deadlock constant information by oil companies, US-EPA has been mandated by the U.S. government to conduct a comprehensive study to determine the health and environmental impacts of hydraulic fracturing activities on sources of drinking water. The initial results should be available late 2011, but until this essential data, a very caution must be exercised. Ultimately, the wide variety of chemicals used in fracturing fluids and uncertainty regarding the concentrations used, do not facilitate an objective analysis of actual impacts on the health of workers and surrounding populations, but also the environment itself (wildlife). ∗

Regarding the latter, as noted the Quebec Association of Wrestling Against Air Pollution (AQLPA ) one wonders the real impact Environmental intensive exploitation of shale gas and this generally on the economy green. The answer seems to have been issued by Fatih Birol of the International Energy Agency (IEA) which is convinced that the shale gas boom has already resulted in a decrease of 50% investments in renewable energy, such as the United States, the solar and the wind. It seems unnecessary to comment on the official position! As was defined in 1996, the World Health (WHO), health is not merely the absence of disease, but also a state that allows the full development of individuals and communities. The major energy industries such as oil and gas extraction from shale or hydrocarbon source rock, lead on human communities an effect called across the Atlantic: "boom town". This effect "boom town" combines the benefits (economic development) and the effects negative population (National Institute of Public Health of Quebec, November 2010). In the U.S., in this context, the long-term effects on quality of life, health psychological and social communities living on the diamond fields of gas or oil Oil shale or bedrock, as few studies are available globally negative ... which is certainly not encouraging for the future country operators



http://www.aqlpa.com/catalogue-de-documents/doc_download/60-lexploration-et-lexploitation-des-gaz-de-schiste-dans-la-vallee-du-saint-laurent.html ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

37

 

VII, MAJOR TOXIC PRODUCTS FOR HUMANS IN FRACKING FLUIDS Most recently, the United States, the Comission of the Energy and Commerce House of Representatives represented by H.A.WAXMAN, E. J. MARKEY and D. DEGETTE, published on 16 April 2011, a list of various 2500 products (Pure or mixtures), corresponding to 750 well-defined chemical compounds. This document contains data from 14 companies services, working for the American oil industry gas, which are spread between 2005 and 2009 (Chemicals Used in hydraulic fracturing, United States House of Representatives commitee on energy Minority staff and Trade, April 2011). In this impressive list, one finds proven carcinogens for Human such as Benzene (No. 92, leucemiant agent), as well as everyday products such as instant coffee, apparently he low toxicity and for which one can ask about its real usefulness in fluids fracturing! In concluding this report, it is reported that the chemical mixtures in 2500, over 650 contain potentially harmful products. Among the latter, 22 are classified as carcinogens and are subject to U.S. laws on clean drinking water and clean air. It is likely that oil companies who want to extract in France, oil and gas shale, will not use the "cocktail delusional" of 2500 products listed in the U.S.. But from there, to think, that as some proclaim (pétroliers. relayed by official experts) that to barely a around six chemicals would be sufficient for the extraction, is a "Dream oil" very optimistic! Especially since these tankers do not forget that shale oil (CASE 68308 - 34 - 9) is classified by IARC (Thus theWHO) and this since 1987 (IARC vol 35, suppl 7) carcinogenic in humans (Group 1!) Without deciding whether the real figure of the minimum number of chemicals, necessary for a profitable exploitation of shale gas, one can nevertheless comment on the list of products considered dangerous by U.S. health authoritiesBut, of course in privileging our own assessment criteria! Indeed, if one relies on list prepared by the International Agency for Research on Cancer (IARC, Lyon, January 2011), an offshoot of the World Health (WHO), we arrive as shown in Table 7, accounted for 10 human carcinogens (groups 1 and 2A), plus nine compounds carcinogenic in animals and suspected to be carcinogenic in humans (Group 2B) but whose involvement in human cancer is not currently established with certainty. Obviously, this classification developed by panels of international experts, is only provisional classification of the WHO and is therefore constantly changing, depending on the progress of scientific knowledge.

ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

38

 

CHEMICAL COMPOUNDS

CLASSIFICATION IARC (January 2011) Carcinogenic in humans Group 1

Group 2A

Acetaldehyde NTA

X

Sulfuric acid concentrate (aerosols) Acrylamide

X

Benzene

X

X

Benzyl chloride

X

Inorganic compounds Lead 1,4 - Dioxane

X X

Titanium dioxide

X

Epichlorohydrin

X

Ethylbenzene Formaldehyde

X X

Naphthalene

X

Nitrates and nitrites Ethylene oxide

X X

Propylene oxide Crystalline silica (Inhaled in the form of Quartz or Cristobalite) Styrene

Suspected carcinogenic Group 2B X

X X

X

Antimony trioxide

X

Table   7 : CHEMICALS CLASSIFIED BY IARC FOR THEIR POWER Human carcinogen. Compared to the original list of EPA, reported in Tables 3 and 4, some products additional to add, because that can cause health problems. Therefore, we must add among the mineral products, inorganic lead compounds (Classified by IARC in 2006, probable carcinogen in humans, and more well known as neurotoxic and reprotoxic especially in young children in developing) and the antimony (listed as carcinogens by IARC 2B). From organic compounds, one must add the epichlorhydrin (Classified by IARC in Group 2A), and hexamethylene tretramine (Known in France under the name of Uroformine, a bactericidal for urinay tract), not classified by IARC, but nevertheless a potential source in slightly acidic medium, of formaldehyde (IARC Group 1) (No. 161). ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

39

 

From the tables together in the U.S. investigation report that lists the number of times chemicals are detected in the various drilling selected, it is possible to measure frequency of use of the most commonly encountered, As shown in Table 8. CHEMICAL COMPOUNDS

NUMBER OF TIMES Found in DRILLING

Methanol (No. 122)

392

Isopropanol (125)

279

Crystalline silica (Quartz) (No. 43)

207

2 - Butoxyethanol (No. 149)

126

Ethylene glycol (No. 133)

119

Light oil fractions hydrogenated

89

Soda (sodium hydroxide) (No. 49)

80

* BTEX compounds (92, 93, 95, 94)

60

  * BTEX: Benzene, Toluene, Ethylbenzene, Xylene.

Table 8 EXAMPLE OF CHEMICALS IN MOST CASES DETECTED IN UILISES FRACTURING FLUIDS IN THE UNITED STATES BETWEEN 2005 AND 2009. As guise of trade secret, the U.S. drilling companies themselves still refuse to provide quantitative data. This is a major handicap for assess the real risks toxic chemicals used. It remains the data provided by ecological associations or by official agencies such as the Office of regulating oil and shale gas in the State of New York, whose preliminary report NYSDEC in 2009 (804 pages) gives some values interesting, given in table 9. CHEMICAL COMPOUNDS N-oxide 4 - nitroquinoline Divalent cation Barium (Ba+ 2) Toluene (No. 93) Xylene (mixed of 3 isomers) (No. 94) Benzene (No. 92)

NUMBER OF DETECTION

AVERAGE in mg / L-1

24/24

13908

34/34

662

15/29

833

14/22

487

14/29

280

  Table 9 : CONCENTRATION OF SOME PRODUCTS IN WATERS FRACTURE OF DRILLING OUT, IN THE UNITED STATES (NYSDEC, 2009) ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

40

 

Attendance at such rates of all these compounds is of particular concern. The benzene (Leucemiant powerful agent in humans) and 4-nitroquinoline-N-oxide (Cancer mouth, very active in rodents), are very dangerous carcinogens, to banish imperative. The divalent cation barium (Ba2+) is an aqueous medium highly toxic, especially at the digestive tract. The benzene (No. 92), toluene (No. 93), ethylbenzene (No. 95) and xylene (No. 94), grouped in the family BTEX, are mono-aromatic hydrocarbons, excellent Volatile Organic Compounds (VOCs) and recognized as important neurotoxic and for toluene, reprotoxic (3 for European Union). The benzene (No. 92), which is certainly provided by external petroleum products (Fuel, light petroleum fractions ...) constitutes a real public health problem as powerful toxic to bone marrow (Instead of the synthesis of all blood cells) promoting, among other, the appearance of acute myeloblastic leukemia and to this doses which may be extremely low (Of the order of a few parts per million). The young children are a population particularly sensitive. These effects on bone marrow, can be increased by other constituents reported in fracturing fluids, such as ethylene oxide (Table 4) (No. 139) and the formaldehyde (Table 4) (No. 161). Apparently benzene continues to recover as contaminating rivers and streams through the extraction sites or shale bedrock. So recently, EPA has obviously, the aqueous waste discharged into the river "Allegheny" in Pennsylvania, contain benzene, at a concentration 28 times greater than the force in U.S. standard (EPA, April 2010). Recent media reports tell of the leakage light aromatic hydrocarbons, which upon rise by Plastic Pipe, of liquid outlet, disseminate these compounds suggest volatile, which once on the surface, evaporate into the atmosphere, resulting in significant pollution of ecosystems : Thus the United States but also Germany, of residents of drilling platforms shale gas frequently complain of headaches and gastrointestinal disorders, certainly related to inhalation of these hydrocarbon compounds. For proof, lower Saxony (Northern Germany) in the territory of Sohlingen or EXXON-MOBIL produces gas drilling, a local resident who complained of headaches had in his blood, a rate of 0.7 µg / L-1 of benzene, a sign of impregnation substantial as normally benzene is not present in the blood ! To assess the real risks of some chemicals found in common fluids fracturing, it is necessary in a first approach classify the compounds according to their degree of dangerous, both for workers in this sector gazo-oil, for local people and more generally environment.

(Source: thermojetstove.com)

(Source: explorepahistory.com)

"Allegheny River" in Pennsylvania

ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

41

 

1) What products are essential to eliminate as responsible irreversible effects ? • The enemy number one is the benzene (No. 92), the aromatic hydrocarbon most simple, but also the more dangerous to health, toxic selective marrow bone in Man. By acting on stem cells, The benzene will disturbthe synthesis of red cells, Hence the appearance anemia more or less irreversible. Its action on platelets will cause disorders coagulation, but especially its impact on white blood cells may lead to their uncontrolled reproduction, Hence the appearance of leukemia. It is important toindicate that there is a clear dose-effect relationship between the importance of exposure in ppm / month and the incidence of leukemia4. Other products often present in the fracturing fluids should be absolutely prohibited, as • formaldehyde (No. 161), ethylene oxide (No. 139), acrylamide (No. 195) and the crystalline silica (No. 43). a) The formaldéhyde (No. 161), and more powerful irritant properties and allergenic in humans is a carcinogenic oro-laryngeal and is involved in causing leukemia. b) Ethylene oxide (No. 139), which is poorly understood in the presence of fluids fracturing, is also a strong leucemiant agent. c) With respect to the acrylamide (No. 195), in addition to being a neurotoxic peripheral (Polyneuritis), it is also a carcinogenic in humans, which is not the case of polyacrylamide gels, commonly used in liquid fracturing. d) As for the crystalline silica (SiO2)n (No. 43), which exists in different forms (Quartz, Cristobalite), it is a and fibrotic lung irritant powerful (Silicosis ...), but also a bronchial carcinogen, which occurs essentially to the form of dust and its use as wet sand (Table 2), does not correspond to a situation in which the crystalline silica, should present a activity genotoxic. e) Sulfuric acid (No. 56) concentrated is a carcinogenic bronchial Man, but only in the form of aerosols, such as at ist synthesis in the "lead chambers." It would be surprising to intervene and in fracturing fluids, but we must remain cautious, because it is very corrosive ! In general, when selecting a product for its impact health, it would be wise to consider its real conditions exposure, which would avoid real controversy.

2) What are the products of health concern and should replaced by less toxic compounds ? • In this category, you must put products endowed with selective toxicity as the reprotoxic or neurotoxic, not to mention haematotoxic, hepatotoxic, nephrotoxic, immunotoxic, and disruptive endocrine. a) Among the compounds known reproductive toxins in humans (Classification European) and glycol ethers, are a group ethers of well represented in the fracturing liquid. In particular, should be only be replaced the methyl and ethyl ethers of ethylene glycol and their acetates and by this 1-propylene glycol ethers which are not reprotoxic.

4

Benzene, MSDS No. 49, 2004 INRS ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

42

O

O H

2-Methoxyethanol (No. 140)

O

O

O

O

Acetate 2 Methoxyethanol (No. 141)

O

O H

2-Ethoxyethanol (No. 142)

H O

O

O

Acetate 2 Ethoxyethanol No. 143)

O R

Ether of 1Propylene glycol

  b) The compounds of boron, Most reprotoxic as boric acid (No. 68) could be replaced by the sodium metaborate (No. 70), not reproductive toxicant. O H B O H O H Boric acid (No. 68)

 

O B O

+

Na , 8 H2O

Sodium metaborate, Octahydrate (No. 70)

c) As for formamide (formamide and dimethylformamide), and N-methyl pyrrolidone all classified reprotoxic 2 by the European Union. They could be substitutioned by the dimethylsulfoxide (DMSO) not reprotoxic. O CH3

O H C NH2

H C N CH3

N

O

O

+

S

CH3 CH3

CH3

Formamide (No. 190)

 

Dimethylformamide (DMF)

(No. 191)

N-Methyl Pyrrolidone (NMP) (No. 192)

Dimethylsulfoxide (DMSO) (No. 139))

d) Among the haematotoxic , In addition to the benzene and ethylene oxide already taken into account as proven carcinogens in humans must be added the 2-butoxyethanol (2-BE), a glycol ether, which burst blood cells red causing anemia and neprhotoxicity. In animals, the 2-butoxyethanol would be responsible for adrenal tumors, but nothing is proven in humans. It is obvious that the 2-butoxyethanol, is like other glycol ethers, a product that essentially penetrates through the skin and which should be particularly wary. Used as a surfactant in fracturing fluids (Table 2, page 6) the 2-butoxyethanol should be easily replaced by a compound very low toxicity, as isopropanol.

O

O H

CH3 C CH3

2-Butoxyethanol (No. 149)

 

ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

H OH

Isopropanol (No. 125)

43

e) Although of other products should be avoided in fracturing fluids and can be reported: some are of neurotoxic powerful (the group of BTEX, methanol, acrylamide, ...).

f) Other compounds are hepatotoxic such as organochlorine derivatives : trichloroethylene, perchloroethylene (No. 120), benzyl chloride (No. 121), (in animal experimentation) Cl

Cl

Cl

Cl

Cl

H

Cl

Cl

Trichloroethylene

Cl

Tetrachloroethylene (No. 120)

Benzyl chloride (No. 121)

  It should be noted that some organochlorines are also nephrotoxic and probable carcinogen in humans (Group 2A IARC). g) Among the toxic renal powerful, we must warn against the ethylene glycol (No. 133) and the diethylene glycol (No. 144) which should be excluded fracturing fluids and also easily replaced by the propylene glycol, non-nephrotoxic.

CH2 OH

CH2 O

CH2 OH

CH2 OH CH2

Ethylene glycol (No. 133)

 

CH3

CH2

CH

OH

OH

CH2 OH

Diethylene glycol (No. 144)

Propylene glycol

h) Some compounds found in fracturing fluids are products allergenic powerful among which are compounds organics such as formaldehyde (No. 161) and glutaraldehyde (No. 162), and inorganic compounds, such as nickel sulphate (No. 40) and chromic acetate (No. 29). H H

C O

Formaldehyde (No. 161)

H

H O

O

Glutaraldehyde (No. 162))

O

O S

Ni

++

O

O

CH3 COO CH3 COO CH3 COO

Nickel sulphate (No. 40)

-

Cr + + +

-

Chromic acetate (No. 29)

  ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

44

 

Documents prepared by the United States (EPA, Committee on Energy and Commerce, NYSDEC) where Quebec (INSP) show some heterogeneity in the data Toxicological information on the products characterized in the fracturing fluids, this is due to different approaches. For example, a compound with low current, 4-nitroquinoline-N- oxide, as used corrosion inhibitor is found in the document INSP Quebec and the NYSDEC (2009) State of New York, at an average concentration of 13,908 in 24 mg/L-1 samples of 24, with a maximum concentration of 48,336 mg/L-1. This is a rate considerable for a compound, mainly used in laboratories as carcinogenic model of the oral cavity and the tongue, in rodents (Rats, Mice). At a time identical (2005, 2009) the Commission document of the Energy and Commerce of U.S. House of Representatives, makes no mention of this product and report only the presence of nitrogenous bases extracted tar (Tar bases, quinoline derivates, ...). No trace of the N-oxide of 4-nitroquinoline! If we do not yet have enough experience to properly evaluate the effects of the cocktail chemicals used in the United States in 2005-2009, by cons, media Local recounted several fatal acute poisoning in animals alongside sites drilling.

(Source: durangotexas.blogspot.com)

(Source: huntervalleyprotectionalliance.com)

Website of Chesapeake Energy, poisoning of 19 cattle that had ingested water fracturing Also in 2009, it is reported in a local newspaper in Louisiana, "The Shreveport Times" of April 29 2010, only 19 cows died after being in contact with a fracturing fluid of the company "Chesapeake Energy". If acute intoxication is no doubt, the newspaper reported that animals died had the foam in the mouth, and their language was bloody ... The same target that biological Rats and Mice, intoxicated by the long-term N-oxide of 4 - nitroquinoline ! A very strange coincidence, that would certainly require that American scientists seriously interested in this compound, known for its highly carcinogenic powerful and selectivity amazing ... even if the oils are no longer used quinoline United States! If cows have survived the poisoning, it would also be wise to follow over the long term, which could hold some surprises. Only by this, it is imperative that vigilance implementation is increased among populations in these mining areas gazo-oil… Otherwise epidemiology can be daunting ...

ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

45

 

Head of a cow having died from the ingestion of water outlets on the site of fracture Chesapeake Energy Louisiana, 2010. (Source: Unknown)

VIII, A CONCLUSION THAT REMAINS STILL TENTATIVE. For ten years, the exploitation of gas and oil shale or rock-oil mother, called unconventional, have boomed in the U.S., resulting in also an environmental deterioration which it is still difficult to measure all long-term consequences. Will he the same for the Europe ? The Poland, which would have the largest reserves in Europe (5,3 billion m3 according the U.S. Information Agency Energy, EIA) dream to break free from his tutelage energy toward its Russian supplier. As regards the France (Whose riches would come right after those of the Poland) its non-conventional hydrocarbon reserves are estimated at 100 million cubic meters, technically exploitable in the Paris Basin (Mostly as of shale oil). According to the report 5 of 8 June 2011 and CGIET6 CGEDD7, resources exploitable in the south would be about 500 billion m3 but these figures correspond to a mere suspicion of the existence of such reserves and this in the absence of any reliable assessment. Other European countries are currently at the exploration stage, as the Britain on the site of Blackpool, the Germany in Lower Saxony, but also the Switzerland. Strangely, while North American companies in the United States now report the Chemical composition (sometimes folk) of these fracturing fluids companies in Europe have no exceptions, so far disclosed the nature of the compounds they implement ... probably just an oversight! In France, the national debate on oil and shale gas, focused on the one hand considerable amounts of water implementation (From 10 000 to 20 000 m3 per cycle fracturing) and on the other hand on the nature and quantities of chemical additives addedThis is actually tens of tons of products. As noted by Francois-Michel GONNOT and Philippe MARTIN, the two rapporteurs document on gas and oil shale of 8 June 2011 (page 50) " the communication from the composition of fracturing fluids, is a precondition to opening a debate on the desirability of the exploitation of gas and oil shale ". A list of products allowed, for example established by the National Agency for Sanitary Security of Food, Environment and Labour (ANSES) would according to these authors, a guarantee acceptable by public opinion.

5

Report No. 3517 of the National Assembly on finding mission on shale gas June 8, 2011. CGIET: General Council of Industry and Technology 7 CGEDD: General Council of the Environment and Sustainable Development 6

ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

46

 

That acceptance will certainly conditioned the composition of the Committee of Experts. In the same report (page 50) gas and oil companies have said "working at the job always less harmful additives "such as the compounds used in the food and products everyday consumer. Hopefully it's not instant coffee in U.S. oil (page 34 of our document). It is obvious thatin France, we can not do without a national debate on our energy strategies, as it is hoped that it precedes a more open debate on the future of our energy policy and the operation of our basement. The position of the U.S. Agency of Environment (US-EPA) is in this sense particularly instructive. Indeed, for EPA, which invests several million dollars to accurately assess the environmental and health impacts related to the exploitation of shale gas, it seems well established that environmental hazards are much greater than the benefits economic, it seems you very profitable for the oil and secondarily for populations local. In the U.S., the example of Pennsylvania is particularly telling. If 71,000 wells are currently operates (there were 36,000 in 2000), entire regions of this state very green are now almost desert, the groundwater being drained and the sub-totally polluted soil, plus a water surface partially radioactive. But in fact, nothing impedes the gold rush of the XXI century ... 3000 new licenses were granted in 2010 and it is not the explosion of a well on April 20 that will begin this leap before the operation "Marcellus" ... To each his future! If gas or shale bedrock has recently become the second largest source of U.S. energy, it is unacceptable that France should follow this example, Both the disaster is convincing overseas. To us, to learn that ... the rest seem to Quebec and Africa South, the New York area and the Swiss canton of Fribourg, which all have a moratorium. Particularly important, especially in South-Eastern France, is the seismic risk, following fracturing operations. Indeed the basement of the southern gas-rich shale is abundantly crossed by faults and fractures. Gold geological study of deep underground is almost nonexistent and yet it is at this level that is the deep aquifer, Which represent in our future water supply. Hence the absolute necessity of taking no active petroleum gas deep in such regions, before they have a real knowledge of the subsoil. By example, it was noted, as in Arkansas, at Blackpool in Britain, that areas shale gas exploration, can be more vulnerable to natural earthquakes. As for example, 700 earthquakes were recorded in six months in Arkansas! Relying mainly on the EPA report to February 2011 (EPA / 600 D / - 11/001) supplemented by that of NYSDEC (2009) State of New York and Monograph the National Public Health Institute of Quebec (November 2010) it was possible to draw a list (Sadly temporary!) the main products used most frequently to United States in the extraction of oil or gas or oil shale bedrock (Tables 3 and 4). From these lists, we grouped the chemicals according to their type of toxicity, in a summary table (Table 10)

ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

47

 

TYPE OF TOXICITY

NUMBER OF PRODUCTS MADE ACCOUNT

Neurotoxicity

7

Hematotoxicity

3

Hepatotoxicity

1

Nephrotoxicity

3

Reproductive toxicity (Repro 2 and 3) Carcinogenic in humans (Groups 1 and 2A of the IARC)

6 8+1 *

 

1 * 4-nitroquinoline-N-oxide (cancers of the mouth and tongue in rodents), was not still considered by IARC. Table 10: MAJOR TOXIC IN HUMANS IN LISTED TABLES 3 AND 4 It must be remembered that many of these products as sand, hydrochloric acid, various corrosion inhibitors and biocides, are commonly used in oil and gas industries conventional. If we put aside, from tables 3 and 4), corrosive (10) essentially minerals (HCl, HF, NaOH, KOH, CaO) and some allergenic products (sulfate nickel, chromic acetate, formaldehyde, glutaraldehyde...), can be grouped in Table 10, thirty products that must be considered toxic to humans, including some highly toxic, such as carcinogens or toxic for reproduction, it is imperative to banish. As Table 5 lists, wastewater, discharged after fracturing are enriched after the crossing of different geological layers, with various water-soluble compounds inorganic. Among these compounds, metal compounds correspond either to toxic trace elements very bioaccumulative such as lead, cadmium, mercury and thallium, or to metals transition, less toxic and less bioaccumulative, as cobalt, nickel, copper... Other metals, under soluble form are dangerous toxic such as beryllium and barium. Among the mixed elements, arsenic and antimony are also powerful toxic. Of course depending on the type of geological traverses, the nature and concentration of elements minerals can be very variable. All these toxic hazards in the longer term, should not overshadow the potential risk Explosion and fire, Related to presence in the water output, gas in particular methane extremely volatile and highly flammable. In this context the influence of environmental harm, fracturing techniques and oils gas or oil shale bedrock, we were very sensitive to the recent study of Professor Robert HOWARTH8 Cornell University, who believes that the impact of exploration shale gas on global warming could exceed 20% that of coal! This to be the leakage methane during the fracturing cemented along the pipes, methane being on average 22 times more effective than CO2 As greenhouse gas emissions!

8

Howarth R and Col. 2011.Methers and the greenhouse-gas footprint of natural gas from shale formations. Climatic change in press ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

48

 

In the end, a ecological balance inefficient ! The gas and oil companies, Who have invested in Europe in the operation of gas oils and shale and develop this for the extraction, would do well to banish from the outset in the composition of their fracturing fluids, chemical additives, unless they familiar with other techniques fractures (compressed air, liquid propane ...) less polluting. These chemical additives, widely used in the United States, especially early in gas exploitation unconventional and which one is gradually irreversible ecological damage can be summarized in Table 11.



1

2 3

COMPOUNDS CHEMICAL AND MIXTURE

Boric acid and Sodium perborate Hydrofluoric acid Nitrilotriacetic acid (NTA)

LONG-TERM TOXICITY ACUTE (+ Corrosive, Irritant)

CANCEROGENIC

OTHER

EFFECTS ADVERSE on The ENVIRONMENT

PRODUCT SUBSTITUTE

_

_

Repro 2

_

_

Corrosive

_

Fluorosis Osteoporosis

_

_

_

_

Nephrotoxic

2A

Neurotoxic device, Allergenic

EDTA Dangerous for fish

4

Acrylamide

Irritant

5

Benzene

Neurotoxic central

A

Haematotoxic (Anemia)

6

2-Butoxyethanol

_

_

Haematotoxic (Hemolysis)

Irritant

2A

(Basic fractions oil)

Irritant

?

9

1.2 Diethoxyethane

Irritant

Repro 2

Propylene glycol mono 1-methyl ether

10

1.2 Dimethoxyethane (Glyme)

Irritant

Repro 2

Propylene glycol mono 1-methyl ether

11

Dimethylformamide (DMF)

Irritant

Repro 2

Dimethylsulfoxide (DMSO)

12

Epichlorohydrin

Irritant

13

2-Ethoxyethanol

_

Repro 2

Propylene glycol mono 1-methyl ether

7

8

Benzyl chloride Derivatives of Quinoline

Ethylene glycol Diethylene glycol

Cumene Isopropanol

?

2A

(+ Acetate) 14

Very toxic for life aquatic

Bis-acrylamide

Nephrotoxic

Propylene glycol

  ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

49

  15

Formaldehyde

Irritant

16

Hexane

Neurotoxic

17

Methanol

Acidosis

18

Methoxyethanol

_

A

20

Heavy naphtha

21

Ethylene oxide

22

Aluminum salts

23

24

25

Barium salts (Soluble) Tetrachloroethylene

Toluene

Irritant Neurotoxic central

Propylene glycol mono 1-methyl ether

Toxic to wildlife aquatic 2A

Irritant

Heptane Cyclohexane Ethanol Isopropanol

Repro 2

Irritant

Nitrate / Nitrite

Glutaraldehyde

Neurotoxic peripheral Neurotoxic ocular

(+ Acetate) 19

Allergenic

Haematotoxic (Methemoglobin izers)

Fractions non-oil genotoxic

Proliferation algae

A

2A

Neurotoxic, Ostéotoxiques Toxic intestinal Neurotoxic, Hepatotoxic Nephrotoxic Repro 3 Ototoxic

Toxic to wildlife aquatic Toxic to wildlife aquatic

Dichloromethane

Cumene

  Table 11 : THE 25 CHEMICALS AND THEIR MIXTURES, CONSIDERED AS VERY TOXIC AND (OR) DANGEROUS FOR THE ENVIRONMENT AND IN BANNING FRACTURING FLUIDS.

A bill to ban exploration and exploitation of gas and oil shale or appointed since the last report and CGIET CGEDD " hydrocarbon source rock ", was discussed on 10 and 12 May 2011. The bill relating to the exploration and mining of oil not conventional liquid (Shale oil) or gaseous (Methane) was adopted by June 21 National Assembly and the Senate, June 30, 2011. This law prohibits drilling vertical, horizontal hydraulic fracturing followed the schistose rocks, rich in hydrocarbons, was enacted on July 13, and gazetted 14 July 2011 (11). The France, joins the Suede which was the first prohibits the exploration of gas and oil shale in his basement. Unquestionably, this is a first advanced but remains to rehabilitate the mining code French (The basement is the property of the state) in social issues in current economic y including the requirement to consult the surrounding population from one site to explore. Hope that this will happen in the future?

ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

50

 

The principal author of the analysis that we offer, being originally a chemist Group Roussel-Uclaf (Romainville) and the CNRS (Gif-sur-Yvette), our approach to dangerousness Chemicals, the EPA detected in the fluid output of fracturing, may seem somewhat remote from what is described elsewhere. In fact our own approach is to consider that events that occur at the middle of fracturing, can be treated a "chemical reactor "wherein, to temperatures higher or lower and under various pressures, hundreds of molecules interact with each other and thus, the mixture final output, maybe not different initial products injected. And nothing should prohibit oxidants to modify the structure of reducing molecules. This is for example what should happen with Trivalent chromium salts (As acetate chromic) easily oxidizable in compounds hexavalent chromiumSuch as chromates (Figure 2). Nothing prohibits a given molecule can undergo a series of reactions, As can be imagine from the quinoline, An aromatic nitrogen heterocyclic base, which is found in basic fractions oil, which are added in some fracturing fluids. In the presence of a source of nitrating agent (nitrates...) quinoline is preferentially nitrated on the top 4 in the pyridine ring. The 4-nitroquinoline, thus formed, can then selectively oxidize on its nitrogen atom heterocyclic and led in the final N-oxide of 4-nitroquinoline, found in the fluid output (Figure 4) The majority of chemicals detected in the hydraulic fracturing fluids exploration and exploitation of oil and gas or oil shale bedrock, are essentially xenobiotics (substances foreign to the body), many of which are very and highly toxic environmental pollutants. It is therefore essential to consider that only fracturing techniques that respect the human health and the environment, would be to study the prospect of a political energy, acceptable to all. Hopefully in future reports that are sure to appear, this dimension multidisciplinary is not omitted. THE CHEMISTRY THAT'S LIFE! DO NOT FORGET IT, EVEN IF MANY MODELS DO ECONOMIC-POLITICALNOT SEEM to care. HOPE THIS MESSAGE WILL BE HEARD! Paris, October 2011 André Picot, Association president Toxicology and Chemistry (ATC-Paris) Joelle and Pierre DAVID, ATC members, Paris Jerome TSAKIRIS, ATC member, Paris NOTES: - The updating of this document and a number of product sheets discussed herein, including that of N-oxide 4-nitroquinoline and a brief bibliography can be found on the site Association Toxicology and Chemistry : atctoxicologie.free.fr If inaccuracies scientists have yet slipped into this summary, please accept our apologies and thank you inform us ... We will gain in credibility ... Our primary motivation! - ATC would like to thank all our colleagues and friend (s) who have reported some inaccuracies in the first edition. Contact : [email protected] ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

51

 

Summary bibliography

1 - NYSDEC (2009) Supplemental Generic Environmental Impact Statement On The Oil, Gas and Solution Mining Regulatory Program. Document of 804 pages. Bureau of Oil & Gas Regulation New York State, Albany, ftp://ftp.dec.state.ny.us/dmn/download/OGdSGEISFull.pdf 2 - Colborn T. 2010 Natural Gas operation from a Public Health Perspective. Inter day.The of Human and Ecological Risk Assessment, Current Release. http://www.bctwa.org/Frk-NatGa&Health-Sept4-2010.pdf 3 - National Institute of Public Health. November 2010 State of knowledge on the relationship between activities related to shale gas and public health. National Public Health Institute of Quebec, 73 pages. http://www.inspq.qc.ca/pdf/publications/1177_RelGazSchisteSantePubRapPreliminaire.pdf 4 - Bishop R. Juanary 2011 Chemical and Biological Risk Assessment for Natural Gas Extraction in New York. Chemistry & Biochemistry Department State University of New York College at Oneonta. http://ge.tt/2VfEsZw/Risk%% 20Natural% 20Assessment 20Gas% 20Extraction.pdf? type = download 5-EPA. February 2011 Draft plan to study the potential. impacts of hydraulic fracturing on drinking water ressouces EPA/600 / D-11/001 Office of Research and Development. http://water.epa.gov/type/groundwater/uic/class2/hydraulicfracturing/upload/HFStudyPlanDraft_SAB_0 20711.pdf 6-Leteurtrois JP Pillet D Durville JL Gazeau and JC. April 2011. The hydrocarbon source rock in France. Interim Report CGIET No. 2011-04-G CGEDD No. 007318-01. Paris http://www.economie.gouv.fr/services/rap11/110421rap-hydrocarbures-roche-mere.pdf 7 - H Waxman, Markey E, DeGette D. April 2011. Chemicals Used in Hydraulic Fracturing. UNITED STATES HOUSE OF ENERGY AND ON REPRESENTATIVESCOMMITTEE MINORITY BUSINESS STAFF. http://lenouvelordre.com/util/dl/Liste_des_produit_chimiques_du_fraking.pdf 8 - SG Osborn, Vengosh A, NR Warner, RB Jackson. 9 May 2011. Methane contamination of drinking water Accompanying gas well drilling and hydraulic fracturing PNAS , 108, 20, 8172-8176. http://www.pnas.org/content/108/20/8172.full.pdf+html ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS http://atctoxicologie.free.fr

52

 

9 - Gonnot F.M, Ph. Martin June 8, 2011. Mission of information on gas and oil shale. Information Report No. 3517 National Assembly, 2011, Paris http://www.assemblee-nationale.fr/13/rap-info/i3517.asp 10 - Mr. Marino in June 2011. Hydrocarbon source rock: Towards a new Gasland? Investigations Health # 7 June-July 201, p 30-39 http://www.enquetesdesante.com/revue/index.html 11 - ACT No. 2011-835 of 13 July 2011 to ban exploration and mining hydrocarbon liquids and gases by hydraulic fracturing and to repeal the exclusive licenses Research involving projects using this technique. Official Gazette No 0162 of 14 July 2011, pp. 12 217, text 2. http://www.legifrance.gouv.fr/ 12 - Shale Gas Production SEAB Subcommittee - 90-Day Report. August 2011. The Shale Gas Production Subcommittee of the Secretary of Energy Advisory Board (SEAB.

http://www.shalegas.energy.gov/resources/081111_90_day_report.pdf

ASSOCIATION TOXICOLOGY-CHEMISTRY MDA 10, 206 Quai de Valmy, 75010 PARIS ttp://atctoxicologie.free.fr

53