This example is set up in Chalkduster. \usepackage[no-math]{fontspec

Typeset with mathastext 1.15d (2012/10/13). (compiled with X. E .... and let C be the n × n matrix (cim)1≤i,m≤n, where the cim's are defined by the partial ...
91KB taille 0 téléchargements 296 vues
This example is set up in Chalkduster.

\usepackage[no-math]{fontspec} \setmainfont[Mapping=tex-text]{Chalkduster} \usepackage[defaultmathsizes]{mathastext} Typeset with mathastext 1.15d (2012/10/13). (compiled with XELATEX)

Theorem 1. Let there be given indeterminates ui , vi , ki , xi , yi , li , for 1 ⩽ i ⩽ n. We define the following n × n matrices     u1 u2 . . . un v1 v2 ... vn  k 1 v 1 k 2 v2 . . . k n vn  k1 u1 k2 u2 . . . kn un      Un = k2 u1 k2 u2 . . . k2 un  Vn =  k2 v1 k2 v2 . . . k2 vn  n n 1 1 2 2     .. .. .. .. . ... ... . . ... ... . (1) where the rows contain alternatively u’s and v’s. Similarly:



x1 x2  l 1 y 1 l2 y 2  X n = l2 x l2 x  1 1 2 2 .. . ...

... ... ... ...

 xn ln y n   l2n xn   .. .



y1 y2 l1 x1 l2 x2  Y n =  l2 y 1 l2 y 2 2  1 .. . ...

There holds det (

1⩽i,j⩽n

u i yj – vi x j lj – k i

1 )= ∏ i,j (lj – ki )

... ... ... ...

Un Xn Vn Yn 2n×2n

 yn ln x n   l2n yn   .. . (2)

(3)

Proof. Let A, B, C, D be n × n (matrices, with A and C ( A B ) ( A 0 ) I A–1 B ) invertible. Using C D = 0 C we obtain I C–1 D

A B –1 –1 C D = |A||C||C D – A B|

(4)

where vertical bars denote ∏ determinants. Let d(u) = diag(u1 , . . . , un ) and pu = 1⩽i⩽n ui . We define similarly d(v), d(x), d(y) and pv , px , py . From the previous identity we get

Ad(u) Bd(x) –1 –1 –1 –1 = |A||C| pu pv d(v) C Dd(y) – d(u) A Bd(x) Cd(v) Dd(y) = |A||C| d(u)C–1 Dd(y) – d(v)A–1 Bd(x) (5)

The special case A = C, B = D, gives

Ad(u) Bd(x) Ad(v) Bd(y)

= det(A)2 det ((ui yj – vi xj )(A–1 B)ij ) 1⩽i,j⩽n

2n×2n

(6) Let W(k) be the Vandermonde matrix with rows (1 . . . 1), (k1 . . . kn ), (k21 . . . k2n ), …, and ∆(k) = det W(k) its determinant. Let ∏ K(t) = (t – km ) (7) 1 ⩽m ⩽n

and let C be the n × n matrix (cim )1⩽i,m⩽n , where the cim ’s are defined by the partial fraction expansions: 1⩽i⩽n

∑ cim ti–1 = K(t) 1⩽m⩽n t – km

(8)

We have the two matrix equations: C = W(k) diag(K′ (k1 )–1 , . . . , K′ (kn )–1 ) (9a) C·

(

) 1 = W(l) diag(K(l1 )–1 , . . . , K(ln )–1 ) 1 ⩽ m,j ⩽ n lj – k m

(9b)

This gives the (well-known) identity:

(

1 lj – k m

)

= diag(K′ (k1 ), . . . , K′ (kn ))W(k)–1 W(l) diag(K(l1 )–1 , . . . , K(ln )–1 ) 1⩽m,j⩽n

(10) We can thus rewrite the determinant we want to compute as:

u i yj – vi x j lj – k i

= 1⩽i,j⩽n

∏ m

K′ (km )



K(lj )–1 (ui yj –vi xj )(W(k)–1 W(l))ij

j

(11)

n×n

We shall now make use of (6) with A = W(k) and B = W(l). u i yj – vi x j W(k)d(u) W(l)d(x) ∏ ∏ = ∆(k)–2 K′ (km ) K(lj )–1 lj – k i W(k)d(v) W(l)d(y) m 1⩽i,j⩽n j n(n–1) W(k)d(u) W(l)d(x) (–1) 2 =∏ W(k)d(v) W(l)d(y) i,j (lj – ki ) 2n×2n (12)

n

The sign (–1)n(n–1)/2 = (–1)[ 2 ] is the signature of the permutation which exchanges rows i and n + i for i = 2, 4, . . . , 2[ n2 ] and transforms the determinant on Un Xn . This concludes the the right-hand side into Vn Yn proof.